Galectins Affecting Recognition by Siglecs and Pronounced Changes

Total Page:16

File Type:pdf, Size:1020Kb

Galectins Affecting Recognition by Siglecs and Pronounced Changes Dendritic Cell Maturation Results in Pronounced Changes in Glycan Expression Affecting Recognition by Siglecs and Galectins This information is current as of September 23, 2021. Marieke Bax, Juan J. García-Vallejo, Jihye Jang-Lee, Simon J. North, Tim J. Gilmartin, Gilberto Hernández, Paul R. Crocker, Hakon Leffler, Steven R. Head, Stuart M. Haslam, Anne Dell and Yvette van Kooyk J Immunol 2007; 179:8216-8224; ; Downloaded from doi: 10.4049/jimmunol.179.12.8216 http://www.jimmunol.org/content/179/12/8216 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2008/03/07/179.12.8216.DC1 Material References This article cites 70 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/179/12/8216.full#ref-list-1 Why The JI? Submit online. by guest on September 23, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2007 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Dendritic Cell Maturation Results in Pronounced Changes in Glycan Expression Affecting Recognition by Siglecs and Galectins1 Marieke Bax,2* Juan J. Garcı´a-Vallejo,2* Jihye Jang-Lee,† Simon J. North,† Tim J. Gilmartin,‡ Gilberto Herna´ndez,‡ Paul R. Crocker,§ Hakon Leffler,¶ Steven R. Head,‡ Stuart M. Haslam,† Anne Dell,† and Yvette van Kooyk3* Dendritic cells (DC) are the most potent APC in the organism. Immature dendritic cells (iDC) reside in the tissue where they capture pathogens whereas mature dendritic cells (mDC) are able to activate T cells in the lymph node. This dramatic functional change is mediated by an important genetic reprogramming. Glycosylation is the most common form of posttranslational mod- ification of proteins and has been implicated in multiple aspects of the immune response. To investigate the involvement of Downloaded from glycosylation in the changes that occur during DC maturation, we have studied the differences in the glycan profile of iDC and mDC as well as their glycosylation machinery. For information relating to glycan biosynthesis, gene expression profiles of human monocyte-derived iDC and mDC were compared using a gene microarray and quantitative real-time PCR. This gene expression profiling showed a profound maturation-induced up-regulation of the glycosyltransferases involved in the expression of LacNAc, core 1 and sialylated structures and a down-regulation of genes involved in the synthesis of core 2 O-glycans. Glycosylation changes during DC maturation were corroborated by mass spectrometric analysis of N- and O-glycans and by flow cytometry using plant http://www.jimmunol.org/ lectins and glycan-specific Abs. Interestingly, the binding of the LacNAc-specific lectins galectin-3 and -8 increased during mat- uration and up-regulation of sialic acid expression by mDC correlated with an increased binding of siglec-1, -2, and -7. The Journal of Immunology, 2007, 179: 8216–8224. endritic cells (DC)4 are the most potent APC in the im- signaling cascade leading to the migration of DC to the neighbor- mune system. They reside as immature DC (iDC) in the ing lymph nodes. In these lymph nodes, the DC arrive as mature D peripheral tissues, where they sense for pathogens (1). DC (mDC), ready to interact with a naive lymphocyte carrying the Pathogen recognition often results in the activation of iDC via appropriate TCR. mDC are characterized by the expression of high by guest on September 23, 2021 TLR present on their membrane or in intracellular compartments levels of MHC class II, costimulatory molecules, chemokines, and (2). The interaction of TLRs with their ligands elicits a complex cytokines, in contrast to iDC, which show low expression of these molecules and high levels of Ag-uptake receptors. Thus, DC suffer *Department of Molecular Cell Biology and Immunology, Vrije Universiteit Univer- a dramatic change in phenotype and functionality upon maturation. sity Medical Center, Amsterdam, The Netherlands; †Division of Molecular Bio- This change is mediated by the modulation of a wide array of sciences, Imperial College, London, United Kingdom; ‡DNA Microarray Core Fa- molecules and ensures the development of a potent and specific cility, The Scripps Research Institute, La Jolla, CA 92037; §Wellcome Trust Biocentre, University of Dundee, Dundee, United Kingdom; and ¶Section Microbi- immune response. As a result, mDC have a limited Ag uptake and ology, Immunology, and Glycobiology, Department of Laboratory Medicine, Lund processing capacity, whereas Ag presentation and T cell costimu- University, Lund, Sweden