B.J Hum Jochimsen Genet et(2002) al.: Stetteria 47:505–510 hydrogenophila © Jpn Soc Hum Genet and Springer-Verlag4600/505 2002

ORIGINAL ARTICLE

Aritoshi Iida · Susumu Saito · Akihiro Sekine Chihiro Mishima · Yuri Kitamura · Kimie Kondo Satoko Harigae · Saori Osawa · Yusuke Nakamura Catalog of 86 single-nucleotide polymorphisms (SNPs) in three uridine diphosphate : UGT2A1, UGT2B15, and UGT8

Received: June 12, 2002 / Accepted: June 13, 2002

Abstract We report here three high-density maps of varia- that catalyze the transfer of nucleotide sugars to a large tions found among 48 Japanese individuals in three uridine number of exogenous and endogenous compounds to facili- diphosphate glycosyltransferase (UGT) genes, UGT2A1, tate their elimination from target cells (see reviews by UGT2B15, and UGT8. A total of 86 single-nucleotide poly- Mackenzie et al. 1997; King et al. 2000). Structurally, mem- morphisms (SNPs) were identified through systematic bers of the UGT superfamily are defined by the presence of screening of genomic regions containing these genes: 8 in 5Ј a “signature sequence” in their carboxy-terminal halves, flanking regions, 7 in coding regions, 67 in introns, 3 in 3Ј which is thought to be involved in the binding of the untranslated regions, and 1 in a 3Ј flanking region. We also UDP moiety of the nucleotide sugar (Mackenzie et al. discovered 14 variations of other types. Of the 86 SNPs, 63 1997). Endoplasmic reticulum-bound UGTs, which catalyze (73%) were considered to be novel on the basis of compari- glucuronidation of numerous endogenous substrates, in- son of our data with the Database of SNPs (dbSNP) of the cluding bilirubin, bile acids, and steroids, have been well National Center for Biotechnology Information. Among studied in pharmacogenetics and clinical research because the seven SNPs identified in exonic sequences, five were they have central roles in the metabolism and detoxification non-synonymous changes that would result in amino- of foreign chemicals such as carcinogens and hydrophobic acid substitutions. The collection of SNPs derived from drugs. this study will serve as an additional resource for studies So far, at least 47 mammalian cDNAs/genes have been of complex genetic diseases and responsiveness to drug identified and assigned to one of three distinct subfamilies therapy. based on sequence identities, namely, UGT1, UGT2, and UGT8 (Mackenzie et al. 1997). In humans the UGT1A Key words Uridine diphosphate glycosyltransferase family is located on 2q37, where each UGT1 (UGT) · Single-nucleotide polymorphism (SNP) · High- gene is composed of a unique first exon that is subsequently density SNP map · Nonsynonymous substitution · Japanese spliced to four common exons (2 to 5). Members of the population UGT1A family conjugate mainly bilirubin, bile acids, phe- nols, and steroid hormones (Mackenzie et al. 1997). The UGT2 family is different in that its mRNAs are transcribed Introduction from individual genes. On the basis of tissue-specific expres- sion patterns, UGT2 genes are subdivided into the UGT2A subfamily, encoding olfactory-specific isoforms, and the Uridine diphosphate (UDP glycosyl- UGT2B subfamily, encoding steroid-metabolizing iso- ; UGTs) represent a superfamily of forms in the liver (King et al. 2000). UGT2A1 catalyzes glucuronidation of many odorant compounds including monoterpenoids, as well as aliphatic alcohols, phenols, and coumarins (Jedlitschky et al. 1999). UGT2B15 catalyzes A. Iida · S. Saito · A. Sekine · C. Mishima · Y. Kitamura · K. Kondo · S. Harigae · S. Osawa · Y. Nakamura glucuronidation of a wide range of substrates, including Laboratory for Genotyping, RIKEN SNP Research Center, c/o simple phenolic compounds, aliphatic alcohols, and endog- RIKEN Yokohama Institute, Kanagawa, Japan enous steroids such as testosterone, catechol estrogens, Y. Nakamura (*) 5 alpha-androstane-3 alpha, 17 beta-diol, and dihydro- Laboratory of Molecular Medicine, Center, testosterone (Chen et al. 1993; Green et al. 1994). On the Institute of Medical Science, The University of Tokyo, 4-6-1 other hand, the UGT8 family contains only a single member Shirokanedai, Minato-ku, Tokyo 108-8639, Japan Tel. ϩ81-3-5449-5372; Fax ϩ81-3-5449-5433 to date, which encodes a key in the biosynthesis of e-mail: [email protected] glycosphingolipids, cerebrosides, and sulfatides, essential 506 N. Matsuda et al.: EGF receptor and osteoblastic differentiation

