Larvalandreproductivebiologyofthegiant Pseudocarcinus gigas .PhDThesis.CalebGardner

Preface: The History of Giant Crab Exploitation and Research

1

1 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Taxonomy

Thecurrentof Pseudocarcinus gigas is:

Phylum CRUSTACEA Class Order Infraorder BRACHYURA Section Superfamily MacLeay1838 Family 1MacLeay,1838 Subfamily OziinaeAlcock1898 G&Sp. Pseudocarcinus gigas (Lamarck,1818).

Pseudocarcinus gigas wasoriginallydescribedas Cancer gigas byJeanBaptisteLamarckin1818 andlaterplacedinto Pseudocarcinus byHenriMilneEdwardsafterhecreatedthein 1834.

Thefamilyandsubfamilystatusofthegenusisunclearas Pseudocarcinus hasnotbeen includedinrecentreviewsoftheXanthoideabyGuinot(1977,1978,1979)andHolthuis (1993)duetoinadequatepublisheddescriptions.Critically,themalepleopodsandsternum havenotbeendescribedorillustratedandfewspecimensareheldbyinternational museums.SpecimensandphotographsweresenttoxanthoidtaxonomistsMrPeterDavie (QueenslandMuseum)andDrDanièleGuinot(MuseumNationald’HistoireNaturelle, Paris)andtheiropinionwasthat Pseudocarcinus liesinthetaxonomiccascadelistedabove. Furtherworkonthetaxonomicrelationshipsof Pseudocarcinus isunderwayusingsperm morphology(Prof.BarrieJamieson,QueenslandUniversityandDrDanièleGuinot)sothe statusshouldsoonberesolved.

Thecommonnamefor Pseudocarcinus gigas wastraditionally“giantcrab”althoughthename “kingcrab”waswidelyadoptedafter1980.Useof“kingcrab”seemstohaveresulted

1Eriphiidaeissynonymouswithand(Holthuis1993).

18 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner fromconfusionwiththecommerciallyimportantlithodidwhicharegenerically termed“kingcrabs”(Dawson,1989).In1995,theFederalDepartmentofPrimary IndustriesandEnergypublishedareportonmarketingnamesforAustralianandit wasconcludedthat“kingcrab”wasmisleadingso“giantcrab”wasadoptedastheofficial marketingname(MNFSA,1995).

Distribution

Intemperateregionsoftheworld,thecoastalwatersofthecontinentalshelftendtobe inhabitedbyatleastoneverylargeofcrabwithlargecrabspeciesseldomfoundin tropicalwaters.Thistrendmaybeduetoafemaledefencepolygynousmatingsystemin open,whichfavourslarger,strongermales(Christy,1987;Orensanzetal.,1995). Thetrendisworthnotingasitmaybeofvalueinunderstandingtheoriginsandnicheof P. gigas .Thispositionoflargecrabisfilledbydifferenttaxainvarioustemperateregionsand examplesofgeneraare: Macrocheira , ()and Erimacrus (Atecyclidae)inthe northwestPacific; Chionoecetes (Majidae)and Paralithodes (Lithodidae;)inthe northeasternPacific; Chionoecetes (Majidae)inthenorthwestAtlantic; Cancer () and Maja (Majidae)inthenortheastAtlantic; Geryon (Geryonidae)aroundsouthernAfrica; and Lithodes , Paralomis (Lithodidae,Anomura),and Geryon (Geryonidae)aroundsouthern America.

While Pseudocarcinus gigas isthemostabundantlargecrabinAustraliantemperatewaters, otherrelativelylargespeciesarealsofound: Hypothalassia armata (Xanthoidea), Chaceon bicolor (Geryonidae),anddeepwaterlithodidspecies. Pseudocarcinus isanendemic, monospecificAustraliangenusbelongingtothesuperfamilyXanthoidea—anextremely diversetaxonwithapproximately166speciesand47generainAustraliaalone(Griffinand Yaldwyn,1968).Xanthoidsarefoundworldwidealthoughtheyappeartobeslightlymore diversethroughtheIndoWestPacific.Despitetheirwidedistributionanddiversification, relativelyfewxanthoidshaveattainedlargesizewithnotableexceptionsbeingthree commercialgenera Pseudocarcinus , (Americas),and Hypothalassia (northwestPacific andsouthwestAustralia).