lation are promoted (3). Received for publication March 29, 2007. Accepted for publication October 5, 2007. To limit Ag uptake, C-type lectin receptor (CLR) expression on The costs of publication of this article were defrayed in part by the payment of page the cell surface of DC is down-regulated during maturation. CLRs charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. constitute an important family of pattern recognition receptors ex- 1 This work was supported primarily by a Netherlands Organization of Scientific pressed on DC (4) and are well-characterized as Ag-uptake recep- Research Pioneer grant (to Y.v.K.) and in part by National Institute of General Med- tors for glycosylated structures (5) found on pathogens. Except for ical Sciences–The Consortium for Functional Glycomics GM62116. M.B. was sup- the recognition of pathogens, CLR have been implicated in several ported by a Vrije Universiteit Medical Center Institute for Cancer and Immunology PhD student grant, P.R.C. was supported by the Wellcome Trust, and H. L. was other functions, such as cell migration (6) and intercellular com- supported by the Swedish Research Council. A.D. is a Biotechnology and Biological munication (7). One of the best studied CLRs is the DC-specific Sciences Research Council Professorial Fellow. ICAM-3-grabbing nonintegrin, also known as DC-SIGN (8). Be- 2 M.B. and J.J.G.-V. contributed equally to this article. sides a pattern recognition receptor for HIV-1 (9), CMV (10), 3 Address correspondence and reprint requests to Dr. Y. van Kooyk, Department of Schistosoma mansoni (11), and other pathogens (5, 12), DC-SIGN Molecular Cell Biology and Immunology, Vrije Universiteit University Medical Cen- ter, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands. E-mail address: has been shown to also recognize glycan epitopes on endogenous [email protected] ligands, such as ICAM-2 on endothelial cells (6), ICAM-3 on T 4 Abbreviations used in this paper: DC, dendritic cell; iDC, immature DC; mDC, cells (8), or Mac1 on neutrophils (13). Interaction of DC-SIGN mature DC; CLR, C-type lectin receptor; DC-SIGN, DC-specific ICAM-3-grabbing with its ligands regulates DC precursor migration into peripheral nonintegrin; MS, mass spectrometry; CRD, carbohydrate recognition domain; Ct, cycle threshold; Siglec, sialic acid-binding Ig superfamily lectin; MAA, Maackia tissues, stabilizes the DC-T cell contact surface in the immuno- amurensis agglutinin; SNA, Sambucus nigra agglutinin; RCA, Ricinus communis logical synapse (14), and allows neutrophils to induce DC matu- agglutinin. ration, respectively. Another CLR involved in intercellular com- Copyright © 2007 by The American Association of Immunologists, Inc. 0022-1767/07/$2.00 munication is the macrophage galactose-type C-type lectin, which www.jimmunol.org The Journal of Immunology 8217 binds to specific CD45 glycoforms on T cells (7) to down-regulate (Promega) following the manufacturer’s guidelines. Cells (0.5 ϫ 106) were effector T cell functions. Other members of the lectin superfamily washed twice with ice-cold PBS, pelleted, and lysed in 500 ␮l of lysis buffer. Lysates were incubated with biotin-labeled oligo(dT) for 5 min at that play an important role in the immune system are siglecs (15) 20 37°C and then 50 ␮l of the mix was transferred to streptavidin-coated tubes and galectins (16). The sialic acid-binding Ig superfamily lectins and incubated for 5 min at 37°C. After washing three times with 250 ␮lof ␮ ϫ (siglecs) are a class of Ig superfamily proteins which show binding washing buffer, 30 l of the reverse transcription mix (5 mM MgCl2,1 activity to specific glycan structures containing sialic acid (17). reverse transcription buffer, 1 mM dNTP, 0.4 U of recombinant RNasin Many siglecs have molecular features of inhibitory receptors, in- RNase inhibitor, 0.4 U of reverse transcriptase, 0.5 ␮g of random hexamers in nuclease-free water) were added to the tubes and incubated for 10 min cluding conserved tyrosine-based motifs. This is the case of si- at room temperature followed by 45 min at 42°C. To inactivate AMV glec-2 (CD22), involved in the control of the BCR signaling (18), reverse transcriptase and separate mRNA from the streptavidin-biotin com- and the siglec-3 (CD33) related siglecs, known to relay inhibitory plex, samples were heated at 99°C for 5 min, transferred to microcentrifuge signals or to inhibit activatory pathways when cross-linked with tubes and incubated in ice for 5 min, diluted 1/2 in nuclease-free water, and Ϫ activating receptors (19–22). Galectins have a binding specificity stored at 20°C until analysis.
