Anguloc2.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Anguloc2.Pdf INSTITUTO POLITÉCNICO NACIONAL CENTRO INTERDISCIPLINARIO DE CIENCIAS MARINAS Departamento de Plancton y Ecología Marina TAXOCENOSIS DE MOLUSCOS HOLOPLANCTÓNICOS (MOLLUSCA:GASTROPODA) Y SU RELACIÓN BIOGEOGRÁFICA EN EL GOLFO DE CALIFORNIA TESIS Que para obtener el grado de Doctor en Ciencias Marinas P R E S E N T A M. en C. ORSO JUAN ANGULO CAMPILLO Director de Tesis Dr. Gerardo Aceves Medina La Paz, B.C.S., Junio del 2009 Dedico este trabajo a mi madre. Se lo dedico a mi familia que siempre me ha apoyado incondicionalmente. A mis profesores que gracias a sus enseñanzas he llegado hasta este punto. A mis amigos que solo ellos han podido aguantarme todo este tiempo. Y a todos aquellos que de una forma u otra han colaborado en este trabajo. AGRADECIMIENTOS Quiero agradecer a las autoridades del Instituto Politécnico Nacional, las autoridades del Centro Interdisciplinario de Ciencias Marinas y al Consejo Nacional de Ciencia y Tecnología por el apoyo otorgado para el desarrollo de este trabajo y de mi desarrollo académico. Al grupo trabajo de Plancton y Ecología Marina, en particular a la M. en C. Roxana De-Silva y M. en C. Raymundo Avedaño por su apoyo y facilitarme las muestras de los cruceros CGC, al M. en C. Marco Sanchéz Hidalgo, por sus comentarios. Al Dr. Roger Seapy por la ayuda en la identificación de los organismos. Al Dr. Jaime Gómez por sus comentarios, ayuda y permitirme participar durante las campañas CAPEGOLCA. Acrezco a los miembros del comité revisor por su paciencia y los consejos otorgados para concretar este trabajo. A los proyectos de los cuales obtuvieron las muestras de zooplancton: Detección y caracterización de las áreas de desove de peces de importancia Comercial en el Golfo de California, México (CGPI-2005053); Circulación del Golfo de California, Secretaria de Marina-Armada de México; Monitoreo de la producción secundaria, dinámica poblacional y parasitismo de especies clave del zooplancton mediante incubación in situ y métodos hidroacústicos en el Golfo de California (CONACyT-SAGARPA S007-2005-1-11717, CONACyT-FOSEMARNAT 2004-4- 01-144). ÍNDICE GENERAL ÍNDICE DE TABLAS iii ÍNDICE DE FIGURAS iv LISTADO DE ANEXOS xiii RESUMEN xiv ABSTRACT xv GLOSARIO 1 1. INTRODUCCIÓN 5 2. ANTECEDENTES 9 3. HIPÓTESIS 12 4. OBJETIVOS 12 4.1 General 12 4.2 Particulares 12 5. JUSTIFICACIÓN 13 6. ÁREA DE ESTUDIO 14 7. MATERIAL Y MÉTODO 16 7.1 Muestreos 16 7.2 Tratamiento de datos 18 7.2.1 Fichas taxonómicas 18 7.2.2 Descripción de comunidades. 19 8. RESULTADOS 22 8.1 Análisis Taxonómico. 22 8.1.1 Concha 22 8.1.2 Ojos 24 8.1.3 Opérculo 26 8.1.4 Rádula 27 8.2 Fichas Taxonómicas 29 8.2.1 Heteropoda 29 8.2.2 Cephalaspidea 79 8.2.3 Thecosomata 81 8.2.4 Gymnosomata 123 8.2.5 Nudibranchia 149 8.3 Descripción del ambiente físico (temperatura) 155 8.3.1 Temperatura superficial 155 8.3.2 Masas de agua 159 8.4 Descripción de la comunidad 161 8.4.1 Riqueza 161 8.4.2 Diversidad 167 8.4.3 Equidad 168 8.4.4 Abundancia 170 8.4.5 Distribución 173 i 8.5 Análisis de asociaciones 178 8.5.1 Grupo Cálido 182 8.5.2 Grupo Transicional 185 8.5.3 Grupo Frío 188 8.6 Bioregionalización del Golfo de California 191 8.6.1 Análisis de procedimiento de Multi-Respuesta 191 de Permutación (MRPP). 