rs1432314 rs1432315 rs1432324 rs1432316 rs1432327 rs1319811 rs2163658 rs2010207 rs1821185 rs1158439 rs1438537

rs1432330

rs1560605

rs1432329

rs2331685

ϩ

ϩ

ϩ

ϩ

Repetitive Identity

Val391Ile

Gly308Arg

Substitution sequence to dbSNP

b

Flanking sequence

c

T/A aagctaatttcctccatcca T/C gggacagaaaaccagatcat G/C cagggtttttaggttttaat G/A tagactattagtacaagact A/T atggtgagtttagtttctga G/A ttcccatgtttgctgatcag A/T tgtttattataggaaataat A/G G/Attatggtgtattcttacaa A/G tctctctctcttcctctctc C/T A/Gatagcagacattatgccat G/A ttatggtgtattcttacaaa A/G atagcagacattatgccatt G/T ctattattgtattttgaatc A/C tatgaataccaaccatgggt T/C caaaacaataatactatact C/T ggaagtaacctgcttaaaaa G/T aatcaaaggaggcatacagt G/A tacatgttgtataagtcata A/C atgctaacaattttaaaagc A/G gttgctgacaattttgttca A/C gaagagttgtcccttattta C/A ttccagacacaaaccaaaat T/C catgcttggacttgtaatca G/A tcacaaacatacagatgtgt G/A gatcaatggtcaaaaacctt T/C atttttggaaaaattatgct G/C atcatactgtgttaagcata

T/G ccacttttaaaaactatatc C/T tttcccaggccccactctac

C/G agttctgatggctagacgtc

A/G cagaggaaatttttcttgct

C/T catacttattcagcactatc

T/G agatagcactagccctaatt

G/A ttaactcccaataatgaata

C/T ataaatctgtaaatatccta A/C aacaaagttagaaatgtgtt C/T catgctaagcttatttaatt A/C tttatacacatatttgtcta C/G aggaccatctaaagggaaat C/T acatagcagtctgtggctgg G/A tacagaagctttatccaatt A/G cagatctctgttctaaaaca C/T ggccacatggttaaaataaa T/G cattgcaacaaatttatatc A/T gtttacttctctgcagtgga C/T cattaaggagtaggtcatca A/C aaatcttctagtatcattcc G/A cagtggtttctttttctttg G/A cctatcacttgtggtctgcc

C/T ttattcacagacatatgcat

A/T tgaaaaggatcactctgC/Ttt

G/C ggagagcttagaagagacat

A/C cttcaatggaaatacactca

Variation

b

Flanking sequence

loci

UGT8

a

, and

41 ttttctcctcagcaaacata

194 aaacaataatactatactgg

329 ttccctttctccttttctcc

217 aagcttagaagtgataaata

381 aaatcctccctccttccttc

10,761 tttaaaatatgcatgtattt

11,430 aacaaaggtttattttctta

12,585 ttccacacagggacaagtca

17,937 ctcctaataatttggactca

18,218 tatatcattattttaactta

18,346 atggcaatatttttagaaat

128 gagaagtaagacacattacc 19,085 tagacaaagaccctttcaat

287 cctgaatgtagagttgagat 19,146 ctgtttaaattctcattcaa

935 aaattattcaatctctttgg

1,388 acA/Ttgaaaaggatcactctg

1,406 atttcagaagatttattaac

1,480 tacagattatctttggtgat

1,602 ataacatcttctgcagagaa

Ϫ

Ϫ

Ϫ

Ϫ

Ϫ

Ϫ

Ϫ

Ϫ

Ϫ

Ϫ

Ϫ

Ϫ Ϫ

Ϫ Ϫ

Ϫ

Ϫ

Ϫ

Ϫ

Ϫ

UGT2A1, UGT2B15

Flanking region

Flanking region

Flanking region

Flanking region

Flanking region

Flanking region

Flanking region

)

