International Commission on Stratigraphy (ICS)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Conodonts and Foraminifers
Journal of Asian Earth Sciences 108 (2015) 117–135 Contents lists available at ScienceDirect Journal of Asian Earth Sciences journal homepage: www.elsevier.com/locate/jseaes An integrated biostratigraphy (conodonts and foraminifers) and chronostratigraphy (paleomagnetic reversals, magnetic susceptibility, elemental chemistry, carbon isotopes and geochronology) for the Permian–Upper Triassic strata of Guandao section, Nanpanjiang Basin, south China ⇑ Daniel J. Lehrmann a, , Leanne Stepchinski a, Demir Altiner b, Michael J. Orchard c, Paul Montgomery d, Paul Enos e, Brooks B. Ellwood f, Samuel A. Bowring g, Jahandar Ramezani g, Hongmei Wang h, Jiayong Wei h, Meiyi Yu i, James D. Griffiths j, Marcello Minzoni k, Ellen K. Schaal l,1, Xiaowei Li l, Katja M. Meyer l,2, Jonathan L. Payne l a Geoscience Department, Trinity University, San Antonio, TX 78212, USA b Department of Geological Engineering, Middle East Technical University, Ankara 06531, Turkey c Natural Resources Canada-Geological Survey of Canada, Vancouver, British Columbia V6B 5J3, Canada d Chevron Upstream Europe, Aberdeen, Scotland, UK e Department of Geology, University of Kansas, Lawrence, KS 66045, USA f Louisiana State University, Baton Rouge, LA 70803, USA g Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA h Guizhou Geological Survey, Bagongli, Guiyang 550011, Guizhou Province, China i College of Resource and Environment Engineering, Guizhou University, Caijiaguan, Guiyang 550003, Guizhou Province, China j Chemostrat Ltd., 2 Ravenscroft Court, Buttington Cross Enterprise Park, Welshpool, Powys SY21 8SL, UK k Shell International Exploration and Production, 200 N. Dairy Ashford, Houston, TX 77079, USA l Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305, USA article info abstract Article history: The chronostratigraphy of Guandao section has served as the foundation for numerous studies of the Received 13 October 2014 end-Permian extinction and biotic recovery in south China. -
Fulu Biota, a New Exceptionally Preserved Cambrian Fossil Assemblage from the Longha Formation in Southeastern Yunnan
Fulu biota, a new exceptionally preserved Cambrian fossil assemblage from the Longha Formation in southeastern Yunnan Shanchi Penga, b*, Xianfeng Yangc, Liu Yuc, Xuejin Zhua, b, Haijing Sund, Samuel Zamorae, Yingyan Maoa, and Yuchen Zhanga aState Key Laboratory of Palaeobiology and Stratigraphy (Chinese Academy of Sciences), Nanjing 210008, China bNanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China cYunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, ChinaeNational Maritime Museum of China, Tianjin 300467, China dNational Maritime Museum of China, Tianjin 300467, China eInstituto Geológico y Minero de España, C/ Manuel Lasala, 44 - 9º B, 50006 Zaragoza, Spain Abstract A new exceptionally preserved Cambrian biota, with fossils belonging to multiple phyla, has recently been found from the middle part of the Longha Formation, near Fulu Village, southeastern Yunnan, South China, and is named the Fulu biota. Groups recovered so far include polymerid trilobites, agnostoids, large bivalved arthropods, bradoriid arthropods, echinoderms, brachiopods, priapulids (worms), hyoliths, macroscopic algae, and trace fossils. The arthropods dominate and are highly diverse with echinoderms second in diversity. The associated agnostoids provide a precise late Guzhangian Age (late Miaolingian Epoch) for the biota, indicating that the biota occurs stratigraphically about halfway between the occurrences of the Kaili and the Guole biotas of South China, from both of which the new Fulu biota differs significantly in faunal components. Guzhangian biotas preserving poorly mineralized tissues and complete echinoderms were previously unknown in Gondwana until now, providing a unique window into life at this critical time interval. Keywords: Fulu biota; Fossils of multiple phyla; Longha Formation; Guzhangian; Yunnan, South China 1. -
03 Lukeneder ACTA LAYAUT