8.6.2 Análisis de Indicador de Especies (AEI). 192 9. DISCUSIÓN 194 10. CONCLUSIONES 214 11. RECOMENDACIONES 217 12. LITERATURA CITADA 218 ANEXOS 229 ii ÍNDICE DE TABLAS Tabla I. Nomenclatura, fecha y número de estaciones de los cruceros oceanográficos realizados en el Golfo de California en el periodo 2005-2007. CGC=Circulación del Golfo de California, GOLCA= Golfo de California. 16 Tabla II. Elenco taxonómico de moluscos holoplanctónicos durante el periodo de estudio, en el Golfo de California, México. 161 Tabla III. Nuevos registros de moluscos holoplanctónicos para el Golfo de California. 164 Tabla IV. Nuevos registros de Moluscos Holoplanctónicos para el Pacifico Americano. 164 Tabla V. Especies de Moluscos Holoplanctónicos exclusivas para cada una de las regiones. 166 Tabla VI. Abundancia de las especies que contribuyeron con más del 2% de la abundancia relativa, durante el periodo de estudio, por crucero y total 172 Tabla VII. Especies correspondientes a cada uno de los Grupos. 179 Tabla VIII. Resultados del análisis de Procedimiento Permutacional de Multirespuesta (MRPP), para cada uno de los grupos. 191 Tabla IX. Resultados del análisis AIE. Sólo se muestran aquellas especies que presentaron fidelidad a las regiones establecidas para el Grupo Calido (>25% y p=<0.05) 193 Tabla X. Resultados del análisis AIE. Sólo se muestran aquellas especies que presentaron fidelidad a las regiones establecidas para el Grupo Transicional (>25% y p=<0.05). 193 Tabla XI. Resultados del análisis AIE. Sólo se muestran aquellas especies que presentaron fidelidad a las regiones establecidas para el Grupo Frío (>25% y p=<0.05). 194 Tabla XII. Número de especies de moluscos holoplanctónicos registrados en: Mundo= alrededor del mundo, Pacífico= Océano pacifico Ecuatorial, GC= Golfo de California y Estudio: presente trabajo. 194 iii INDICE DE FIGURAS Figura. 1. Moluscos Holoplanctónicos. A)Atlantidae; B) Pterotraquidae;C) Pteropoda (Thecosomata); D) Gymnostomida y E) Nudibranchia 7 Figura. 2. Modelos de bioregionalización del Golfo de California. 11 Figura.3. Área de estudio. 14 Figura.4. Localización de las estaciones de muestreo. A) Cruceros CGC correspondientes a marzo, mayo y septiembre de 2005 y marzo de 2006, (CGC0503, CGC0505, CGC0509 y CGC0603 respectivamente; B) Cruceros GOLCA correspondientes a noviembre de 2005, enero y julio de 2007 (GOLCA0511, GOLCA0707 y GOLCA0707 respectivamente). 17 Figura. 5. Caracteres taxonómicos del Grupo de los Atlantidos. A) Posición y forma generalizada de la quilla y de la ultima espiral. B) Posición del plano de la espiral. C) Determinación del número de espirales, a partir de un ángulo de 90°. Esquemas modificados a partir de Tokioka, 1955 y Seapy, 1990. 22 Figura.6. Caracteres taxonómicos del Grupo de los Atlantidos. A) Sutura. B) Tipos de ornamentaciones. C) Inclinación de la espira. Esquemas tomados de Spoel et al., 1997. 23 Figura.7. Morfología de la concha dentro de los pteropodos. A) Enrollada; B) semi-rectas o clavo; C) Triangular y D) Lobulada. Modificado de Spoel & Boltovskoy, 1999. Abreviaturas: cl=columnela; cor=cornisa; csd= costilla dorsal; csl=costilla lateral; cr=cresta; est= estrias; spc=espina caudal; spl= espina lateral. 