Recommended publications
  • Exploring Functional Pairing Between Surface Glycoconjugates And
    Exploring functional pairing between surface PNAS PLUS glycoconjugates and human galectins using programmable glycodendrimersomes Qi Xiaoa, Anna-Kristin Ludwigb, Cecilia Romanòc, Irene Buzzaccheraa,d,e,f, Samuel E. Shermana, Maria Vetroc, Sabine Vértesyb, Herbert Kaltnerb, Ellen H. Reedg, Martin Möllerd,e, Christopher J. Wilsonf, Daniel A. Hammerg,h, Stefan Oscarsonc, Michael L. Kleini,1, Hans-Joachim Gabiusb, and Virgil Perceca,1 aRoy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323; bInstitute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, 80539 Munich, Germany; cCentre for Synthesis and Chemical Biology, University College Dublin, Dublin 4, Ireland; dDWI − Leibniz Institute for Interactive Materials, RWTH Aachen University, 52074 Aachen, Germany; eInstitute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52074 Aachen, Germany; fNovioSense B.V., 6534 AT Nijmegen, The Netherlands; gDepartment of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104-6321; hDepartment of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104-6391; and iInstitute of Computational Molecular Science, Temple University, Philadelphia, PA 19122 Contributed by Michael L. Klein, January 4, 2018 (sent for review November 16, 2017; reviewed by Timothy J. Deming and Yoshiko Miura) Precise translation of glycan-encoded information into cellular lection process are not yet defined quantitatively. Confronted with activity depends critically on highly specific functional pairing the combination of natural glycan complexity and the result of between glycans and their human lectin counter receptors. Sulfo- evolutionary structure diversification within a lectin family, the glycolipids, such as sulfatides, are important glycolipid components ultimate experimental strategy would seem to require full glycome of the biological membranes found in the nervous and immune and lectin network analysis.
    [Show full text]
  • The Effect of Bovine Galectin-1, a Conceptus Secretory Protein, on the Endometrial Transcriptome
    Graduate Theses, Dissertations, and Problem Reports 2019 The Effect of Bovine Galectin-1, a Conceptus Secretory Protein, on the Endometrial Transcriptome Lindsay Faye Grose West Virginia University, [email protected] Follow this and additional works at: https://researchrepository.wvu.edu/etd Part of the Beef Science Commons, Dairy Science Commons, Genetics Commons, Large or Food Animal and Equine Medicine Commons, and the Other Physiology Commons Recommended Citation Grose, Lindsay Faye, "The Effect of Bovine Galectin-1, a Conceptus Secretory Protein, on the Endometrial Transcriptome" (2019). Graduate Theses, Dissertations, and Problem Reports. 4088. https://researchrepository.wvu.edu/etd/4088 This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. The Effect of Bovine Galectin-1, a Conceptus Secretory Protein, on the Endometrial Transcriptome Lindsay Faye Grose Thesis submitted to the Davis College of Agriculture, Natural Resources and Design at West Virginia University in partial fulfillment of the requirements for the degree of Master of Science in Reproductive Physiology Daniel J.