Ј

Ј

Ј

Ј

Ј

Ј

Ј

UGT2A1

Characterization of 100 variations in the

i-UGT2A1-28 AC011254.3 Intron 1 i-UGT2A1-29 AC011254.3 Intron 2 263 caccttgatactggacttgg i-UGT2A1-30 AC011254.3 Intron 2 454 agaaagcccattgaaataag i-UGT2A1-31 AC011254.3 Intron 2i-UGT2A1-43 AC011254.3 554 Coding region 5 aaaaacttttttgagttgac 1,171 acggagtccctatggtggga i-UGT2A1-32 AC011254.3 Intron 2i-UGT2A1-44 AC011254.3 1,113 Intron 5 ctgcaggcaagctctagtga 1,546 tttttaaaattcagaaactc i-UGT2A1-33 AC011254.3 Intron 2i-UGT2A1-45 AC011254.3 1,304 Intron 5 gacaaatcagccatgtttta 1,547 ttttaaaattcagaaactcA/G i-UGT2A1-34 AC011254.3 Intron 2i-UGT2A1-46 AC011254.3 1,305 Intron 5 acaaatcagccatgttttaC/T 2,013 atcatattcattaccctccc i-UGT2A1-35 AC011254.3 Intron 2i-UGT2A1-47 AC011254.3 1,367 Intron 5 atcgatataggctttgggaa 2,318 aatttagtgctttttcttaa i-UGT2A1-36 AC011254.3 Intron 2i-UGT2A1-42 AC011254.3 Intron 3 i-UGT2A1-48 AC011254.3 2,074 Intron 5 aaattttttcttagacctat 2,505 taattgacttttattaatac i-UGT2A1-37 AC011254.3 Intron 2i-UGT2A1-49 AC011254.3 2,164 Intron 5 attttattagatataactgg 2,639 tagactattacaaagttgtt i-UGT2A1-38 AC011254.3 Intron 2i-UGT2A1-50 AC011254.3 2,298 Intron 5 taacaatttcagttagcatg 4,009 gaatccaggctggaactttt i-UGT2A1-27 AC011254.3 Intron 1 i-UGT2A1-39 AC011254.3 Intron 2i-UGT2A1-51 AC011254.3 2,346 Intron 5 tttctgtaatggttttgctt 4,311 atacagacactgtccttttc i-UGT2A1-40 AC011254.3 Coding region 3i-UGT2A1-52 922 AC011254.3 Intron 5 gtgttgtggtgttttctctg 4,545 agctcacacagtatcaaaat i-UGT2A1-41 AC011254.3 Intron 3 i-UGT2A1-53 AC011254.3 Intron 5 4,616 acttttttatgtctacattt

i-UGT2A1-26 AC011254.3 Intron 1

i-UGT2A1-25 AC011254.3 Intron 1

i-UGT2A1-24 AC011254.3 Intron 1

i-UGT2A1-23 AC011254.3 Intron 1

i-UGT2A1-22 AC011254.3 Intron 1

i-UGT2A1-21 AC011254.3 Intron 1

i-UGT2A1-8 AC011254.3 Intron 1i-UGT2A1-20 AC011254.3 535 Intron 1 cattgatcagggtgatttat i-UGT2A1-9 AC011254.3 Intron 1 642 tatattgatcatgttgatac i-UGT2A1-10 AC011254.3 Intron 1 1,221 ttttaatctaataagcaatt i-UGT2A1-11 AC011254.3 Intron 1 1,448 aggtgcttacaggcaacatc i-UGT2A1-12 AC011254.3 Intron 1 2,000 gacacattagcttcttttct i-UGT2A1-7 AC011254.3 5 i-UGT2A1-13 AC011254.3 Intron 1i-UGT2A1-19 AC011254.3 Intron 1 3,118 cttaaaattctttaatgaaa i-UGT2A1-14 AC011254.3 Intron 1 3,191 ataaatagaacaactcccta i-UGT2A1-15 AC011254.3 Intron 1 3,770 atcaccagataatttactat i-UGT2A1-16 AC011254.3 Intron 1 4,584 tgattggttagaatctttga i-UGT2A1-17 AC011254.3 Intron 1 4,854 tactctgtgcattgttaata i-UGT2A1-6 AC011254.3 5 i-UGT2A1-18 AC011254.3 Intron 1

