The Evolutionary History and Preservation of Melanins And

Total Page:16

File Type:pdf, Size:1020Kb

The Evolutionary History and Preservation of Melanins And THE EVOLUTIONARY HISTORY AND PRESERVATION OF MELANINS AND MELANOSOMES A Dissertation Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Jennifer A. Peteya August, 2018 THE EVOLUTIONARY HISTORY AND PRESERVATION OF MELANINS AND MELANOSOMES Jennifer A. Peteya Dissertation Approved: Accepted: ______________________________ ______________________________ Advisor Program Director, Integrated Bioscience Robert Joel Duff Hazel A. Barton ______________________________ ______________________________ Co-Advisor/Committee Member Interim Dean of the College Matthew D. Shawkey Linda Subich ______________________________ ______________________________ Committee Member Dean of the Graduate School Liliana D’Alba Chand Midha ______________________________ ______________________________ Committee Member Date Julia A. Clarke ______________________________ Committee Member John M. Senko ii ABSTRACT Melanins are a class of ubiquitous pigments that provide not only coloration to the organisms in which they produced, but also serve as a mechanism for thermoregulation, protection from ultraviolet radiation and cytotoxicity induced by free radicals, as well as numerous other beneficial roles. In most animals, melanins are housed in organelles called melanosomes. Melanosome morphology correlates with melanin-based coloration in birds and mammals, but melanosome diversity is limited in basal amniotes. Approximately 10 years ago, the study of melanosomes, melanin, and coloration was extended to the fossil record by the reinterpretation of microbodies preserved in fossil feathers initially interpreted as bacteria as remains of melanosomes. However, despite countless lines of evidence for this hypothesis that have been described since, some authors argue that the bacterial hypothesis is equally parsimonious. This dissertation will address some of the concerns of purveyors of the bacterial hypothesis and discuss the evolutionary history of melanosomes and melanins. We first tested the hypothesis that striped fossil feathers are the result of bacterial preservation through taphonomic experimentation. We found that modern keratinolytic bacteria preferentially colonize unpigmented stripes in modern feathers over melanized stripes, so it is unlikely that this hypothesis was supported in ancient ecosystems. We also found that bacteria and biofilms preserved in association with fossil integument are dissimilar to microbodies interpreted as fossil melanosomes. iii We began the second part of this dissertation by describing an enantiornithine bird that exhibits a mix of juvenile skeletal characteristics and sexual ornaments. Melanosomes preserved in its feathers are similar in morphology and arrangement to those in modern iridescent feathers, which are predominantly used to attract mates. We also described melanosomes associated with the fossilized skin of amphibians and lampreys, which do not exhibit diverse melanosome morphologies. Convergent shifts in melanosome diversity in mammals and pennaraptoran dinosaurs may have occurred due to changes in physiology between these two groups and their ancestors. Finally, we reviewed the functions of melanins in modern organisms and evidence for these functions in the fossil record. Based on their modern ubiquity, we hypothesized that melanin may have evolved early in the history of life. iv DEDICATION This work is dedicated to the former instructors that encouraged and inspired me to continue pursuing paleontology: my mom, who taught me how to look for fossils when I was about three years old; my dad, who decided to spend family vacations looking for fossils and going to museums in Nova Scotia; my second and third grade teachers, Judy Chester and Dorothy Ramsey, who embraced my love of paleontology and encouraged me to continue; Connie Hubbard, my high school Science Experimental Research Program (SERP) instructor, who let me do a project on dinosaurs rather than a typical experimental project; Dr. Lee Gray, my soft rock geology professor who mentored me throughout college and encouraged me to apply to do research in Mongolia; Joel Collins, my undergraduate drawing instructor who never got tired of seeing dinosaurs or trilobites in my work; my graduate paleobiology professor, Dr. Bill Ausich, who encouraged me to press on throughout my master’s studies; and finally my master’s advisor, Dr. Loren Babcock. v ACKNOWLEDGEMENTS First, I would like to thank my former advisor, Dr. Matthew Shawkey, for his patience, encouragement, help, and everything else he has given me for the past five years. I would also like to thank Dr. R. Joel Duff for taking over the role as my advisor since Dr. Shawkey moved to Belgium and my other committee members, Dr. Liliana D’Alba, Dr. Julia Clarke, and Dr. John Senko. Dr. D’Alba not only helped Nick Justyn and me with the statistical analysis in Chapter 2, but has also served as a source of encouragement and inspiration throughout