24 Figura.8 Tipos de morfología ocular de los atlantidos. Tomado de Seapy 1990b. 25 Figura.9. Tipos de morfología ocular de los pterotraquidos. Tomado de Richter & Seapy, 1999. 26 Figura. 10. Morfología opercular de los atlántidos. Tomado de Richter & Seapy (1999). 27 Figura.11. Forma de la rádula y ejemplos de los tipos de dientes. A) Dientes marginales; B) Dientes laterales y C) Diente raquídeo. 28 iv Figura.12. Caracteres taxonómicos adicionales empleados en la determinación de especies A) Carinoideos; B) Gymnostomidos; C) Nudibranquio. Abreviaturas: al=aletas; br=branquias; brl=branquia lateral; bri= branquia inferior; cl= cola; cn=concha; cr=cromatoforos; lbc=lóbulo central; lbl= lóbulo lateral; tc=tentáculos cefálicos; vn= ventosa. 28 Figura.13. Atlanta californiensis. a) organismo preservado, b) organismo trasparentado, donde se observa la posición de la rádula, c) Acercamiento de la espira (SEM), d) rádula, e) distribución. Fotografías c y d, tomadas de Seapy & Richter, 1993 30 Figura.14. Atlanta echinogyra. a) concha, b) acercamiento de la espira, c) rádula, d) distribución. Fotografías: (b) Seapy 1990, (c) Richter, 1986 32 Figura.15. Atlanta fragilis. a) concha, b) acercamiento de la espira, c) rádula, d) dientes, e) distribución. 34 Figura.16. Atlanta frontieri. a) concha, b) acercamiento de la espira, c) rádula, d) dientes, e) distribución. 36 Figura.17. Atlanta fusca. a) concha, b) acercamiento de la espiras vista superior, c) vista lateral de la concha d) espiras vista lateral, e) distribución. Fotografías tomadas de Seapy, 1990 38 Figura.18. Atlanta gaudichaudi a) concha b) acercamiento de la espira, c) vista lateral de la concha d) dientes, e) distribución. Fotografías: tomadas de Seapy (1990). 40 Figura.19. Atlanta helicinoides. a) concha, b) acercamiento de la espira, c) dientes, d) rádula, e) distribución. 42 Figura.20. Atlanta inclinata. a) concha, b) acercamiento de la espira, c) dientes, d) rádula, e) distribución. Fotografías: a) y b) Seapy et al., (2003), d) Spoel et al., (1997). 44 Figura.21. Atlanta inflata. a) concha, b) acercamiento de la espira, c) distribución. Fotografías: a) y b) Spoel et al., 1997. 46 Figura.22. Atlanta lesueuri. a) concha, b) acercamiento de la espira, c) rádula, d) dientes, e) distribución. Fotografías: a) Seapy, (1990), d) Spoel et al.,(1997). 48 v Figura.23. Atlanta meteori. a) concha, b) acercamiento de la espira, c) juvenil, d) distribución. Fotografías: a y b) Seapy (1990). 50 Figura.24. Atlanta oligogyra. a) concha, b) acercamiento de la espira, c) distribución. 52 Figura.25. Atlanta peroni. a) concha, b) acercamiento de la espira, c) rádula, d) dientes, e) distribución. 54 Figura.26. Atlanta plana a) concha, b) acercamiento de la espira, c) rádula, d) dientes, e) distribución 56 Figura.27. Atlanta tokiokai a) concha, b) acercamiento de la espira, c) rádula, d) dientes, e) distribución. 58 Figura.28. Atlanta turriculata a) concha, b) acercamiento de la espira, d) distribución. 60 Figura.29. Protoatlanta souleyeti a) concha, b) acercamiento de la espira, c) Vista apical de la espiral, d) dientes, e) distribución. Fotografías: a-c) Seapy (1990), d) Spoel et al.,(1997). 62 Figura.30. Oxygyrus keraudreni a) organismo preservado, b) Acercamiento de la espira, c) rádula, d) dientes, e) distribución. Fotografías: a-d Spoel et al.,(1997).