Acta Geologica Polonica, Vol. 63 (2013), No. 1, pp. 89–104 DOI: 10.2478/agp-2013-0003 Palaeoenvironmental evolution of the Southern Alps across the Faraoni Level equivalent: new data from the Trento Plateau (Upper Hauterivian, Dolomites, N. Italy) ALEXANDER LUKENEDER1 AND PATRICK GRUNERT 2 1 Natural History Museum, Geological-Paleontological Department, Burgring 7, A-1010 Vienna, Austria. E-mail: [email protected] 2 University of Graz, Institute for Earth Sciences, Heinrichstraße 26, A-8010 Graz, Austria. E-mail: [email protected] ABSTRACT: Lukeneder, A. and Grunert, P. 2013. Palaeoenvironmental evolution of the Southern Alps across the Faraoni Level equivalent: new data from the Trento Plateau (Upper Hauterivian, Dolomites, N. Italy). Acta Geologica Polonica, 63 (1), 89–104. Warszawa. New stratigraphic and palaeoenvironmental data are presented for the northeastern part of the Trento Plateau (Puez area, Southern Alps, Italy). The studied section corresponds to the upper Hauterivian Balearites balearis and “Pseudothurmannia ohmi” ammonite zones and normal palaeomagnetic chron upper M5. A c. 30-cm-thick bed is identified as the equivalent of the Faraoni Level, based on its position within the Pseudothurmannia mortilleti Sub- 13 zone, the composition of its ammonite fauna and the peak of a minor positive trend in the δ Cbulk record. Microfa- cies and geochemical proxies compare well with those of the southeastern part of the Trento Plateau and indicate palaeoceanographic continuity along the eastern margin of the plateau. The abundances of radiolarians and nanno- conids suggest a turnover in the trophic structure from eutrophic conditions around the Faraoni Level equivalent to oligotrophic conditions. -
03-Alekseev and Goreva (Neognathodus).P65
Lucas, S.G., et al. eds., 2013, The Carboniferous-Permian Transition. New Mexico Museum of Natural History and Science, Bulletin 60. 1 THE CONODONT NEOGNATHODUS BOTHROPS MERRILL, 1972 AS THE MARKER FOR THE LOWER BOUNDARY OF THE MOSCOVIAN STAGE (MIDDLE PENNSYLVANIAN) ALEXANDER S. ALEKSEEV1 AND NATALIA V. GOREVA 2 1 Department of Paleontology, Geological Faculty, Moscow State University, Russia, email: aaleks@geol. msu.ru; 2 Geological institute of Russian Academy of Science, Moscow, Russia, email: [email protected] Abstract—The Moscovian Stage constitutes the Middle Pennsylvanian Series of the Carboniferous System, but a biostratigraphic marker and GSSP for it have not yet been designated. The exact position of the Moscovian boundary cannot be defined properly because in the type area the basal Vereian unconformably overlies the Mississippian limestone or the alluvial and lagoonal Aza Formation of the uppermost Bashkirian. The Task Group to establish a GSSP close to the existing Bashkirian-Moscovian boundary suggested several potential markers among foraminifers and conodonts, but the search for a marker near traditional base of the global Moscovian Stage has stalled. It may be more productive to search for FADs in the lower Moscovian, above the traditional base, to designate the lower boundary of the stage. Relatively rich Vereian and Kashirian conodont assemblages have been recovered from the southwest Moscow Basin, as well as from the Oka-Tsna Swell. The most complete information on the distribution of conodonts in the Vereian- Kashirian boundary interval was obtained from the Yambirno section (Oka-Tsna Swell). The greatest change in conodont assemblages does not occur near the level of the traditional base of the Moscovian, but stratigraphically higher. -
Russian National Committee for Igcp
RUSSIAN NATIONAL COMMITTEE FOR IGCP ANNUAL REPORT ON IGCP ACTIVITIES FOR 2014 This report informs on the Russia’s activities in the IGCP projects in 2014. Chairman: Prof. Mikhail A. Fedonkin Russian National Committee for IGCP GIN RAS, Pyzhevsky, 7, 119017 Moscow, Russia Tel: + 7 495 951-75-00/ 8 495 953 37 91 Fax: +7 495 953 37 64 E- mail: [email protected] The current Committee’s membership comprises twenty four members including the following Bureau members: Mikhail A. Fedonkin (Chairman, Geological Institute, GIN RAS); Igor D. Ryabchikov (Vice Chairman, Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, IGEM RAS); Oleg A. Bogatikov (Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, IGEM RAS); Eric M. Galimov (Vernadsky Institute of Geochemistry and Analytical Chemistry , GEOKHI RAS ); Alexander O. Gliko (Institute of Physics of the Earth, RAS); Yury G. Leonov (Geological Institute, GIN RAS). Projects with Russian co-leaders: Project 587 Entity, Facies and Time – the Ediacaran (Vendian) Puzzle (2010-2014), Leaders: Mikhail Fedonkin (Russia), Patricia Vickers-Rich (Australia), Jim Gehling (Australia), Guy Narbonne (Canada) Project 592 Continental construction in Central Asia (2012-2015), Leaders: Inna Safonova (Russia), Reimar Seltmann (UK), Min Sun (China) Project 596 Climate Change and Biodiversity Patterns in the Mid-Paleozoic (2011-2015). Leaders: Peter Konigshof (Germany), Thomas G. Suttner (Austria), Iliana A. Boncheva (Bulgaria), Nadezhda G. Izokh (Russia), Phuong Ta Hoa (Vietnam), Thasinee Charoentitirat (Thailand), Johny A. Waters (USA), Wolfgang Kiessling (Germany). Project 609 Cretaceous Sea-Level Changes (2013-2017). Leaders: M.Wagreich (Austria), X.Hu (China), S.Voigt (Germany, J.J. -
Microbialite-Dominated Fossil Associations in Cipit Boulders from Alpe Di Specie and Misurina (St. Cassian Formation, Middle to Upper Triassic, Dolomites, NE Italy)
PUBLICACIÓN CONTINUA ARTÍCULO ORIGINAL © 2019 Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza. This is an Open Access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). TIP Revista Especializada en Ciencias Químico-Biológicas, 22: 1-18, 2019. DOI: 10.22201/fesz.23958723e.2019.0.171 Microbialite-dominated fossil associations in Cipit Boulders from Alpe di Specie and Misurina (St. Cassian Formation, Middle to Upper Triassic, Dolomites, NE Italy) Francisco Sánchez-Beristain1* and Joachim Reitner2 1Museo de Paleontología, Facultad de Ciencias, Universidad Nacional Autónoma de México. Circuito Exterior S/N. Ciudad Universitaria. Coyoacán 04510. Ciudad de México, México. 2Geowissenschaftliches Zentrum der Universität Göttingen, Abt. Geobiologie, Goldschmidtstraße 3. 37077 Göttingen, Germany. E-mail: *[email protected] Abstract In this paper we describe four new fossil associations of “reef” and “reef”-like environments of the St. Cassian Formation (Ladinian-Carnian, Dolomites, NE Italy), based on thirty thin sections from 10 “Cipit boulders” olistoliths, which slided from the Cassian platform into coeval basin sediments. The fossil associations were determined by means of microfacies analysis using point-counting and visual estimation, as well as with aid of statistical methods, based on all fractions with a biotic significance (biomorpha and microbialites). Cluster Analyses in Q-Mode were performed, coupling three algorithms and two indices. In all samples, the main components of the framework are microbialite (average of 75%), and macrofossils (average of 20%), whereas cements and allochtonous components, such as allomicrite, do not represent a significant fraction. Based on both microbialite and fossil content, Chaetetid–microencruster Association, Microbialite–microencruster Association, Dual-type Microbialite Association and Microbialite–Terebella Association, were differentiated. -
Conodont Faunas Across the Mid-Carboniferous Boundary From
Conodont faunas across the mid-Carboniferous boundary from the Barcaliente Formation at La Lastra (Palentian Zone, Cantabrian Mountains, northwest Spain); geological setting, sedimentological characters and faunal descriptions T.I. Nemyrovska, R.H. Wagner, C.F. Winkler Prins & I. Montañez Nemyrovska, T.I., Wagner, R.H., Winkler Prins, C.F. & Montañez, I. Conodont faunas across the mid- Carboniferous boundary from the Barcaliente Formation at La Lastra (Palentian Zone, Cantabrian Mountains, northwest Spain); geological setting, sedimentological characters and faunal descriptions. Scripta Geologica, 143: 127-183, 8 figs., 4 pls, 1 table, Leiden, December 2011. Tamara I. Nemyrovska, Institute of Geological Sciences, National Academy of Sciences of Ukraine, Gonchar Str., 55-b, 01054 Kiev, Ukraine ([email protected]); Robert H. Wagner, Centro Paleobotánico, IMGEMA Jardín Botánico de Córdoba, Avenida de Linneo s/n, E 14004 Córdoba, Spain (cr1wagro@uco. es); Cor F. Winkler Prins, NCB Naturalis, Postbus 9517, 2300 RA Leiden, The Netherlands (Cor.Winkler@ ncbnaturalis.nl); Isabel Montañez, Department of Geology, University of California, Davis, CA 