i-UGT2A1-5 AC011254.3 5

i-UGT2A1-4 AC011254.3 5

i-UGT2A1-3 AC011254.3 5

Table 1. i-UGT2A1-2 AC011254.3 5

ID Accession no. Region Exon Position

UDP-glycosyltransferase 2A1 ( i-UGT2A1-1 AC011254.3 5 B. Jochimsen et al.: Stetteria hydrogenophila 507

rs1902023

rs2045100 rs1531022

rs1947435

rs1454255

rs1026337

rs1026338 rs1026339

Repetitive Identity

ϩ

d

Substitution sequence to dbSNP

Gln508Gln

Asp85Tyr

Lys523Thr

Pro226Leu Ala247Ala

b

Flanking sequence

atgcttactggcctatttat gtaaagaaaatggcagagaa

cttttttgagttgacA/Tatgg tattttaatgaattaatatc

tcaacacatgtaaactactc

cttgtctgctctgctgactt

tacaactcttttttttaaac

c

17

12

11

27

15 14

14

8

9

10

– –

16

8

11 11

T/C ttttataaaatttttagtca

G/A tctcccatcctgtttccaaa

TAT/del gagttcctggggttactggt

Variation C/A acgtaactatggccttaaac A/G tgttgtttgttttcctgtca

(AC) T/del gtaatggcagaattagaaca (A) (GT) AA/del gtctatatatatagcttagt C/A acttgccactgttcttaaca T/del ctcacatttactctgtttcc G/T atttggaagattctcttctg (A) (AC) A/del caaaaattgtctaatttctg

A/T aattaagggagagcacatat A/C gatgaaccaagacagtagta A/T tatgtttctttcagagtgtt T/C agtcattatttttaatactt C/T aggctggtcttgaactcctg C/G ttgccaaaaagtatcaagtg C/T ctgaC/Gtttctcatcttagat C/G tttctcatcttagatgtttg T/C tcaaaG/Acaaaaacatatatg G/A caaaaacatatatggaagat T/C gaaaaaactttgaaatgcat T/A gtttttacttcccatgC/Tatt C/T attggaataggtctatttag A/T atgatttttaagctatgaaa C/T gttctgttcagggtgccatt AGG/ins acaagggataaatgactagt T/G ctggaggtacccacctagcc (A) G/A caagtttttgctgaaaacac T/C agacatggtaatgactggct C/G taatttgctacttttttatt C/T tggaattattctatgtcA/Tat C/T tgcttgtgggcagtactcca C/A ttggggatttccctgcaggg A/G tttattttccagtcttagta T/C atttatccttcagctataaa A/C aggaaagaagaagaaaagag (A)

C/T ggagaagtccatgtatgatt A/G ctggaattcccaagacccac GT/del ttagtgcacaggtcccagta

b

Flanking sequence

18,965) ctcccaattagattgattag

18,803) aatacattcttcccccttca

17,447) aaacttagaaacctctattc

Ϫ

Ϫ

Ϫ

(

(

(

a

1,533 ttgtgtgtatgtgtatgttt

3,838 agacagacagacacacaaac

1,981 aagagagtagcagaataagg

1,968 aagtataatttaaaaaaagc

538 ctgttaggaaacaattggtt

917 gcttagtatattatatatat

618 ctagccaagtagatttagag

54 ttgacaatcaatatctcctt

18,967)

18,862)

17,463)

10,860 attcaatgcaactttttttt

277 ccgaacaggcaggagcctct

Ϫ

Ϫ

Ϫ

Ϫ

Ϫ

6 1,683 aaggagtttaacaaaaacac

6 1,779 agC/Ttggaattattctatgtc

6 1,761 ggatttaatacgtactttag

6 1,957

)

Flanking region 685 aatctagaaaataattatca

Untranslated region

Flanking region

Untranslated region

Untranslated region

Untranslated region

Ј

Ј

Ј

Ј

Ј

Ј

)

vesque et al. (1997)