Recommended publications
  • Atlanta Ariejansseni, a New Species of Shelled Heteropod from the Southern Subtropical Convergence Zone (Gastropoda, Pterotracheoidea)
    A peer-reviewed open-access journal ZooKeys 604: 13–30 (2016) Atlanta ariejansseni, a new species of shelled heteropod.... 13 doi: 10.3897/zookeys.604.8976 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Atlanta ariejansseni, a new species of shelled heteropod from the Southern Subtropical Convergence Zone (Gastropoda, Pterotracheoidea) Deborah Wall-Palmer1,2, Alice K. Burridge2,3, Katja T.C.A. Peijnenburg2,3 1 School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK 2 Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands3 Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P. O. Box 94248, 1090 GE Amster- dam, The Netherlands Corresponding author: Deborah Wall-Palmer ([email protected]) Academic editor: N. Yonow | Received 21 April 2016 | Accepted 22 June 2016 | Published 11 July 2016 http://zoobank.org/09E534C5-589D-409E-836B-CF64A069939D Citation: Wall-Palmer D, Burridge AK, Peijnenburg KTCA (2016) Atlanta ariejansseni, a new species of shelled heteropod from the Southern Subtropical Convergence Zone (Gastropoda, Pterotracheoidea). ZooKeys 604: 13–30. doi: 10.3897/zookeys.604.8976 Abstract The Atlantidae (shelled heteropods) is a family of microscopic aragonite shelled holoplanktonic gastro- pods with a wide biogeographical distribution in tropical, sub-tropical and temperate waters. The arago- nite shell and surface ocean habitat of the atlantids makes them particularly susceptible to ocean acidifica- tion and ocean warming, and atlantids are likely to be useful indicators of these changes. However, we still lack fundamental information on their taxonomy and biogeography, which is essential for monitoring the effects of a changing ocean.
    [Show full text]
  • Distribution Patterns of Pelagic Gastropods at the Cape Verde Islands Holger Ossenbrügger
    Distribution patterns of pelagic gastropods at the Cape Verde Islands Holger Ossenbrügger* Semester thesis 2010 *GEOMAR | Helmholtz Centre for Ocean Research Kiel Marine Ecology | Evolutionary Ecology of Marine Fishes Düsternbrooker Weg 20 | 24105 Kiel | Germany Contact: [email protected] Contents 1. Introduction . .2 1.1. Pteropods . 2 1.2. Heteropods . 3 1.3. Hydrography . 4 2. Material and Methods . 5 3. Results and Discussion . 7 3.1. Pteropods . 7 3.1.1. Species Composition . 7 3.1.2. Spatial Density Distribution near Senghor Seamount . .. 9 3.1.3. Diel Vertical Migration . 11 3.2. Heteropods . 17 3.2.1. Species Composition . .17 3.2.2. Spatial Density Distribution near Senghor Seamount . .17 3.2.3. Diel Vertical Migration . 18 4. Summary and directions for future research . 19 References . 20 Acknowledgements . 21 Attachment . .22 1. Introduction 1.1. Pteropods Pteropods belong to the phylum of the Mollusca. They are part of the class Gastropoda and located in the order Ophistobranchia. The pteropods are divided into the orders Thecosomata and Gymnosomata. They are small to medium sized animals, ranging from little more than 1mm for example in many members of the Genus Limacina to larger species such as Cymbulia peroni, which reaches a pseudoconch length of 65mm. The mostly shell bearing Thecosomata are known from about 74 recent species worldwide and are divided into five families. The Limacinidae are small gastropods with a sinistrally coiled shell; they can completely retract their body into the shell. Seven recent species of the genus Limacina are known. The Cavoliniidae is the largest of the thecosomate families with about 47 species with quite unusually formed shells.
    [Show full text]
  • Introduction; Environment & Review of Eyes in Different Species
    The Biological Vision System: Introduction; Environment & Review of Eyes in Different Species James T. Fulton https://neuronresearch.net/vision/ Abstract: Keywords: Biological, Human, Vision, phylogeny, vitamin A, Electrolytic Theory of the Neuron, liquid crystal, Activa, anatomy, histology, cytology PROCESSES IN BIOLOGICAL VISION: including, ELECTROCHEMISTRY OF THE NEURON Introduction 1- 1 1 Introduction, Phylogeny & Generic Forms 1 “Vision is the process of discovering from images what is present in the world, and where it is” (Marr, 1985) ***When encountering a citation to a Section number in the following material, the first numeric is a chapter number. All cited chapters can be found at https://neuronresearch.net/vision/document.htm *** 1.1 Introduction While the material in this work is designed for the graduate student undertaking independent study of the vision sensory modality of the biological system, with a certain amount of mathematical sophistication on the part of the reader, the major emphasis is on specific models down to specific circuits used within the neuron. The Chapters are written to stand-alone as much as possible following the block diagram in Section 1.5. However, this requires frequent cross-references to other Chapters as the analyses proceed. The results can be followed by anyone with a college degree in Science. However, to replicate the (photon) Excitation/De-excitation Equation, a background in differential equations and integration-by-parts is required. Some background in semiconductor physics is necessary to understand how the active element within a neuron operates and the unique character of liquid-crystalline water (the backbone of the neural system). The level of sophistication in the animal vision system is quite remarkable.