95616, U.S.A. (ipmontañ[email protected]). Keywords — Serpukhovian, Bashkirian, biostratigraphy, palaeoecology. Two different tectono-stratigraphic domains are recognised in the Cantabrian Mountains, Asturian-Leo- nese (Cantabrian Zone) and Palentian (Palentian Zone). The area under investigation belongs to the south- ern part of the Palentian Domain and attention is focused on the Upper Viséan to lowermost Bashkirian limestones at the village of La Lastra in northern Palencia. A new geological map of the Palentian Zone is accompanied by a more detailed map centred on La Lastra. The Barcaliente Limestone Formation (Ser- pukhovian to lowermost Bashkirian) occurs in the overturned limb of a recumbent anticline which consti- tutes the head of a south-verging major thrust unit, the Carrionas Thrust Sheet (Palentian Zone). -
How to Cite Complete Issue More Information About This Article
TIP. Revista especializada en ciencias químico-biológicas ISSN: 1405-888X ISSN: 2395-8723 Universidad Nacional Autónoma de México, Facultad de Estudios Superiores, Plantel Zaragoza Sánchez-Beristain, Francisco; Reitner, Joachim Microbialite-dominated fossil associations in Cipit Boulders from Alpe di Specie and Misurina (St. Cassian Formation, Middle to Upper Triassic, Dolomites, NE Italy) TIP. Revista especializada en ciencias químico-biológicas, vol. 22, 2019 Universidad Nacional Autónoma de México, Facultad de Estudios Superiores, Plantel Zaragoza DOI: 10.22201/fesz.23958723e.2019.0.171 Available in: http://www.redalyc.org/articulo.oa?id=43265210003 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative PUBLICACIÓN CONTINUA ARTÍCULO ORIGINAL © 2019 Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Zaragoza. This is an Open Access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). TIP Revista Especializada en Ciencias Químico-Biológicas, 22: 1-18, 2019. DOI: 10.22201/fesz.23958723e.2019.0.171 Microbialite-dominated fossil associations in Cipit Boulders from Alpe di Specie and Misurina (St. Cassian Formation, Middle to Upper Triassic, Dolomites, NE Italy) Francisco Sánchez-Beristain1* and Joachim Reitner2 1Museo de Paleontología, Facultad de Ciencias, Universidad Nacional Autónoma de México. Circuito Exterior S/N. Ciudad Universitaria. Coyoacán 04510. Ciudad de México, México. 2Geowissenschaftliches Zentrum der Universität Göttingen, Abt. Geobiologie, Goldschmidtstraße 3. 37077 Göttingen, Germany. E-mail: *[email protected] Abstract In this paper we describe four new fossil associations of “reef” and “reef”-like environments of the St. -
Pennsylvanian Boundary Unconformity in Marine Carbonate Successions
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Atmospheric Earth and Atmospheric Sciences, Department of Sciences Summer 6-2014 ORIGIN AND DISTRIBUTION OF THE MISSISSIPPIAN – PENNSYLVANIAN BOUNDARY UNCONFORMITY IN MARINE CARBONATE SUCCESSIONS WITH A CASE STUDY OF THE KARST DEVELOPMENT ATOP THE MADISON FORMATION IN THE BIGHORN BASIN, WYOMING. Lucien Nana Yobo University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/geoscidiss Part of the Geochemistry Commons, Geology Commons, Sedimentology Commons, and the Stratigraphy Commons Nana Yobo, Lucien, "ORIGIN AND DISTRIBUTION OF THE MISSISSIPPIAN – PENNSYLVANIAN BOUNDARY UNCONFORMITY IN MARINE CARBONATE SUCCESSIONS WITH A CASE STUDY OF THE KARST DEVELOPMENT ATOP THE MADISON FORMATION IN THE BIGHORN BASIN, WYOMING." (2014). Dissertations & Theses in Earth and Atmospheric Sciences. 59. http://digitalcommons.unl.edu/geoscidiss/59 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. ORIGIN AND DISTRIBUTION OF THE MISSISSIPPIAN – PENNSYLVANIAN BOUNDARY UNCONFORMITY IN MARINE CARBONATE SUCCESSIONS WITH A CASE STUDY OF THE KARST DEVELOPMENT ATOP THE MADISON FORMATION IN THE BIGHORN BASIN, WYOMING. By Luscalors Lucien Nana Yobo A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Earth and Atmospheric Sciences Under the Supervision of Professor Tracy D. -
Carboniferous Formations and Faunas of Central Montana