my dissertation. Similarly, Dr. Clarke also served as a source of inspiration and was especially instrumental in the production of Chapter 4. Additionally, I would like to thank my current and former labmates, Nick Justyn, Dr. Brani Igic, Dr. Bill Hsiung, Dr. Ming Xiao, Asritha Nallapaneni, Dr. Chad Eliason, Dr. Rafael Maia, Weiyao Li, Xiaozhou Yang, Mario Echeverri, Dr. Daphne Fechyr- Lippens, and Jiuzhou Zhao. I served as Nick’s mentor for his undergraduate honors thesis, throughout which we co-wrote Chapter 2, and has helped with Chapter 6. He has been a great friend for the past four years and has helped me through some of the toughest times throughout the completion of this project. Chad and Rafael taught me the basics of R programming, Brani and Chad both helped me with statistical analyses, Ming helped me learn how to use Origin Pro and Igor Pro, and each one of my labmates has helped with editing my manuscripts, bouncing ideas, and moral support. vi I would also like to thank several other people instrumental in the completion of my dissertation. Dr. Quanguo Li from the China University of Geosciences and Dr. Ke- Qin Gao from Peking University provided specimens and guidance for Chapters 4 and 5. Dr. Zhorro Nikolov, Dr. Bojie Wang, Thomas Quick, and Dr. Richard Londraville provided access to and training on the Raman spectrometer, field-emission SEM, environmental SEM, and spectrophotometer, respectively. Dr. Kevin Abbasi from Case Western Reserve University provided the ToF-SIMS analysis for Chapter 3. Scott Thomas, Matt Bos, and Dr. Peter Niewiarowski provided modern amphibian and lizard samples for Chapter 5. The late Dr. Edward Burtt provided Bacillus licheniformis for the Chapter 2 experiment and for comparative Raman spectroscopy. Prasad Raut provided carbon black samples and Dean Pearson from the Pioneer Trails Regional Museum provided the Platanus specimen. Drs. Zhiheng Li, Xia Wang, Sally Thomas, and an anonymous reviewer provided criticism and feedback for Chapter 4, which is published in Palaeontology. Anonymous reviewers also improved Chapter 2, which is published in The Auk. Drs. Loren Babcock, Baoyu Jiang, and Fangchen Zhou provided helpful discussion and criticism for Chapter 3. Lastly, I would like to thank my family members for their continued support throughout my pursuit of science, including my parents, Karen and Dennis Peteya, and my husband, Dan Lopez. I would especially like to thank my sister, Dr. Stephanie Peteya, who after completing her undergraduate degree at the University of Akron suggested I contact Dr. Shawkey about working on fossil color for my Ph. D. vii TABLE OF CONTENTS Page LIST OF TABLES ............................................................................................................. xi LIST OF FIGURES .......................................................................................................... xii CHAPTER I. INTRODUCTION ............................................................................................................1 II. PREFERENTIAL ATTACHMENT AND COLONIZATION OF THE KERATINOLYTIC BACTERIUM BACILLUS LICHENIFORMIS ON BLACK AND WHITE STRIPED FEATHERS.....................................................................6 Introduction .......................................................................................................6 Material and Methods .......................................................................................8 Results .............................................................................................................14 Discussion .......................................................................................................15 III. MICROBIAL BIOFILMS PRESERVED WITH FOSSILIZED CHORDATE INTEGUMENT ARE DISTINCT FROM FOSSIL MELANOSOMES ...............20 Introduction .....................................................................................................20 Material and Methods .....................................................................................22 Results .............................................................................................................26 Discussion .......................................................................................................33 IV. THE PLUMAGE AND COLORATION OF AN ENANTIORNITHINE BIRD FROM THE EARLY CRETACEOUS OF CHINA ..............................................38 viii Introduction .....................................................................................................38
Recommended publications
  • The Phylogenetic Position of Ambiortus: Comparison with Other Mesozoic Birds from Asia1 J