é

UGT2B15

UGT8

anking sequences to each variation are denoted by small letters

Ј

ed previously by L

Continued

and 3

Ј

Both 5 SNP identi

Nucleotide numbering is according to the mutation nomenclature (den Dunnen and Antonarakis 2000)

Variation is shown by capital letters

i-UGT2A1-58 AC011254.3 Intron 1 (

Table 1. i-UGT2A1-57 AC011254.3 3 ID Accession no. Region Exon Position i-UGT2A1-59 AC011254.3 Intron 1 ( i-UGT2A1-54 AC011254.3 Intron 5 4,717 tgcaagaattatattttctc i-UGT2A1-55 AC011254.3 Coding region 6 1,524 gctatatttttggtcataca i-UGT2A1-56 AC011254.3 3

i-UGT2A1-60i-UGT2A1-61 AC011254.3 AC011254.3 Intron 1 Intron 1 ( i-UGT2A1-62 AC011254.3 Intron 2 528 i-UGT2A1-63 AC011254.3 Intron 2 1,514 i-UGT2A1-64 AC011254.3 Intron 5 916 i-UGT2A1-65 AC011254.3 Intron 5i-UGT2B15-2 AC019173.4 Coding region 1 1,163 253 caatatttatgtcatttttt ctacatctttaactaaaaat i-UGT2A1-66 AC011254.3 Intron 5 3,819 i-UGT2A1-67 AC011254.3 Intron 5 4,785 tatcttcaatgaaaataaaa

UDP-glycosyltransferase 2B15 ( i-UGT2B15-1 AC019173.4 5 i-UGT2B15-3 AC019173.4 Intron 1 670 catcaaagaaaataggggcc i-UGT2B15-4 AC019173.4 Intron 1 775 ctaattatattaagatctta i-UGT2B15-5 AC019173.4 Intron 2 56 ttttcagaaggaatggctgg i-UGT2B15-6 AC019173.4 Intron 2 1,629 tgttgatattatgattattt i-UGT2B15-7 AC019173.4 Intron 2 2,183 cagagtttcaccatgttggc i-UGT2B15-8 AC019173.4 Intron 2 2,430 tatttcaaaagaataagact i-UGT2B15-9 AC019173.4 Intron 2 4,806 aaaaaattactccaatagct i-UGT2B15-10 AC019173.4 Intron 2 4,811 attactccaatagctC/Tctga i-UGT2B15-11 AC019173.4 Intron 3 129 ctaattatctcagacatctg i-UGT2B15-12 AC019173.4 Intron 3 135 atctcagacatctgT/Ctcaaa i-UGT2B15-13 AC019173.4 Intron 3 424 caataacaataagcaggtat i-UGT2B15-14 AC019173.4 Intron 3 476 gtcttaccaagcaatctggc i-UGT2B15-15 AC019173.4 Intron 3 493 ggcT/Agtttttacttcccatg i-UGT2B15-16 AC019173.4 Intron 3i-UGT2B15-28 AC019173.4 514 Intron 2 attggaataggtctatttag 1,980 i-UGT2B15-17 AC019173.4 Intron 3i-UGT2B15-29 AC019173.4 570 Intron 3 ctagtctgactagccactgc 605 i-UGT2B15-18 AC019173.4 Intron 3 906 gccctctctgaatgatctat i-UGT2B15-19 AC019173.4 Intron 3 1,036 tcagtaccttagtttggtac i-UGT2B15-20 AC019173.4 Intron 3 1,544 aataaatatataggttatta i-UGT2B15-21 AC019173.4 Intron 3i-UGT2B15-27 AC019173.4 3 5,550 gtgtggtgaatcaatgtgtg i-UGT2B15-22 AC019173.4 Intron 3 5,720 ttttttaaaagttaattttt i-UGT2B15-23 AC019173.4 Intron 4 134 atcaaatttaactactttat i-UGT2B15-24 AC019173.4 Intron 5 6,627 ttttaatgttgatatcttta i-UGT2B15-25 AC019173.4 Coding region 6 1,568 tttccgaaagcttgccaaaa i-UGT2B15-26 AC019173.4 3

i-UGT2B15-30 AC019173.4 3

UDP-glycosyltransferase 8 (

dbSNP, Database of Single-Nucleotide Polymorphisms; ins, insertion polymorphism; del, deletion polymorphism a b i-UGT8-1 U31353.1 Coding region 1 677 gcagaagtacaacctgctgc i-UGT8-2 U31353.1c Coding region 1 741 atgctgtgtactgacgtagc i-UGT8-3 U31461.1d Intron 2 53 508 N. Matsuda et al.: EGF receptor and osteoblastic differentiation