    [Show full text]
  • 2018 Bibliography of Taxonomic Literature
    Bibliography of taxonomic literature for marine and brackish water Fauna and Flora of the North East Atlantic. Compiled by: Tim Worsfold Reviewed by: David Hall, NMBAQCS Project Manager Edited by: Myles O'Reilly, Contract Manager, SEPA Contact: [email protected] APEM Ltd. Date of Issue: February 2018 Bibliography of taxonomic literature 2017/18 (Year 24) 1. Introduction 3 1.1 References for introduction 5 2. Identification literature for benthic invertebrates (by taxonomic group) 5 2.1 General 5 2.2 Protozoa 7 2.3 Porifera 7 2.4 Cnidaria 8 2.5 Entoprocta 13 2.6 Platyhelminthes 13 2.7 Gnathostomulida 16 2.8 Nemertea 16 2.9 Rotifera 17 2.10 Gastrotricha 18 2.11 Nematoda 18 2.12 Kinorhyncha 19 2.13 Loricifera 20 2.14 Echiura 20 2.15 Sipuncula 20 2.16 Priapulida 21 2.17 Annelida 22 2.18 Arthropoda 76 2.19 Tardigrada 117 2.20 Mollusca 118 2.21 Brachiopoda 141 2.22 Cycliophora 141 2.23 Phoronida 141 2.24 Bryozoa 141 2.25 Chaetognatha 144 2.26 Echinodermata 144 2.27 Hemichordata 146 2.28 Chordata 146 3. Identification literature for fish 148 4. Identification literature for marine zooplankton 151 4.1 General 151 4.2 Protozoa 152 NMBAQC Scheme – Bibliography of taxonomic literature 2 4.3 Cnidaria 153 4.4 Ctenophora 156 4.5 Nemertea 156 4.6 Rotifera 156 4.7 Annelida 157 4.8 Arthropoda 157 4.9 Mollusca 167 4.10 Phoronida 169 4.11 Bryozoa 169 4.12 Chaetognatha 169 4.13 Echinodermata 169 4.14 Hemichordata 169 4.15 Chordata 169 5.
    [Show full text]
  • Abstract Volume
    ABSTRACT VOLUME August 11-16, 2019 1 2 Table of Contents Pages Acknowledgements……………………………………………………………………………………………...1 Abstracts Symposia and Contributed talks……………………….……………………………………………3-225 Poster Presentations…………………………………………………………………………………226-291 3 Venom Evolution of West African Cone Snails (Gastropoda: Conidae) Samuel Abalde*1, Manuel J. Tenorio2, Carlos M. L. Afonso3, and Rafael Zardoya1 1Museo Nacional de Ciencias Naturales (MNCN-CSIC), Departamento de Biodiversidad y Biologia Evolutiva 2Universidad de Cadiz, Departamento CMIM y Química Inorgánica – Instituto de Biomoléculas (INBIO) 3Universidade do Algarve, Centre of Marine Sciences (CCMAR) Cone snails form one of the most diverse families of marine animals, including more than 900 species classified into almost ninety different (sub)genera. Conids are well known for being active predators on worms, fishes, and even other snails. Cones are venomous gastropods, meaning that they use a sophisticated cocktail of hundreds of toxins, named conotoxins, to subdue their prey. Although this venom has been studied for decades, most of the effort has been focused on Indo-Pacific species. Thus far, Atlantic species have received little attention despite recent radiations have led to a hotspot of diversity in West Africa, with high levels of endemic species. In fact, the Atlantic Chelyconus ermineus is thought to represent an adaptation to piscivory independent from the Indo-Pacific species and is, therefore, key to understanding the basis of this diet specialization. We studied the transcriptomes of the venom gland of three individuals of C. ermineus. The venom repertoire of this species included more than 300 conotoxin precursors, which could be ascribed to 33 known and 22 new (unassigned) protein superfamilies, respectively. Most abundant superfamilies were T, W, O1, M, O2, and Z, accounting for 57% of all detected diversity.