    ISSN 00310301, Paleontological Journal, 2013, Vol. 47, No. 11, pp. 1270–1281. © Pleiades Publishing, Ltd., 2013. The Phylogenetic Position of Ambiortus: Comparison with Other Mesozoic Birds from Asia1 J. K. O’Connora and N. V. Zelenkovb aKey Laboratory of Evolution and Systematics, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwai Dajie, Beijing China 10044 bBorissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia email: [email protected], [email protected] Received August 6, 2012 Abstract—Since the last description of the ornithurine bird Ambiortus dementjevi from Mongolia, a wealth of Early Cretaceous birds have been discovered in China. Here we provide a detailed comparison of the anatomy of Ambiortus relative to other known Early Cretaceous ornithuromorphs from the Chinese Jehol Group and Xiagou Formation. We include new information on Ambiortus from a previously undescribed slab preserving part of the sternum. Ambiortus is superficially similar to Gansus yumenensis from the Aptian Xiagou Forma tion but shares more morphological features with Yixianornis grabaui (Ornithuromorpha: Songlingorni thidae) from the Jiufotang Formation of the Jehol Group. In general, the mosaic pattern of character distri bution among early ornithuromorph taxa does not reveal obvious relationships between taxa. Ambiortus was placed in a large phylogenetic analysis of Mesozoic birds, which confirms morphological observations and places Ambiortus in a polytomy with Yixianornis and Gansus. Keywords: Ornithuromorpha, Ambiortus, osteology, phylogeny, Early Cretaceous, Mongolia DOI: 10.1134/S0031030113110063 1 INTRODUCTION and articulated partial skeleton, preserving several cervi cal and thoracic vertebrae, and parts of the left thoracic Ambiortus dementjevi Kurochkin, 1982 was one of girdle and wing (specimen PIN, nos.
    [Show full text]
  • Predators As Agents of Selection and Diversification
    diversity Review Predators as Agents of Selection and Diversification Jerald B. Johnson * and Mark C. Belk Evolutionary Ecology Laboratories, Department of Biology, Brigham Young University, Provo, UT 84602, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-801-422-4502 Received: 6 October 2020; Accepted: 29 October 2020; Published: 31 October 2020 Abstract: Predation is ubiquitous in nature and can be an important component of both ecological and evolutionary interactions. One of the most striking features of predators is how often they cause evolutionary diversification in natural systems. Here, we review several ways that this can occur, exploring empirical evidence and suggesting promising areas for future work. We also introduce several papers recently accepted in Diversity that demonstrate just how important and varied predation can be as an agent of natural selection. We conclude that there is still much to be done in this field, especially in areas where multiple predator species prey upon common prey, in certain taxonomic groups where we still know very little, and in an overall effort to actually quantify mortality rates and the strength of natural selection in the wild. Keywords: adaptation; mortality rates; natural selection; predation; prey 1. Introduction In the history of life, a key evolutionary innovation was the ability of some organisms to acquire energy and nutrients by killing and consuming other organisms [1–3]. This phenomenon of predation has evolved independently, multiple times across all known major lineages of life, both extinct and extant [1,2,4]. Quite simply, predators are ubiquitous agents of natural selection. Not surprisingly, prey species have evolved a variety of traits to avoid predation, including traits to avoid detection [4–6], to escape from predators [4,7], to withstand harm from attack [4], to deter predators [4,8], and to confuse or deceive predators [4,8].
    [Show full text]
  • The Case of Deirocheline Turtles
    bioRxiv preprint doi: https://doi.org/10.1101/556670; this version posted February 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Body coloration and mechanisms of colour production in Archelosauria: 2 The case of deirocheline turtles 3 Jindřich Brejcha1,2*†, José Vicente Bataller3, Zuzana Bosáková4, Jan Geryk5, 4 Martina Havlíková4, Karel Kleisner1, Petr Maršík6, Enrique Font7 5 1 Department of Philosophy and History of Science, Faculty of Science, Charles University, Viničná 7, Prague 6 2, 128 00, Czech Republic 7 2 Department of Zoology, Natural History Museum, National Museum, Václavské nám. 68, Prague 1, 110 00, 8 Czech Republic 9 3 Centro de Conservación de Especies Dulceacuícolas de la Comunidad Valenciana. VAERSA-Generalitat 10 Valenciana, El Palmar, València, 46012, Spain. 11 4 Department of Analytical Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, 128 43, 12 Czech Republic 13 5 Department of Biology and Medical Genetics, 2nd Faculty of Medicine, Charles University and University 14 Hospital Motol, V Úvalu 84, 150 06 Prague, Czech Republic 15 6 Department of Food Science, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life 16 Sciences, Kamýcká 129, Prague 6, 165 00, Czech Republic 17 7 Ethology Lab, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, C/ 18 Catedrátic José Beltrán Martinez 2, Paterna, València, 46980, Spain 19 Keywords: Chelonia, Trachemys scripta, Pseudemys concinna, nanostructure, pigments, chromatophores 20 21 Abstract 22 Animal body coloration is a complex trait resulting from the interplay of multiple colour-producing mechanisms.