Fig. 1a–c. Fine-scale single-nucleotide polymorphism (SNP) maps of angles and horizontal lines, respectively. SNPs are indicated above the three loci containing uridine diphosphate glycosyltransferase (UDP genes (designations correspond to the left-most column in Table 1). glycosyltransferase) genes. Exons and introns are represented by rect- Other types of variation, where present, are indicated below the genes B. Jochimsen et al.: Stetteria hydrogenophila 509 constituents of myelin membranes of the central and pe- UGT2B15 locus, and 2.8kb at the UGT8 locus, except for ripheral nervous systems (Bosio et al. 1996; Kapitonov and most of the regions corresponding to repetitive sequences. Yu 1997). Fine-scale SNP maps of each locus were constructed (Fig. In this report we provide high-resolution single- 1). We found 57 SNPs at the UGT2A1 locus (1 in 393bp on nucleotide polymorphism (SNP) maps of three UGT gene average), 27 at the UGT2B15 locus (1 in 401bp), and 2 at loci, in which we detected a total of 86 SNPs and 14 varia- the UGT8 locus (1 in 1385bp). Detailed information about tions of other types among 96 from a repre- each SNP is given in Table 1. Regional distributions of sentative Japanese population sample. the SNPs identified herein were as follows: 8 in 5Ј flank- ing regions, 7 within coding regions, 67 in introns, 3 within 3Ј untranslated regions, and 1 in a 3Ј flanking region. Of the 86 SNPs detected in our experiments, 63 (73%) were Subjects and methods not previously archived in the Database of SNPs (dbSNP) of NCBI. Blood samples were obtained with written informed con- Of the seven SNPs we detected within coding regions, sent from 48 healthy Japanese volunteers for this study, five were non-synonymous: 922GϾA (Gly308Arg) in exon which was approved by the ethical committee of the 3 and 1171GϾA (Val391Ile) in exon 5 of the UGT2A1 RIKEN SNP Research Center. The detailed methods used gene; 253GϾT (Asp85Tyr) in exon 1 and 1568AϾC to screen for SNPs are available in an earlier report (Lys523Thr) in exon 6 of the UGT2B15 gene; and 677CϾT (Ohnishi et al. 2000) and from our website (http://snp.ims.u- (Pro226Leu) in exon 1 of UGT8. Four of these nonsy- tokyo.ac.jp). In brief, on the basis of genomic sequences nonymous substitutions were considered to be novel, the from the Genbank database in the United States National exception being the 253GϾT SNP of UGT2B15 (Lévesque Center for Biotechnology Information (NCBI; accession et al. 1997). All five could affect structures and/or biological numbers UGT2A1, AC011254.3; UGT2B15, AC019173.4; functions of the respective gene products. UGT8, U31353.1, U31461.1, U31658.1, U31861.1 and The overall frequencies of nucleotide substitutions in U32370.1), we designed primers to amplify all three genes our test population (96 chromosomes) were counted as in their entirety as well as 2-kb regions upstream of their 31.4% for C/T, 25.6% for G/A, 15.1% for A/C, 10.5% for first exons and downstream of their polyA sites (Iida et al. T/A, 9.3% for C/G, and 8.1% for G/T. As expected, the 2002). However, we excluded from the screening process most common substitution was C/T (G/A) (57%); transi- most regions that corresponded to repetitive sequences pre- tions occurred 1.3 times more frequently than transversions. dicted by the RepeatMasker program (http://repeatmasker. The 86 SNPs identified here provide genetic data that genome.washington.edu/cgi-bin/RepeatMasker). should be helpful for personalized medical care and also for Each polymerase chain reaction (PCR) was performed identifying genes associated with drug efficacy and/or with 20ng of mixed genomic DNA derived from three adverse drug reactions. individuals. All 16 mixed samples were amplified in the GeneAmp PCR System 9700 (PE Applied Biosystems, Foster City, CA, USA) under the following conditions: ini- References tial denaturation at 94°C for 2min, followed by 35 cycles of denaturation at 94°C for 30s, annealing at 60°C for 30s, and extension at 72°C for 2min. Products obtained from the Bosio A, Binczek E, Le Beau MM, Fernald AA, Stoffel W (1996) The human gene CGT encoding the UDP-galactose galactosyl PCR experiments were used as templates for direct se- (cerebroside synthase): cloning, characterization, and quencing and detection of SNPs using the fluorescent dye- assignment to human , band q26. Genomics 34:69–75 terminator cycle sequencing method. All SNPs detected by Chen F, Ritter JK, Wang MG, McBride OW, Lubet RA, Owens IS (1993) Characterization of a cloned human dihydrotestosterone/ the Polyphred computer program (Nickerson et al. 1997) androstanediol UDP- and its comparison to were confirmed by sequencing both strands of each PCR other steroid isoforms. Biochemistry 32:10648–10657 product. The nomenclature we have used for these genes den Dunnen JT, Antonarakis SE (2000) Mutation nomenclature exten- is according to Online Mendelian Inheritance in Man of sions and suggestions to describe complex mutations: a discussion. Hum Mutat 15:7–12 NCBI and a review published previously by Mackenzie Green MD, Oturu EM, Tephly TR (1994) Stable expression of a et al. (1997). human liver UDP-glucuronosyltransferase (UGT2B15) with activity toward steroid and xenobiotic substrates. Drug Metab Dispos 22:799–805 Iida A, Saito S, Sekine A, Kondo K, Mishima C, Kitamura Y, Harigae S, Osawa S, Nakamura Y (2002) Thirteen single-nucleotide poly- Results and discussion morphisms (SNPs) in the alcohol dehydrogenase 4 (ADH4) gene locus. J Hum Genet 47:74–76 Jedlitschky G, Cassidy AJ, Sales M, Pratt N, Burchell B (1999) Sequencing of approximately 36kb of genomic DNA corre- Cloning and characterization of a novel human olfactory UDP- sponding to three loci containing the UGT2A1, UGT2B15, glucuronosyltransferase. Biochem J 340:837–843 and UGT8 genes identified a total of 100 variations among Kapitonov D, Yu RK (1997) Cloning, characterization, and expression 48 Japanese individuals, including 86 SNPs and 14 varia- of human ceramide cDNA. Biochem Biophys Res Commun 232:449–453 tions of other types. The extent of each screened genomic King CD, Rios GR, Green MD, Tephly TR (2000) UDP- sequence was 22.4kb at the UGT2A1 locus, 10.8kb at the . Curr Drug Metab 1:143–161 510 N. Matsuda et al.: EGF receptor and osteoblastic differentiation