    [Show full text]
  • Recognition of Microbial Glycans by Soluble Human Lectins
    Available online at www.sciencedirect.com ScienceDirect Recognition of microbial glycans by soluble human lectins 3 1 1,2 Darryl A Wesener , Amanda Dugan and Laura L Kiessling Human innate immune lectins that recognize microbial glycans implicated in the regulation of microbial colonization and can conduct microbial surveillance and thereby help prevent in protection against infection. Seminal research on the infection. Structural analysis of soluble lectins has provided acute response to bacterial infection led to the identifica- invaluable insight into how these proteins recognize their tion of secreted factors that include C-reactive protein cognate carbohydrate ligands and how this recognition gives (CRP) and mannose-binding lectin (MBL) [1,3]. Both rise to biological function. In this opinion, we cover the CRP and MBL can recognize carbohydrate antigens on structural features of lectins that allow them to mediate the surface of pathogens, including Streptococcus pneumo- microbial recognition, highlighting examples from the collectin, niae and Staphylococcus aureus and then promote comple- Reg protein, galectin, pentraxin, ficolin and intelectin families. ment-mediated opsonization and cell killing [4]. Since These analyses reveal how some lectins (e.g., human intelectin- these initial observations, other lectins have been impli- 1) can recognize glycan epitopes that are remarkably diverse, cated in microbial recognition. Like MBL some of these yet still differentiate between mammalian and microbial proteins are C-type lectins, while others are members of glycans. We additionally discuss strategies to identify lectins the ficolin, pentraxin, galectin, or intelectin families. that recognize microbial glycans and highlight tools that Many of the lectins that function in microbial surveillance facilitate these discovery efforts.
    [Show full text]
  • Review Sialic Acid-Specific Lectins: Occurrence, Specificity and Function
    Cell. Mol. Life Sci. 63 (2006) 1331–1354 1420-682X/06/121331-24 DOI 10.1007/s00018-005-5589-y Cellular and Molecular Life Sciences © Birkhäuser Verlag, Basel, 2006 Review Sialic acid-specific lectins: occurrence, specificity and function F. Lehmanna, *, E. Tiralongob and J. Tiralongoa a Institute for Glycomics, Griffith University (Gold Coast Campus), PMB 50 Gold Coast Mail Centre Australia 9726 (Australia), Fax: +61 7 5552 8098; e-mail: [email protected] b School of Pharmacy, Griffith University (Gold Coast Campus), PMB 50 Gold Coast Mail Centre Australia 9726 (Australia) Received 13 December 2005; received after revision 9 February 2006; accepted 15 February 2006 Online First 5 April 2006 Abstract. Sialic acids consist of a family of acidic nine- through specific interactions with lectins, a family of carbon sugars that are typically located at the terminal po- proteins that recognise and bind sugars. This review will sitions of a variety of glycoconjugates. Naturally occur- present a detailed overview of our current knowledge re- ring sialic acids show an immense diversity of structure, garding the occurrence, specificity and function of sialic and this reflects their involvement in a variety of biologi- acid-specific lectins, particularly those that occur in vi- cally important processes. One such process involves the ruses, bacteria and non-vertebrate eukaryotes. direct participation of sialic acids in recognition events Keywords. Sialic acid, lectin, sialoglycoconjugate, sialic acid-specific lectin, adhesin, infectious disease, immunology. Introduction [1, 2]. The largest structural variations of naturally occurring Sia are at carbon 5, which can be substituted with either an Sialic acids (Sia) are a family of nine-carbon a-keto acids acetamido, hydroxyacetamido or hydroxyl moiety to form (Fig.
    [Show full text]
  • Human Lectins, Their Carbohydrate Affinities and Where to Find Them
    biomolecules Review Human Lectins, Their Carbohydrate Affinities and Where to Review HumanFind Them Lectins, Their Carbohydrate Affinities and Where to FindCláudia ThemD. Raposo 1,*, André B. Canelas 2 and M. Teresa Barros 1 1, 2 1 Cláudia D. Raposo * , Andr1 é LAQVB. Canelas‐Requimte,and Department M. Teresa of Chemistry, Barros NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829‐516 Caparica, Portugal; [email protected] 12 GlanbiaLAQV-Requimte,‐AgriChemWhey, Department Lisheen of Chemistry, Mine, Killoran, NOVA Moyne, School E41 of ScienceR622 Co. and Tipperary, Technology, Ireland; canelas‐ [email protected] NOVA de Lisboa, 2829-516 Caparica, Portugal; [email protected] 2* Correspondence:Glanbia-AgriChemWhey, [email protected]; Lisheen Mine, Tel.: Killoran, +351‐212948550 Moyne, E41 R622 Tipperary, Ireland; [email protected] * Correspondence: [email protected]; Tel.: +351-212948550 Abstract: Lectins are a class of proteins responsible for several biological roles such as cell‐cell in‐ Abstract:teractions,Lectins signaling are pathways, a class of and proteins several responsible innate immune for several responses biological against roles pathogens. such as Since cell-cell lec‐ interactions,tins are able signalingto bind to pathways, carbohydrates, and several they can innate be a immuneviable target responses for targeted against drug pathogens. delivery Since sys‐ lectinstems. In are fact, able several to bind lectins to carbohydrates, were approved they by canFood be and a viable Drug targetAdministration for targeted for drugthat purpose. delivery systems.Information In fact, about several specific lectins carbohydrate were approved recognition by Food by andlectin Drug receptors Administration was gathered for that herein, purpose. plus Informationthe specific organs about specific where those carbohydrate lectins can recognition be found by within lectin the receptors human was body.