    [Show full text]
  • Pliocene Heteropods (Mollusca: Gastropoda) from Miyagi-Shima, Okinawa, Japan
    豊橋市自然史博物館研報 Sci. Rep. Toyohashi Mus. Nat. Hist., No. 18, 1-9, 2008 Pliocene Heteropods (Mollusca: Gastropoda) from Miyagi-shima, Okinawa, Japan Hiroshi Shibata * and Atsushi Ujihara** 沖縄県宮城島産の鮮新世異足類(軟体動物:腹足類) 柴田 博* ・氏原 温** (Abstract) Nine species of heteropods are described from Pliocene strata of the Shinzato Formation of the Shimajiri Group at Miyagi- shima in Okinawa Prefecture. They are Oxygyrus sp., Protatlanta kakegawaensis Shibata, Atlanta helicinoides Souleyet, A. peroni Lesueur, A. plana Richter, A. tokiokai van der Spoel and Troost, A. sp. 1, A. sp. 2 and Carinaria sp. All these species are reported from this group for the first time. Three living species, A. helicinoides, A. plana and A. tokiokai from this site constitute their oldest occurrence record. Introduction from the Shinzato Formation at the locality near our collection site. We follow Seapy (1990) and Richter In 1990, 1993 and 1996 we made the survey of and Seapy(1999)for the taxonomic classification pelagic mollusks in the Plio-Pleistocene Shimajiri of heteropoda. All specimens described herein are Group in Okinawa. No or a few specimens of housed in Graduate School of Environmental Studies, heteropods, holoplanktonic gastropoda, were obtained Nagoya University. at most localities sampled. An exposure of the We are grateful to Takashi Ichihara of Nagoya Shinzato Formation of this group at Miyagi-shima, University for his preparation of figures for this paper. however, exceptionally yielded a large number of heteropod specimens. The heteropod collection from Locality and geologic setting this exposure consists of one species of the genus Oxygyrus, one species of the genus Protatlanta, six The stratigraphy and age of the Shimajiri Group can species of the genus Atlanta and one species of the be found in MacNeil (1960), Natori and Kageyama genus Carinaria.
    [Show full text]
  • Midwater Data Sheet
    MIDWATER TRAWL DATA SHEET RESEARCH VESSEL__________________________________(1/20/2013Version*) CLASS__________________;DATE_____________;NAME:_________________________; DEVICE DETAILS___________ LOCATION (OVERBOARD): LAT_______________________; LONG___________________________ LOCATION (AT DEPTH): LAT_______________________; LONG______________________________ LOCATION (START UP): LAT_______________________; LONG______________________________ LOCATION (ONBOARD): LAT_______________________; LONG______________________________ BOTTOM DEPTH_________; DEPTH OF SAMPLE:____________; DURATION OF TRAWL___________; TIME: IN_________AT DEPTH________START UP__________SURFACE_________ SHIP SPEED__________; WEATHER__________________; SEA STATE_________________; AIR TEMP______________ SURFACE TEMP__________; PHYS. OCE. NOTES______________________; NOTES_____________________________ INVERTEBRATES Lensia hostile_______________________ PHYLUM RADIOLARIA Lensia havock______________________ Family Tuscaroridae “Round yellow ones”___ Family Hippopodiidae Vogtia sp.___________________________ PHYLUM CTENOPHORA Family Prayidae Subfamily Nectopyramidinae Class Nuda "Pointed siphonophores"________________ Order Beroida Nectadamas sp._______________________ Family Beroidae Nectopyramis sp.______________________ Beroe abyssicola_____________________ Family Prayidae Beroe forskalii________________________ Subfamily Prayinae Beroe cucumis _______________________ Craseoa lathetica_____________________ Class Tentaculata Desmophyes annectens_________________ Subclass
    [Show full text]
  • Biogeography and Genetic Diversity of the Atlantid Heteropods T ⁎ Deborah Wall-Palmera,B, , Alice K
    Progress in Oceanography 160 (2018) 1–25 Contents lists available at ScienceDirect Progress in Oceanography journal homepage: www.elsevier.com/locate/pocean SCCWRP #1038 Biogeography and genetic diversity of the atlantid heteropods T ⁎ Deborah Wall-Palmera,b, , Alice K. Burridgeb,c, Erica Goetzed, Frank R. Stokvisb, Arie W. Janssenb, Lisette Mekkesb,c, María Moreno-Alcántarae, Nina Bednaršekf, Tom Schiøtteg, Martin Vinther Sørenseng, Christopher W. Smarta, Katja T.C.A. Peijnenburgb,c a School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth PL4 8AA, UK b Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands c Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1090 GE Amsterdam, The Netherlands d Department of Oceanography, University of Hawai‘iatMānoa, Honolulu, HI 96822, USA e Departamento de Plancton y Ecología Marina, Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz C.P. 23096, Mexico f Southern California Coastal Waters Research Project, Harbor Blvd #110, Costa Mesa, CA 92626, USA g The Natural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen, Denmark ARTICLE INFO ABSTRACT Keywords: The atlantid heteropods are regularly encountered, but rarely studied marine planktonic gastropods. Relying Atlantidae on a small (< 14 mm), delicate aragonite shell and living in the upper ocean means that, in common with Atlanta pteropods, atlantids are likely to be affected by imminent ocean changes. Variable shell morphology and Cytochrome c oxidase subunit 1 (mtCO1) widespread distributions indicate that the family is more diverse than the 23 currently known species. DNA barcoding Uncovering this diversity is fundamental to determining the distribution of atlantids and to understanding Planktonic gastropods their environmental tolerances.