    [Show full text]
  • Middle East Journal of Science (2018) 4(1):45-51
    Middle East Journal of Science (2018) 4(1):45-51 INTERNATIONAL Middle East Journal of Science ENGINEERING, (2018) 4(1): 45 - 51 SCIENCE AND EDUCATION Published online JUNE, 2018 (http://dergipark.gov.tr/mejs) GROUP doi: 10.23884/mejs.2018.4.1.06 ISSN:2536-5312 Received: January 16, 2018 Accepted: May 03, 2018 MOLLUSCS: THEIR USAGE AS NUTRITION, MEDICINE, APHRODISIAC, COSMETIC, JEWELRY, COWRY, PEARL, ACCESSORY AND SO ON FROM THE HISTORY TO TODAY İhsan EKİN1*, Rıdvan ŞEŞEN2 1Department of Energy Systems Engineering, Faculty of Engineering, Şırnak University, Şırnak, Turkey 2Department of Biology, Faculty of Science, Dicle University, Diyarbakır, Turkey *Correspondence: e-mail: [email protected] Abstract:The present study has evaluated the usage and properties of the mollusca phylum from the history to today. Many types of molluscs are eaten worldwide, either cooked or raw due to their rich nutritional value. Furthermore, they are used as pearl, cowry and accessory materials, for tools like household dishes, cooking pots and utensils such as a spoon, cutlery, scoops, spatulas, etc. Some of them are destructive and caused ecological damage, some serve as intermediate hosts for human parasites; some can cause damage to crops. Mollusc meat is known to be highly nutritious and salutary owing to its high content of essential amino acids, proteins, fatty acids, vitamins, and minerals. In addition, some of the bioactive compounds including antiviral, antimicrobial, antiprotozoal, antifungal, antihelminthic and anticancer products are producing by molluscs as medicines. The largest edible snail is African land snail Achatina achatina mostly consumed by African people. Molluscs were very prominent dishes during the Roman Empire due to their aphrodisiac effect.
    [Show full text]
  • Abstract Book
    Welcome to the Ornithological Congress of the Americas! Puerto Iguazú, Misiones, Argentina, from 8–11 August, 2017 Puerto Iguazú is located in the heart of the interior Atlantic Forest and is the portal to the Iguazú Falls, one of the world’s Seven Natural Wonders and a UNESCO World Heritage Site. The area surrounding Puerto Iguazú, the province of Misiones and neighboring regions of Paraguay and Brazil offers many scenic attractions and natural areas such as Iguazú National Park, and provides unique opportunities for birdwatching. Over 500 species have been recorded, including many Atlantic Forest endemics like the Blue Manakin (Chiroxiphia caudata), the emblem of our congress. This is the first meeting collaboratively organized by the Association of Field Ornithologists, Sociedade Brasileira de Ornitologia and Aves Argentinas, and promises to be an outstanding professional experience for both students and researchers. The congress will feature workshops, symposia, over 400 scientific presentations, 7 internationally renowned plenary speakers, and a celebration of 100 years of Aves Argentinas! Enjoy the book of abstracts! ORGANIZING COMMITTEE CHAIR: Valentina Ferretti, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA- CONICET) and Association of Field Ornithologists (AFO) Andrés Bosso, Administración de Parques Nacionales (Ministerio de Ambiente y Desarrollo Sustentable) Reed Bowman, Archbold Biological Station and Association of Field Ornithologists (AFO) Gustavo Sebastián Cabanne, División Ornitología, Museo Argentino
