How Many Circuits Determine an Oriented Matroid?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Combinatorial Characterizations of K-Matrices
Combinatorial Characterizations of K-matricesa Jan Foniokbc Komei Fukudabde Lorenz Klausbf October 29, 2018 We present a number of combinatorial characterizations of K-matrices. This extends a theorem of Fiedler and Pt´ak on linear-algebraic character- izations of K-matrices to the setting of oriented matroids. Our proof is elementary and simplifies the original proof substantially by exploiting the duality of oriented matroids. As an application, we show that a simple principal pivot method applied to the linear complementarity problems with K-matrices converges very quickly, by a purely combinatorial argument. Key words: P-matrix, K-matrix, oriented matroid, linear complementarity 2010 MSC: 15B48, 52C40, 90C33 1 Introduction A matrix M ∈ Rn×n is a P-matrix if all its principal minors (determinants of principal submatrices) are positive; it is a Z-matrix if all its off-diagonal elements are non-positive; and it is a K-matrix if it is both a P-matrix and a Z-matrix. Z- and K-matrices often occur in a wide variety of areas such as input–output produc- tion and growth models in economics, finite difference methods for partial differential equations, Markov processes in probability and statistics, and linear complementarity problems in operations research [2]. In 1962, Fiedler and Pt´ak [9] listed thirteen equivalent conditions for a Z-matrix to be a K-matrix. Some of them concern the sign structure of vectors: arXiv:0911.2171v3 [math.OC] 3 Aug 2010 a This research was partially supported by the project ‘A Fresh Look at the Complexity of Pivoting in Linear Complementarity’ no. -
Generalization of Pinching Operation to Binary Matroids
J. Algebra Comb. Discrete Appl. Received: 14 April 2020 7(3) • 247–258 Accepted: 1 May 2020 Journal of Algebra Combinatorics Discrete Structures and Applications Generalization of pinching operation to binary matroids Research Article Vahid Ghorbani, Ghodratollah Azadi, Habib Azanchiler Abstract: In this paper, we generalize the pinching operation on two edges of graphs to binary matroids and investigate some of its basic properties. For n ≥ 2, the matroid that is obtained from an n-connected matroid by this operation is a k-connected matroid with k 2 f2; 3; 4g or is a disconnected matroid. We find conditions to guarantee this k. Moreover, we show that Eulerian binary matroids are char- acterized by this operation and we also provide some interesting applications of this operation. 2010 MSC: 05B35 Keywords: Binary matroid, Connectivity, Pinching, Splitting, Splitting off, Element splitting 1. Introduction The matroid and graph notations and terminology used here will follow [4] and [7]. Let G be a graph p and S be a subset of the edge set E(G). We denote by GS the graph that is obtained from G by adding p a new vertex w and replacing any edge uv 2 S with two edges uw and wv. The transition from G to GS is called the k-pinching operation [2] where k = jSj. If S is the empty set, then 0-pinching means adding a new single vertex w. If jSj = 1, then applying the pinching operation is equivalent to the subdivision p of uv where S = fuvg. If S = E(G), then we have the parallel classes on the new vertex w on GS such that the sequence of the cardinality of them is equal to the degree sequence of the vertices of G. -
Arxiv:1508.05446V2 [Math.CO] 27 Sep 2018 02,5B5 16E10
CELL COMPLEXES, POSET TOPOLOGY AND THE REPRESENTATION THEORY OF ALGEBRAS ARISING IN ALGEBRAIC COMBINATORICS AND DISCRETE GEOMETRY STUART MARGOLIS, FRANCO SALIOLA, AND BENJAMIN STEINBERG Abstract. In recent years it has been noted that a number of combi- natorial structures such as real and complex hyperplane arrangements, interval greedoids, matroids and oriented matroids have the structure of a finite monoid called a left regular band. Random walks on the monoid model a number of interesting Markov chains such as the Tsetlin library and riffle shuffle. The representation theory of left regular bands then comes into play and has had a major influence on both the combinatorics and the probability theory associated to such structures. In a recent pa- per, the authors established a close connection between algebraic and combinatorial invariants of a left regular band by showing that certain homological invariants of the algebra of a left regular band coincide with the cohomology of order complexes of posets naturally associated to the left regular band. The purpose of the present monograph is to further develop and deepen the connection between left regular bands and poset topology. This allows us to compute finite projective resolutions of all simple mod- ules of unital left regular band algebras over fields and much more. In the process, we are led to define the class of CW left regular bands as the class of left regular bands whose associated posets are the face posets of regular CW complexes. Most of the examples that have arisen in the literature belong to this class. A new and important class of ex- amples is a left regular band structure on the face poset of a CAT(0) cube complex. -