Lévesque E, Beaulieu M, Green MD, Tephly TR, Bélanger A, Hum Nickerson DA, Tobe VO, Taylor SL (1997) PolyPhred: automating the DW (1997) Isolation and characterization of UGT2B15(Y85): a detection and genotyping of single nucleotide substitutions using UDP-glucuronosyltransferase encoded by a polymorphic gene. fluorescence-based resequencing. Nucleic Acids Res 25:2745– Pharmacogenetics 7:317–325 2751 Mackenzie PI, Owens IS, Burchell B, Bock KW, Bairoch A, Belanger Ohnishi Y, Tanaka T, Yamada R, Suematsu K, Minami M, Fujii K, A, Fournel-Gigleux S, Green M, Hum DW, Iyanagi T, Lancet D, Hoki N, Kodama K, Nagata S, Hayashi T, Kinoshita N, Sato H, Sato Louisot P, Magdalou J, Chowdhury JR, Ritter JK, Schachter H, H, Kuzuya T, Takeda H, Hori M, Nakamura Y (2000) Identification Tephly TR, Tipton KF, Nebert DW (1997) The UDP glycosyltrans- of 187 single nucleotide polymorphisms (SNPs) among 41 candidate ferase gene superfamily: recommended nomenclature update based genes for ischemic heart disease in the Japanese population. Hum on evolutionary divergence. Pharmacogenetics 7:255–269 Genet 106:288–292