Carboniferous Formations and Faunas of Central Montana GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 Carboniferous Formations and Faunas of Central Montana By W. H. EASTON GEOLOGICAL SURVEY PROFESSIONAL PAPER 348 A study of the stratigraphic and ecologic associa tions and significance offossils from the Big Snowy group of Mississippian and Pennsylvanian rocks UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows : Eastern, William Heyden, 1916- Carboniferous formations and faunas of central Montana. Washington, U.S. Govt. Print. Off., 1961. iv, 126 p. illus., diagrs., tables. 29 cm. (U.S. Geological Survey. Professional paper 348) Part of illustrative matter folded in pocket. Bibliography: p. 101-108. 1. Paleontology Montana. 2. Paleontology Carboniferous. 3. Geology, Stratigraphic Carboniferous. I. Title. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, B.C. CONTENTS Page Page Abstract-__________________________________________ 1 Faunal analysis Continued Introduction _______________________________________ 1 Faunal relations ______________________________ 22 Purposes of the study_ __________________________ 1 Long-ranging elements...__________________ 22 Organization of present work___ __________________ 3 Elements of Mississippian affinity.._________ 22 Acknowledgments--.-------.- ___________________ -
Schmitz, M. D. 2000. Appendix 2: Radioisotopic Ages Used In
Appendix 2 Radioisotopic ages used in GTS2020 M.D. SCHMITZ 1285 1286 Appendix 2 GTS GTS Sample Locality Lat-Long Lithostratigraphy Age 6 2s 6 2s Age Type 2020 2012 (Ma) analytical total ID ID Period Epoch Age Quaternary À not compiled Neogene À not compiled Pliocene Miocene Paleogene Oligocene Chattian Pg36 biotite-rich layer; PAC- Pieve d’Accinelli section, 43 35040.41vN, Scaglia Cinerea Fm, 42.3 m above base of 26.57 0.02 0.04 206Pb/238U B2 northeastern Apennines, Italy 12 29034.16vE section Rupelian Pg35 Pg20 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 145.8 m above base 31.41 0.03 0.04 206Pb/238U 145.8, equivalent to GSSP), northeastern Apennines, Italy 12 28003.83vE of section MCA/84-3 Pg34 biotite-rich layer; MCA- Monte Cagnero section (Chattian 43 38047.81vN, Scaglia Cinerea Fm, 142.8 m above base 31.72 0.02 0.04 206Pb/238U 142.8 GSSP), northeastern Apennines, Italy 12 28003.83vE of section Eocene Priabonian Pg33 Pg19 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 14.7 m above base of 34.50 0.04 0.05 206Pb/238U 14.7, equivalent to Ancona, northeastern Apennines, 13.6011 E section MAS/86-14.7 Italy Pg32 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.9 m above base of 34.68 0.04 0.06 206Pb/238U 12.9 Ancona, northeastern Apennines, 13.6011 E section Italy Pg31 Pg18 biotite-rich layer; MASS- Massignano (Oligocene GSSP), near 43.5328 N, Scaglia Cinerea Fm, 12.7 m above base of 34.72 0.02 0.04 206Pb/238U -
This Article Was Published in an Elsevier Journal. the Attached Copy
This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author’s institution, sharing with colleagues and providing to institution administration. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Available online at www.sciencedirect.com Earth-Science Reviews 85 (2007) 47–81 www.elsevier.com/locate/earscirev A review of the Late Cambrian (Furongian) palaeogeography in the western Mediterranean region, NW Gondwana ⁎ J. Javier Álvaro a,b, , Annalisa Ferretti c, Cristina González-Gómez a, Enrico Serpagli d, M. Franco Tortello e, Marco Vecoli b, Daniel Vizcaïno f a Departamento Ciencias de la Tierra, Universidad de Zaragoza, 50009-Zaragoza, Spain b Laboratoire ‘Paléontologie et Paléogéographie du Paléozoïque’, UMR 8014 CNRS, Université de Lille I, 59655-Villeneuve d'Ascq, France c Dipartimento di Scienze della Terra, Università di Modena e Reggio Emilia, largo S. Eufemia 19, 41100-Modena, Italy d Dipartimento del Museo di Paleobiologia e dell'Orto Botanico, Università di Modena e Reggio Emilia, Via Università 4, 41100-Modena, Italy e Departamento Paleozoología Invertebrados, Museo de Ciencias Naturales, Paseo del Bosque s/n°, 1900-La Plata, Argentina f 7 rue Jean-Baptiste Chardin, Maquens, 11090-Carcassonne, France Received 18 December 2006; accepted 25 June 2007 Available online 6 August 2007 Abstract The Cambrian–Ordovician transition of the western Mediterranean region (NW Gondwana) is characterized by the record of major erosive unconformities with gaps that range from a chronostratigraphic stage to a series.