Complete Enumeration of Small Realizable Oriented Matroids
Complete enumeration of small realizable oriented matroids Komei Fukuda ∗ Hiroyuki Miyata † Institute for Operations Research and Graduate School of Information Institute of Theoretical Computer Science, Sciences, ETH Zurich, Switzerland Tohoku University, Japan [email protected] [email protected] Sonoko Moriyama ‡ Graduate School of Information Sciences, Tohoku University, Japan [email protected] September 26, 2012 Abstract Enumeration of all combinatorial types of point configurations and polytopes is a fundamental problem in combinatorial geometry. Although many studies have been done, most of them are for 2-dimensional and non-degenerate cases. Finschi and Fukuda (2001) published the first database of oriented matroids including degenerate (i.e., non-uniform) ones and of higher ranks. In this paper, we investigate algorithmic ways to classify them in terms of realizability, although the underlying decision problem of realizability checking is NP-hard. As an application, we determine all possible combinatorial types (including degenerate ones) of 3-dimensional configurations of 8 points, 2-dimensional configurations of 9 points and 5- dimensional configurations of 9 points. We could also determine all possible combinatorial types of 5-polytopes with 9 vertices. 1 Introduction Point configurations and convex polytopes play central roles in computational geometry and discrete geometry. For many problems, their combinatorial structures or types is often more important than their metric structures. The combinatorial type of a point configuration is defined by all possible partitions of the points by a hyperplane (the definition given in (2.1)), and encodes various important information such as the convexity, the face lattice of the convex hull and all possible triangulations. -
Coms: Complexes of Oriented Matroids Hans-Jürgen Bandelt, Victor Chepoi, Kolja Knauer
COMs: Complexes of Oriented Matroids Hans-Jürgen Bandelt, Victor Chepoi, Kolja Knauer To cite this version: Hans-Jürgen Bandelt, Victor Chepoi, Kolja Knauer. COMs: Complexes of Oriented Matroids. Journal of Combinatorial Theory, Series A, Elsevier, 2018, 156, pp.195–237. hal-01457780 HAL Id: hal-01457780 https://hal.archives-ouvertes.fr/hal-01457780 Submitted on 6 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. COMs: Complexes of Oriented Matroids Hans-J¨urgenBandelt1, Victor Chepoi2, and Kolja Knauer2 1Fachbereich Mathematik, Universit¨atHamburg, Bundesstr. 55, 20146 Hamburg, Germany, [email protected] 2Laboratoire d'Informatique Fondamentale, Aix-Marseille Universit´eand CNRS, Facult´edes Sciences de Luminy, F-13288 Marseille Cedex 9, France victor.chepoi, kolja.knauer @lif.univ-mrs.fr f g Abstract. In his seminal 1983 paper, Jim Lawrence introduced lopsided sets and featured them as asym- metric counterparts of oriented matroids, both sharing the key property of strong elimination. Moreover, symmetry of faces holds in both structures as well as in the so-called affine oriented matroids. These two fundamental properties (formulated for covectors) together lead to the natural notion of \conditional oriented matroid" (abbreviated COM). -
ADDENDUM the Following Remarks Were Added in Proof (November 1966). Page 67. an Easy Modification of Exercise 4.8.25 Establishes
ADDENDUM The following remarks were added in proof (November 1966). Page 67. An easy modification of exercise 4.8.25 establishes the follow ing result of Wagner [I]: Every simplicial k-"complex" with at most 2 k ~ vertices has a representation in R + 1 such that all the "simplices" are geometric (rectilinear) simplices. Page 93. J. H. Conway (private communication) has established the validity of the conjecture mentioned in the second footnote. Page 126. For d = 2, the theorem of Derry [2] given in exercise 7.3.4 was found earlier by Bilinski [I]. Page 183. M. A. Perles (private communication) recently obtained an affirmative solution to Klee's problem mentioned at the end of section 10.1. Page 204. Regarding the question whether a(~) = 3 implies b(~) ~ 4, it should be noted that if one starts from a topological cell complex ~ with a(~) = 3 it is possible that ~ is not a complex (in our sense) at all (see exercise 11.1.7). On the other hand, G. Wegner pointed out (in a private communication to the author) that the 2-complex ~ discussed in the proof of theorem 11.1 .7 indeed satisfies b(~) = 4. Page 216. Halin's [1] result (theorem 11.3.3) has recently been genera lized by H. A. lung to all complete d-partite graphs. (Halin's result deals with the graph of the d-octahedron, i.e. the d-partite graph in which each class of nodes contains precisely two nodes.) The existence of the numbers n(k) follows from a recent result of Mader [1] ; Mader's result shows that n(k) ~ k.2(~) . -