    [Show full text]
  • Myelin-Associated Glycoprotein Gene
    CHAPTER 17 Myelin-Associated Glycoprotein Gene John Georgiou, Michael B. Tropak, and John C. Roder MAG INTRODUCTION Specialized glial cells, oligodendrocytes in the central nervous system (CNS), and Schwann cells in the peripheral nervous system (PNS) elaborate cytoplasmic wrappings known as myelin around axons. The myelination process requires a complex series of interactions between the glial cells and axons, which remain poorly understood. Myelin functions to insulate neurons and facilitates the rapid signal conduction required in organisms with complex nervous systems. Myelin-associated glycoprotein (MAG) is a relatively minor constituent of both CNS and PNS myelin that has been implicated in the formation and maintenance of myelin. However, it is also a cell recognition molecule involved in neuron- glial interactions, including regulation of axonal outgrowth and nerve regeneration. Discovery of Myelin-Associated Glycoprotein, MAG Prior to the discovery of MAG in 1973, the major proteins in compact myelin such as myelin basic protein (MBP) and proteolipid protein (PLP) were known. During the early 1970s it became clear that proteins on the surface which mediate adhesion are generally glycosylated. Consequently, Quarles and colleagues used radiolabeled fucose to identify MAG (Quarles et al., 1973), a myelin glycoprotein that might mediate adhesive inter- actions between glial and neuronal cells that are important for the formation of the myelin sheath. MAG was cloned in 1987 (Arquint et al., 1987), and DNA sequence analysis revealed that the MAG cDNA that was isolated was derived from the same mRNA as clone p1B236, a randomly selected, brain-speciWc, partial cDNA isolated previously in 1983 (SutcliVe et al., 1983).
    [Show full text]
  • Tesis Andrea Flores UAM.Pdf
    ¿Qué somos y cómo realizaremos eso que somos? Octavio Paz, Nobel Prize of Literature 1980 “Te enterramos ayer. Ayer te enterramos. Te echamos tierra ayer. Quedaste en la tierra ayer. Estás rodeada de tierra desde ayer. Arriba y abajo y a los lados, por tus pies y por tu cabeza, está la tierra desde ayer. Te metimos en la tierra, te tapamos con tierra ayer. Perteneces a la tierra desde ayer. Ayer te enterramos en la tierra, ayer". Jaime Sabines. DEDICO ESTA TESIS A MI ABUE, POR SER MI PIEDRA DE TOQUE Y LA MUJER QUE MÁS HE ADMIRADO Cecilia Caballero Jiménez (1924 -2014) ACKNOWLEDGEMENTS To all my lab -mates in the Department of Physical and Chemical Biology (CIB) , for your company through the years. To Antonio, for your guidance. To the people at the Institute of Chemistry (UNAM), for receiving me as part of your group. To all the people in the Glycopharm Marie Curi e ITN, for your inspiration in my scientific research, I wish to have an everlasting relation with you. To my students, for your admiration and your will to never stop learning. To my best friends , scattered around the globe, I love you . To Sandy and Silvi a in particular. To my siblings, and my nephew and niece, Alan and Talia. For your presence in my life. I love you deeply. And to all that were a part of my path in the obtention of this PhD, para ustedes . OUTLINE OUTLINE List of abbreviations ..……………………………………………………... v Glosary ………..…….………………… …………………………………... vi ABSTRACT ………………………………………………………………. ix RESUMEN ………………………………………………………………... xi INTRODUCTION ……………………………… ………………………... 1 1. CELL GLYCOSYLATION …….…………..