    [Show full text]
  • Vocal Repertoire of the Long-Tailed Manakin and Its Relation to Male-Male Cooperation’
    THE CONDORDEC-61 A JOURNAL OF AVIAN BIOLOGY LIBRARY Volume 95 Number 4 November 1993 The Condor 95:769-78 I 0 The Cooper Ornithological Society 1993 VOCAL REPERTOIRE OF THE LONG-TAILED MANAKIN AND ITS RELATION TO MALE-MALE COOPERATION’ JILL M. TRAINER Department of Biology, Universityof Northern Iowa, Cedar Falls, IA 50614 DAVID B. MCDONALD ArchboldBiological Station, P.O. Box 2057, Lake Placid, FL 33852 Abstract. We examined the vocal repertoire of lek-mating Long-tailed Manakins (Chi- roxiphia linearis, Pipridae) in Monteverde, Costa Rica. Males in this genusare unusualin performing a cooperativecourtship display, including duet songsand coordinateddual-male dance displays. Males give at least 13 distinct vocalizations, several of which occur in clear behavioral contexts. By observing the behavioral context and the sequencein which calls were given, we found that the most frequent calls occurred during three types of activity: song bouts, dance, and noncourtship interactions. The responsesof males to playback of six vocalizations indicated that the calls function as much in mediating cooperative inter- actions as in expressingmale-male agonism. The evolution of the large vocal repertoire in Long-tailed Manakins may be associatedwith their unique social system based on long- term, cooperative relationshipsamong males. Key words: Vocalization;call function; Long-tailed Manakin; Chiroxiphia linearis; so- ciality; cooperation,lek. Resumen. Estudiamosel repertorio vocal de1Saltarin Toledo (Chiroxiphia linearis, Pi- pridae) en Monteverde, Costa Rica. Los machos de este genera se comportan muy parti- cularesen relacibn el cortejo cooperative, incluyendo cancionesa duo y danzascoordinadas de parejasde machos. Los machos emiten al menos 13 vocalizacionesdistintas, muchasde ellas con un context0 claro con respeto al comportamiento.
    [Show full text]
  • The Pax Gene Family: Highlights from Cephalopods Sandra Navet, Auxane Buresi, Sébastien Baratte, Aude Andouche, Laure Bonnaud-Ponticelli, Yann Bassaglia
    The Pax gene family: Highlights from cephalopods Sandra Navet, Auxane Buresi, Sébastien Baratte, Aude Andouche, Laure Bonnaud-Ponticelli, Yann Bassaglia To cite this version: Sandra Navet, Auxane Buresi, Sébastien Baratte, Aude Andouche, Laure Bonnaud-Ponticelli, et al.. The Pax gene family: Highlights from cephalopods. PLoS ONE, Public Library of Science, 2017, 12 (3), pp.e0172719. 10.1371/journal.pone.0172719. hal-01921138 HAL Id: hal-01921138 https://hal.archives-ouvertes.fr/hal-01921138 Submitted on 13 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License RESEARCH ARTICLE The Pax gene family: Highlights from cephalopods Sandra Navet1☯, Auxane Buresi1☯, SeÂbastien Baratte1,2, Aude Andouche1, Laure Bonnaud-Ponticelli1, Yann Bassaglia1,3* 1 UMR BOREA MNHN/CNRS7208/IRD207/UPMC/UCN/UA, MuseÂum National d'Histoire Naturelle, Sorbonne UniversiteÂs, Paris, France, 2 Univ. Paris Sorbonne-ESPE, Sorbonne UniversiteÂs, Paris, France, 3 Univ. Paris Est CreÂteil-Val de Marne, CreÂteil, France ☯ These authors contributed equally to this work. * [email protected] a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 Pax genes play important roles in Metazoan development. Their evolution has been exten- sively studied but Lophotrochozoa are usually omitted.