Independent Hyperplanes in Oriented Paving Matroids
Independent Hyperplanes in Oriented Paving Matroids Lamar Chidiac Winfried Hochst¨attler Fakult¨atf¨urMathematik und Informatik, FernUniversit¨atin Hagen, Germany, flamar.chidiac,[email protected] Abstract In 1993, Csima and Sawyer [3] proved that in a non-pencil arrangement of n pseudolines, 6 there are at least 13 n simple points of intersection. Since pseudoline arrangements are the topological representations of reorientation classes of oriented matroids of rank 3, in this paper, we will use this result to prove by induction that an oriented paving matroid of rank r ≥ 3 12 n on n elements, where n ≥ 5 + r, has at least 13(r−1) r−2 independent hyperplanes, yielding a new necessary condition for a paving matroid to be orientable. 1 Introduction In 1893 Sylvester asked in [18] the following question: \Prove that it is not possible to arrange any finite number of real points so that a right line through every two of them shall pass through a third, unless they all lie in the same right line." This question remained unsolved for almost 40 years, until it was independently raised by Erd¨osand solved shortly after by Gallai in 1933 [7, 8, 6] and later on several other proofs have been found (for reference [16], p.451 and [2], p. 65). In other words, the Sylvester-Gallai theorem states that given a set of non-collinear points in the Euclidean plane, we can always find at least one line that has exactly two of the given points, we call it an ordinary line. A generalization of this theorem to higher dimension is not always true, i.e. -
A Lattice-Theoretical Characterization of Oriented Matroids
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Europ . J . Combinatorics (1997) 18 , 563 – 574 A Lattice-theoretical Characterization of Oriented Matroids W . H OCHSTA ¨ TTLER If 3 is the big face lattice of the covectors of an oriented matroid , it is well known that the zero map is a cover-preserving , order-reversing surjection onto the geometric lattice of the underlying (unoriented) matroid . In this paper we give a (necessary and) suf ficient condition for such maps to come from the face lattice of an oriented matroid . ÷ 1997 Academic Press Limited 1 . I NTRODUCTION Combinatorial geometries or matroids were considered as systems of points , lines or higher dimensional flats and their incidences for the first time in [14] . In oriented combinatorial geometry the property ‘is not on’ is replaced by ‘is to the left or to the right of’ . A geometric lattice is an unoriented incidence system corresponding to a simple matroid . The natural counterpart to a geometric lattice on the oriented side is the face lattice of an oriented matroid . Oriented matroids—introduced in the late 1970s independently in [5] and [8]—are a generalization of the cell complexes induced by hyperplane arrangements in Euclidean space . To be more precise , oriented matroids are in one-to-one correspondence to arrangements of pseudo hyperspheres , which can be thought of as ‘broken-hyperplane arrangements in oriented projective space’ [8 , 12] . These hyperspheres induce a regular cell decomposition of the sphere . The face lattice consists of its cells ordered by inclusion in the closure . -
Arxiv:1910.05689V1 [Math.CO]
ON GRAPHIC ELEMENTARY LIFTS OF GRAPHIC MATROIDS GANESH MUNDHE1, Y. M. BORSE2, AND K. V. DALVI3 Abstract. Zaslavsky introduced the concept of lifted-graphic matroid. For binary matroids, a binary elementary lift can be defined in terms of the splitting operation. In this paper, we give a method to get a forbidden-minor characterization for the class of graphic matroids whose all lifted-graphic matroids are also graphic using the splitting operation. Keywords: Elementary lifts; splitting; binary matroids; minors; graphic; lifted-graphic Mathematics Subject Classification: 05B35; 05C50; 05C83 1. Introduction For undefined notions and terminology, we refer to Oxley [13]. A matroid M is quotient of a matroid N if there is a matroid Q such that, for some X ⊂ E(Q), N = Q\X and M = Q/X. If |X| = 1, then M is an elementary quotient of N. A matroid N is a lift of M if M is a quotient of N. If M is an elementary quotient of N, then N is an elementary lift of M. A matroid N is a lifted-graphic matroid if there is a matroid Q with E(Q)= E(N) ∪ e such that Q\e = N and Q/e is graphic. The concept of lifted-graphic matroid was introduced by Zaslavsky [19]. Lifted-graphic matroids play an important role in the matroid minors project of Geelen, Gerards and Whittle [9, 10]. Lifted- graphic matroids are studied in [4, 5, 6, 7, 19]. This class is minor-closed. In [5], it is proved that there exist infinitely many pairwise non-isomorphic excluded minors for the class of lifted-graphic matroids. -
Matroid Optimization and Algorithms Robert E. Bixby and William H