    [Show full text]
  • Visual Acuity in Pelagic Fishes and Mollusks
    W&M ScholarWorks VIMS Articles 2013 Visual acuity in pelagic fishes and mollusks YL Gagnon TT Sutton S Johnsen Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles Part of the Aquaculture and Fisheries Commons Recommended Citation Gagnon, YL; Sutton, TT; and Johnsen, S, "Visual acuity in pelagic fishes and mollusks" (2013). VIMS Articles. 885. https://scholarworks.wm.edu/vimsarticles/885 This Article is brought to you for free and open access by W&M ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Vision Research 92 (2013) 1–9 Contents lists available at ScienceDirect Vision Research journal homepage: www.elsevier.com/locate/visres Visual acuity in pelagic fishes and mollusks ⇑ Yakir L. Gagnon a, , Tracey T. Sutton b, Sönke Johnsen a a Department of Biology, Duke University, Durham, NC 27708, USA b College of William & Mary, Virginia Institute of Marine Science, Gloucester Point, VA, USA article info abstract Article history: In the sea, visual scenes change dramatically with depth. At shallow and moderate depths (<1000 m), Received 26 June 2013 there is enough light for animals to see the surfaces and shapes of prey, predators, and conspecifics. This Received in revised form 13 August 2013 changes below 1000 m, where no downwelling daylight remains and the only source of light is biolumi- Available online 30 August 2013 nescence. These different visual scenes require different visual adaptations and eye morphologies. In this study we investigate how the optical characteristics of animal lenses correlate with depth and ecology.
    [Show full text]
  • Atlanta Ariejansseni, a New Species of Shelled Heteropod
    A peer-reviewed open-access journal ZooKeys 604: 13–30 (2016) Atlanta ariejansseni, a new species of shelled heteropod.... 13 doi: 10.3897/zookeys.604.8976 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Atlanta ariejansseni, a new species of shelled heteropod from the Southern Subtropical Convergence Zone (Gastropoda, Pterotracheoidea) Deborah Wall-Palmer1,2, Alice K. Burridge2,3, Katja T.C.A. Peijnenburg2,3 1 School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth, PL4 8AA, UK 2 Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands3 Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P. O. Box 94248, 1090 GE Amster- dam, The Netherlands Corresponding author: Deborah Wall-Palmer ([email protected]) Academic editor: N. Yonow | Received 21 April 2016 | Accepted 22 June 2016 | Published 11 July 2016 http://zoobank.org/09E534C5-589D-409E-836B-CF64A069939D Citation: Wall-Palmer D, Burridge AK, Peijnenburg KTCA (2016) Atlanta ariejansseni, a new species of shelled heteropod from the Southern Subtropical Convergence Zone (Gastropoda, Pterotracheoidea). ZooKeys 604: 13–30. doi: 10.3897/zookeys.604.8976 Abstract The Atlantidae (shelled heteropods) is a family of microscopic aragonite shelled holoplanktonic gastro- pods with a wide biogeographical distribution in tropical, sub-tropical and temperate waters. The arago- nite shell and surface ocean habitat of the atlantids makes them particularly susceptible to ocean acidifica- tion and ocean warming, and atlantids are likely to be useful indicators of these changes. However, we still lack fundamental information on their taxonomy and biogeography, which is essential for monitoring the effects of a changing ocean.