    [Show full text]
  • Role of Galectin-3 As a Receptor for Advanced Glycosylation End Products
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Kidney International, Vol. 58, Suppl. 77 (2000), pp. S-31±S-39 Role of galectin-3 as a receptor for advanced glycosylation end products FLAVIA PRICCI,1 GAETANO LETO,LORENA AMADIO,CARLA IACOBINI,GIULIO ROMEO, SAMANTHA CORDONE,ROBERTO GRADINI,PAOLA BARSOTTI,FU-TONG LIU, UMBERTO DI MARIO, and GIUSEPPE PUGLIESE Department of Clinical Sciences, Division of Endocrinology, Department of Experimental Medicine and Pathology, Divisions of General Pathology and Anatomic Pathology, ªLa Sapienzaº University, Rome, Italy, and La Jolla Institute for Allergy and Immunology, San Diego, California, USA Role of galectin-3 as a receptor for advanced glycosylation end cations of the disease through several mechanisms [1]. products. The advanced glycosylation end product (AGE)- Both early sugar adducts (Amadori products) [2] and binding proteins identi®ed so far include the components of advanced glycation end products (AGEs) [3] accumulate the AGE-receptor complex p60, p90 and galectin-3, receptor for advanced glycosylation end products (RAGE), and the within tissues of humans and animals with diabetes and macrophage scavenger receptor types I and II. Galectin-3 inter- may induce injurious effects either directly [1] or through acts with ␤-galactoside residues of several cell surface and structurally distinct cell surface receptors [3, 4]; further- matrix glycoproteins through the carbohydrate recognition do- more, both early and advanced glycation reactions are main and is also capable of peptide±peptide associations medi- associated with oxidative stress [5, 6]. ated by its N-terminus domain. These structural properties enable galectin-3 to exert multiple functions, including the Among these mechanisms, the AGE/AGE-receptor- modulation of cell adhesion, the control of cell cycle, and the mediated pathway appears to play a pivotal role in modu- mRNA splicing activity.
    [Show full text]
  • The Growing Galectin Network in Colon Cancer and Clinical Relevance of Cytoplasmic Galectin-3 Reactivity
    ANTICANCER RESEARCH 33: 3053-3060 (2013) The Growing Galectin Network in Colon Cancer and Clinical Relevance of Cytoplasmic Galectin-3 Reactivity HEATHER DAWSON1, SABINE ANDRÉ2, EVA KARAMITOPOULOU1, INTI ZLOBEC1 and HANS-JOACHIM GABIUS2 1Translational Research, Institute of Pathology, University of Bern, Bern, Switzerland; 2Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany Abstract. Background/Aim: Human lectins translate sugar- (4, 5), is the basis of glycosylation response to disease encoded signals of cell surface glycoconjugates into biological processes. Beyond reflecting the impact of such factors, effects, and this is what is known for the adhesion/growth- aberrations in the glycan profile can have a functional regulatory galectins. In addition, the multifunctional members meaning, for protein parameters such as stability (6, 7), and of this group can be intracellular, binding to distinct proteins. for the interplay with tissue lectins (8, 9). Of note, the case The presence of galectins and galectin reactivity were study of how reconstitution of the tumor suppressor exemplarily studied in the present article. Materials and p16INK4a in pancreatic carcinoma cells re-programs the Methods: We combined immuno- and lectin histochemical glycophenotype and at the same time provides a suitable monitoring in colon cancer on tissue arrays. Results: effector (namely the human lectin galectin-1) to translate Intracellular presence of galectins-7 and -9 in colon cancer is this change into induction of anoikis teaches the remarkable detected, extending the previously known set of five expressed lesson of the intimate co-regulation between glycosylation lectins this tumor type. The assumed significance of and lectin expression (10-12).