Matroid Optimization and Algorithms Robert E. Bixby and William H. Cunningham June, 1990 TR90-15 MATROID OPTIMIZATION AND ALGORITHMS by Robert E. Bixby Rice University and William H. Cunningham Carleton University Contents 1. Introduction 2. Matroid Optimization 3. Applications of Matroid Intersection 4. Submodular Functions and Polymatroids 5. Submodular Flows and other General Models 6. Matroid Connectivity Algorithms 7. Recognition of Representability 8. Matroid Flows and Linear Programming 1 1. INTRODUCTION This chapter considers matroid theory from a constructive and algorithmic viewpoint. A substantial part of the developments in this direction have been motivated by opti mization. Matroid theory has led to a unification of fundamental ideas of combinatorial optimization as well as to the solution of significant open problems in the subject. In addition to its influence on this larger subject, matroid optimization is itself a beautiful part of matroid theory. The most basic optimizational property of matroids is that for any subset every max imal independent set contained in it is maximum. Alternatively, a trivial algorithm max imizes any {O, 1 }-valued weight function over the independent sets. Most of matroid op timization consists of attempts to solve successive generalizations of this problem. In one direction it is generalized to the problem of finding a largest common independent set of two matroids: the matroid intersection problem. This problem includes the matching problem for bipartite graphs, and several other combinatorial problems. In Edmonds' solu tion of it and the equivalent matroid partition problem, he introduced the notions of good characterization (intimately related to the NP class of problems) and matroid (oracle) algorithm. -
Oriented Matroids Today
Oriented Matroids Today G¨unter M. Ziegler∗ Department of Mathematics, MA 7-1 Technische Universit¨at Berlin Strasse des 17. Juni 136 10623 Berlin, Germany [email protected] http://www.math.tu-berlin.de/∼ziegler Submitted: October 6, 1995; Accepted: March 26, 1996; Version 3 of September 10, 1998. Mathematics Subject Classification: 52-00 (52B05, 52B30, 52B35, 52B40) Abstract This dynamic survey offers an “entry point” for current research in oriented matroids. For this, it provides updates on the 1993 monograph “Oriented Matroids” by Bj¨orner, Las Vergnas, Sturmfels, White & Ziegler [85], in three parts: 1. a sketch of a few “Frontiers of Research” in oriented matroid theory, 2. an update of corrections, comments and progress as compared to [85], and 3. an extensive, complete and up-to-date bibliography of oriented matroids, comprising and extending the bibliography of [85]. 1 Introduction(s). Oriented matroids are both important and interesting objects of study in Combinatorial Geometry, and indispensable tools of increasing importance and applicability for many other parts of Mathematics. The main parts of the theory and some applications were, in 1993, compiled in the quite comprehensive monograph by Bj¨orner, Las Vergnas, Sturmfels, White & Ziegler [85]. For other (shorter) introductions and surveys, see Bachem & Kern [35], Bokowski & Sturmfels [146], Bokowski [116], Goodman & Pollack [333], Ziegler [712, Chapters 6 and 7], and, most recently, Richter-Gebert & Ziegler [565]. This dynamic survey provides three parts: 1. a sketch of a few “Frontiers of Research” in oriented matroid theory, 2. an update of corrections, comments and progress as compared to [85], and 3. -
The Circuit and Cocircuit Lattices of a Regular Matroid
University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2020 The circuit and cocircuit lattices of a regular matroid Patrick Mullins University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Mathematics Commons Recommended Citation Mullins, Patrick, "The circuit and cocircuit lattices of a regular matroid" (2020). Graduate College Dissertations and Theses. 1234. https://scholarworks.uvm.edu/graddis/1234 This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. The Circuit and Cocircuit Lattices of a Regular Matroid A Thesis Presented by Patrick Mullins to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Master of Science Specializing in Mathematical Sciences May, 2020 Defense Date: March 25th, 2020 Dissertation Examination Committee: Spencer Backman, Ph.D., Advisor Davis Darais, Ph.D., Chairperson Jonathan Sands, Ph.D. Cynthia J. Forehand, Ph.D., Dean of Graduate College Abstract A matroid abstracts the notions of dependence common to linear algebra, graph theory, and geometry. We show the equivalence of some of the various axiom systems which define a matroid and examine the concepts of matroid minors and duality before moving on to those matroids which can be represented by a matrix over any field, known as regular matroids. Placing an orientation on a regular matroid M allows us to define certain lattices (discrete groups) associated to M.