    [Show full text]
  • Bacillus Cereus Group Species
    The ISME Journal (2020) 14:2997–3010 https://doi.org/10.1038/s41396-020-0728-x ARTICLE Unique inducible filamentous motility identified in pathogenic Bacillus cereus group species 1 1 1 1 1 2 Martha M. Liu ● Shannon Coleman ● Lauren Wilkinson ● Maren L. Smith ● Thomas Hoang ● Naomi Niyah ● 2 3 3 2 1 Manjari Mukherjee ● Steven Huynh ● Craig T. Parker ● Jasna Kovac ● Robert E. W. Hancock ● Erin C. Gaynor 1 Received: 6 January 2020 / Revised: 11 July 2020 / Accepted: 23 July 2020 / Published online: 7 August 2020 © The Author(s) 2020. This article is published with open access Abstract Active migration across semi-solid surfaces is important for bacterial success by facilitating colonization of unoccupied niches and is often associated with altered virulence and antibiotic resistance profiles. We isolated an atmospheric contaminant, subsequently identified as a new strain of Bacillus mobilis, which showed a unique, robust, rapid, and inducible filamentous surface motility. This flagella-independent migration was characterized by formation of elongated cells at the expanding edge and was induced when cells were inoculated onto lawns of metabolically inactive Campylobacter jejuni 1234567890();,: 1234567890();,: cells, autoclaved bacterial biomass, adsorbed milk, and adsorbed blood atop hard agar plates. Phosphatidylcholine (PC), bacterial membrane components, and sterile human fecal extracts were also sufficient to induce filamentous expansion. Screening of eight other Bacillus spp. showed that filamentous motility was conserved amongst B. cereus group species to varying degrees. RNA-Seq of elongated expanding cells collected from adsorbed milk and PC lawns versus control rod- shaped cells revealed dysregulation of genes involved in metabolism and membrane transport, sporulation, quorum sensing, antibiotic synthesis, and virulence (e.g., hblA/B/C/D and plcR).
    [Show full text]
  • GRAS Notice 975, Maltogenic Alpha-Amylase Enzyme Preparation
    GRAS Notice (GRN) No. 975 https://www.fda.gov/food/generally-recognized-safe-gras/gras-notice-inventory novozyme~ Rethink Tomorrow A Maltogenic Alpha-Amylase from Geobacillus stearothermophilus Produced by Bacillus licheniformis Janet Oesterling, Regulatory Affairs, Novozymes North America, Inc., USA October 2020 novozyme~ Reth in k Tomorrow PART 2 - IDENTITY, METHOD OF MANUFACTURE, SPECIFICATIONS AND PHYSICAL OR TECHNICAL EFFECT OF THE NOTIFIED SUBSTANCE ..................................................................... 4 2.1 IDENTITY OF THE NOTIFIED SUBSTANCE ................................................................................ 4 2.2 IDENTITY OF THE SOURCE ......................................................................................................... 4 2.2(a) Production Strain .................................................................................................. 4 2.2(b) Recipient Strain ..................................................................................................... 4 2.2(c) Maltogenic Alpha-Amylase Expression Plasmid ................................................... 5 2.2(d) Construction of the Recombinant Microorganism ................................................. 5 2.2(e) Stability of the Introduced Genetic Sequences .................................................... 5 2.2(f) Antibiotic Resistance Gene .................................................................................. 5 2.2(g) Absence of Production Organism in Product ......................................................
    [Show full text]
  • New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia
    Bull. Natn. Sci. Mus., Tokyo, Ser. C, 30, pp. 95–130, December 22, 2004 New Oviraptorid Dinosaur (Dinosauria: Oviraptorosauria) from the Nemegt Formation of Southwestern Mongolia Junchang Lü1, Yukimitsu Tomida2, Yoichi Azuma3, Zhiming Dong4 and Yuong-Nam Lee5 1 Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China 2 National Science Museum, 3–23–1 Hyakunincho, Shinjukuku, Tokyo 169–0073, Japan 3 Fukui Prefectural Dinosaur Museum, 51–11 Terao, Muroko, Katsuyama 911–8601, Japan 4 Institute of Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China 5 Korea Institute of Geoscience and Mineral Resources, Geology & Geoinformation Division, 30 Gajeong-dong, Yuseong-gu, Daejeon 305–350, South Korea Abstract Nemegtia barsboldi gen. et sp. nov. here described is a new oviraptorid dinosaur from the Late Cretaceous (mid-Maastrichtian) Nemegt Formation of southwestern Mongolia. It differs from other oviraptorids in the skull having a well-developed crest, the anterior margin of which is nearly vertical, and the dorsal margin of the skull and the anterior margin of the crest form nearly 90°; the nasal process of the premaxilla being less exposed on the dorsal surface of the skull than those in other known oviraptorids; the length of the frontal being approximately one fourth that of the parietal along the midline of the skull. Phylogenetic analysis shows that Nemegtia barsboldi is more closely related to Citipati osmolskae than to any other oviraptorosaurs. Key words : Nemegt Basin, Mongolia, Nemegt Formation, Late Cretaceous, Oviraptorosauria, Nemegtia. dae, and Caudipterygidae (Barsbold, 1976; Stern- Introduction berg, 1940; Currie, 2000; Clark et al., 2001; Ji et Oviraptorosaurs are generally regarded as non- al., 1998; Zhou and Wang, 2000; Zhou et al., avian theropod dinosaurs (Osborn, 1924; Bars- 2000).