    [Show full text]
  • Siglec-15 As an Emerging Target for Next-Generation Cancer Immunotherapy 2 Jingwei Sun1,*, Qiao Lu2,3, Miguel F
    Author Manuscript Published OnlineFirst on September 21, 2020; DOI: 10.1158/1078-0432.CCR-19-2925 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Siglec-15 as an emerging target for next-generation cancer immunotherapy 2 Jingwei Sun1,*, Qiao Lu2,3, Miguel F. Sanmanmed4, Jun Wang2,3# 3 4 1Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA. 5 2Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA. 6 3The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY, 7 USA. 8 4Program of Immunology and Immunotherapy, CIMA, University of Navarra, Pamplona 31008, Spain. 9 10 *Current Address: Grit Biotechnology, Shanghai, China. 11 #Correspondence, Dr. Jun Wang, 550 First Avenue, Smilow Research Building 316, New York, NY 10016. 12 Tel: 212-263-1506, E-mail: [email protected]. 13 14 Running title: Siglec-15 in cancer immunotherapy 15 16 Funding support: This work was supported in part by the NCI Cancer Center Support Grant (CCSG) 17 P30CA016087-39 at NYU Perlmutter Cancer Center. 18 19 20 Abstract 21 Immunomodulatory agents blocking the PD-1/PD-L1 pathway have shown a new way to treat cancer. The 22 explanation underlying the success of these agents may be the selective expression of PD-L1 with 23 dominant immune-suppressive activities in the tumor microenvironment (TME), supporting a more 24 favorable tumor response-to-toxicity ratio. However, despite the big success of these drugs, most cancer 25 patients show primary or acquired resistance, calling for the identification of new immune modulators in 26 the TME.
    [Show full text]
  • A Hydrogel Glycoarray Platform As a Replacement for Conventional Research Tools to Study Galectin Bioactivity
    A HYDROGEL GLYCOARRAY PLATFORM AS A REPLACEMENT FOR CONVENTIONAL RESEARCH TOOLS TO STUDY GALECTIN BIOACTIVITY By INHA BAEK A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2018 © 2018 Inha Baek ACKNOWLEDGEMENTS I would like to thank my research advisor, Dr. Gregory Hudalla for his guidance and support over the course of this research. His assistance and suggestions were invaluable towards the progress of this research. I would also like to thank co-advisor, Dr. Benjamin Keselowsky for his helpful insights and invaluable suggestions throughout the course of this research. I would also like to thank Eric Hill for helping me with fabrication process. 3 TABLE OF CONTENTS page ACKNOWLEDGEMENTS ............................................................................................... 3 LIST OF FIGURES .......................................................................................................... 5 ABSTRACT ..................................................................................................................... 6 CHAPTER 1 INTRODUCTION ...................................................................................................... 7 2 OBJECTIVE AND SPECIFIC AIM .......................................................................... 11 3 MATERIALS AND METHODS ................................................................................ 12 Materials ................................................................................................................
    [Show full text]
  • Exploration of Galectin Ligands Displayed on Gram-Negative Respiratory Bacterial Pathogens with Different Cell Surface Architectures
    biomolecules Article Exploration of Galectin Ligands Displayed on Gram-Negative Respiratory Bacterial Pathogens with Different Cell Surface Architectures María A. Campanero-Rhodes 1,2 , Ioanna Kalograiaki 1,2, Begoña Euba 3, Enrique Llobet 2,4, Ana Ardá 5,6 , Jesús Jiménez-Barbero 5,6,7 , Junkal Garmendia 2,3 and Dolores Solís 1,2,* 1 Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain; [email protected] (M.A.C.-R.); [email protected] (I.K.) 2 CIBER de Enfermedades Respiratorias (CIBERES), Avda Monforte de Lemos 3-5, 28029 Madrid, Spain; [email protected] (E.L.); [email protected] (J.G.) 3 Instituto de Agrobiotecnología, CSIC-Gobierno Navarra, Avda Pamplona 123, 31192 Mutilva, Spain; [email protected] 4 Optimapharm, ParcBit Edifici Disset A2, 07121 Palma, Spain 5 CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology Park, Building 800, 48160 Derio, Spain; [email protected] (A.A.); [email protected] (J.J.-B.) 6 Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain 7 Department Organic Chemistry II, Faculty of Science and Technology, UPV-EHU, 48940 Leioa, Spain * Correspondence: [email protected] Abstract: Galectins bind various pathogens through recognition of distinct carbohydrate structures. Citation: Campanero-Rhodes, M.A.; In this work, we examined the binding of four human galectins to the Gram-negative bacteria Kalograiaki, I.; Euba, B.; Llobet, E.; Klebsiella pneumoniae (Kpn) and non-typeable Haemophilus influenzae (NTHi), which display different Ardá, A.; Jiménez-Barbero, J.; surface glycans. In particular, Kpn cells are covered by a polysaccharide capsule and display an Garmendia, J.; Solís, D.
    [Show full text]