    [Show full text]
  • Time-Calibrated Molecular Phylogeny of Pteropods
    RESEARCH ARTICLE Time-calibrated molecular phylogeny of pteropods Alice K. Burridge1,2☯, Christine HoÈ rnlein2,3, Arie W. Janssen1, Martin Hughes2,4, Stephanie L. Bush5,6, Ferdinand MarleÂtaz7, Rebeca Gasca8, Annelies C. Pierrot-Bults1,2, Ellinor Michel4, Jonathan A. Todd4, Jeremy R. Young9, Karen J. Osborn5,6, Steph B. J. Menken2, Katja T. C. A. Peijnenburg1,2☯* 1 Naturalis Biodiversity Center, Leiden, The Netherlands, 2 Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands, 3 Koninklijk Nederlands Instituut voor Onderzoek der Zee (NIOZ), Yerseke, The Netherlands, 4 Natural History Museum (NHM), Cromwell a1111111111 Road, London, United Kingdom, 5 Smithsonian Institution National Museum of Natural History, Washington a1111111111 DC, United States of America, 6 Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, a1111111111 California, United States of America, 7 Molecular Genetics Unit, Okinawa Institute of Science and a1111111111 Technology, Onna-son, Japan, 8 El Colegio de la Frontera Sur (ECOSUR), Unidad Chetumal, Quintana Roo, a1111111111 Chetumal, Mexico, 9 Department of Earth Sciences, University College London, London, United Kingdom ☯ These authors contributed equally to this work. * [email protected], [email protected] OPEN ACCESS Abstract Citation: Burridge AK, HoÈrnlein C, Janssen AW, Hughes M, Bush SL, MarleÂtaz F, et al. (2017) Time- Pteropods are a widespread group of holoplanktonic gastropod molluscs and are uniquely calibrated molecular phylogeny of pteropods. PLoS suitable for study of long-term evolutionary processes in the open ocean because they are the ONE 12(6): e0177325. https://doi.org/10.1371/ journal.pone.0177325 only living metazoan plankton with a good fossil record.
    [Show full text]
  • Describing Species
    DESCRIBING SPECIES Practical Taxonomic Procedure for Biologists Judith E. Winston COLUMBIA UNIVERSITY PRESS NEW YORK Columbia University Press Publishers Since 1893 New York Chichester, West Sussex Copyright © 1999 Columbia University Press All rights reserved Library of Congress Cataloging-in-Publication Data © Winston, Judith E. Describing species : practical taxonomic procedure for biologists / Judith E. Winston, p. cm. Includes bibliographical references and index. ISBN 0-231-06824-7 (alk. paper)—0-231-06825-5 (pbk.: alk. paper) 1. Biology—Classification. 2. Species. I. Title. QH83.W57 1999 570'.1'2—dc21 99-14019 Casebound editions of Columbia University Press books are printed on permanent and durable acid-free paper. Printed in the United States of America c 10 98765432 p 10 98765432 The Far Side by Gary Larson "I'm one of those species they describe as 'awkward on land." Gary Larson cartoon celebrates species description, an important and still unfinished aspect of taxonomy. THE FAR SIDE © 1988 FARWORKS, INC. Used by permission. All rights reserved. Universal Press Syndicate DESCRIBING SPECIES For my daughter, Eliza, who has grown up (andput up) with this book Contents List of Illustrations xiii List of Tables xvii Preface xix Part One: Introduction 1 CHAPTER 1. INTRODUCTION 3 Describing the Living World 3 Why Is Species Description Necessary? 4 How New Species Are Described 8 Scope and Organization of This Book 12 The Pleasures of Systematics 14 Sources CHAPTER 2. BIOLOGICAL NOMENCLATURE 19 Humans as Taxonomists 19 Biological Nomenclature 21 Folk Taxonomy 23 Binomial Nomenclature 25 Development of Codes of Nomenclature 26 The Current Codes of Nomenclature 50 Future of the Codes 36 Sources 39 Part Two: Recognizing Species 41 CHAPTER 3.
    [Show full text]