    [Show full text]
  • A Revision of the Chameleon Species Chamaeleo Pfeili Schleich
    A revision of the chameleon species Chamaeleo pfeili Schleich (Squamata; Chamaeleonidae) with description of a new material of chamaeleonids from the Miocene deposits of southern Germany ANDREJ ÈERÒANSKÝ A revision of Chamaeleo pfeili Schleich is presented. The comparisons of the holotypic incomplete right maxilla with those of new specimens described here from the locality Langenau (MN 4b) and of the Recent species of Chamaeleo, Furcifer and Calumma is carried out. It is shown that the type material of C. pfeili and the material described here lack autapomorphic features. Schleich based his new species on the weak radial striations on the apical parts of bigger teeth. However, this character is seen in many species of extant chameleons, e.g. Calumma globifer, Furcifer pardalis and C. chamaeleon. For this reason, the name C. pfeili is considered a nomen dubium. This paper provides detailed descrip- tions and taxonomy of unpublished material from Petersbuch 2 (MN 4a) and Wannenwaldtobel (MN 5/6) in Germany. The material is only fragmentary and includes jaw bits. The morphology of the Petersbuch 2 material is very similar to that of the chameleons described from the Czech Republic. • Key words: Chamaeleo pfeili, nomen dubium, morphology, Wannenwaldtobel, Petersbuch 2, Langenau, Neogene. ČERŇANSKÝ, A. 2011. A revision of the chameleon species Chamaeleo pfeili Schleich (Squamata; Chamaeleonidae) with description of a new material of chamaeleonids from the Miocene deposits of southern Germany. Bulletin of Geosciences 86(2), 275–282 (6 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received Feb- ruary 11, 2011; accepted in revised form March 21, 2011; published online April 20, 2011; issued June 20, 2011.
    [Show full text]
  • Habitat Types
    Habitat Types The following section features ten predominant habitat types on the West Coast of the Eyre Peninsula, South Australia. It provides a description of each habitat type and the native plant and fauna species that commonly occur there. The fauna species lists in this section are not limited to the species included in this publication and include other coastal fauna species. Fauna species included in this publication are printed in bold. Information is also provided on specific threats and reference sites for each habitat type. The habitat types presented are generally either characteristic of high-energy exposed coastline or low-energy sheltered coastline. Open sandy beaches, non-vegetated dunefields, coastal cliffs and cliff tops are all typically found along high energy, exposed coastline, while mangroves, sand flats and saltmarsh/samphire are characteristic of low energy, sheltered coastline. Habitat Types Coastal Dune Shrublands NATURAL DISTRIBUTION shrublands of larger vegetation occur on more stable dunes and Found throughout the coastal environment, from low beachfront cliff-top dunes with deep stable sand. Most large dune shrublands locations to elevated clifftops, wherever sand can accumulate. will be composed of a mosaic of transitional vegetation patches ranging from bare sand to dense shrub cover. DESCRIPTION This habitat type is associated with sandy coastal dunes occurring The understory generally consists of moderate to high diversity of along exposed and sometimes more sheltered coastline. Dunes are low shrubs, sedges and groundcovers. Understory diversity is often created by the deposition of dry sand particles from the beach by driven by the position and aspect of the dune slope.
    [Show full text]