ItisinterestingthatduringthemidTertiary,thedominantlargecrabofthesouthern coastalshelfofnearbyTasmantis—thelandmassbearingNewZealandandLordHowe 19 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Island—wasalsoaxanthoid.Thisspecies, Tumidocarcinus giganteus ,iscommoninNew ZealandmiddleandupperMiocenesedimentslaiddownindeepercoastalwaters(Fleming, 1962).Aswith P. gigas ,themaleshadexceptionallylargerightchelaealthoughoverallbody sizeappearstobesomewhatsmaller(Fleming,1962;Fig.1).Thisspeciesmayhavebeen displacedby Cancer novaezelandiae (McLay,1988),theonlycancridcrabtoreachTasmantis orMeganesia(AustraliaandNewGuinea),fromSouthAmericaviaAntarcticainthemid Tertiary(Nations,1975).

Figure 1. Frontal views of the extinct xanthoid crab, Tumidocarcinus giganteus , from New Zealand (left: after Fleming, 1962) and Pseudocarcinus gigas showing development of large right chelae.

Thepresentdistributionof P. gigas stretchesfromsouthwestWesternAustralia,across southernAustralia,tomidNewSouthWales,withthemostnortherlyrecordontheeast coastfromFiveIslandsoffthecoastofWollongongNSW(McNeill,1920;Fig.2).The southernextentoftheirdistributionappearstobethecontinentalshelfaroundTasmania andspecimenshavebeenobtainedbyrockfishersfromaroundthisentireregion. AlthoughspecimenshavebeencollectedoffsouthernTasmania,crabsarenotcommon andcommercialfishersseldomworkbelow42°30’S.BassStraitispopularlyconsidered themajorregioninhabitedby P. gigas (e.g.Griffin,1970),possiblyfromrepeatedcitationof earlycollectionsbyHaswell(1882)andRathbun(1926)inthisarea.However,most P. gigas arefoundatdepthsbetween120and370m(Levingsetal.,1996)whicheffectively excludesBassStraitasitisgenerallyshallowerthan100m.

20 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 2. Distribution of Pseudocarcinus gigas (shaded area) and important Australian cities.

AUSTRALIA

Wollongong •

Bass Strait

• Hobart

Historyofharvestwithemphasison Tasmania

Aboriginal history

Althoughgiantcrabsarenormallyfoundindeepwateroutofreachofdivers,large individualsareoccasionallycollectedinshallowareasoflessthan10m(Hale,1927). FrancoisPéronvisitedMariaIslandontheeastcoastofTasmaniain1802asthezoologist fortheBaudinexpeditionandhisdiaryreportsthatgiantcrabsformedpartofthedietof localAborigines.

Péronwasoneofthemoreenlightenedexplorersofhistime,hehadagreatpersonal interestinhumandiversityandwasoneofthefirstpeopletocointheterm“anthropology” (Plomleyetal.,1990;Flannery,1994).Hisdiaryrecordoftheexpedition’svisittoBruni (nowBruny)Islandshowsgreathumanity(Wallace,1984).

21 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Asaconsequenceofhisinterest,Péron’srecordsofaboriginallifestyleinTasmaniaare particularlydetailedandareinhiswords“minutelyexact”oraccurate;theyprovideoneof thebestrecordsnowavailable.Theyarealsofullofboundlessenthusiasm.Péron describeshisdiscoveryofagiantcrabchelipedonMariaIslandandhisreactionstothe captureofthesecrabsbyAboriginesthus:

“Upon the beach at the head of the eastern bay, I, myself came upon the monstrous claw of a crab; the individual to which this redoubtable weapon had belonged must not have weighed less than 30 or 40 pounds. Moreover, these large species supply the natives of these regions with part of their diet. It is the women who dive to great depths for them, and I confess that I can scarcely imagine how they manage to pull from their rocky dwellings creatures so big and frightfully armed” (Plomley et al., 1990).

The“monstrousclaw”collectedbyPéronwastransportedbacktoFranceanditis mentionedintheoriginaldescriptionbyLamarck(1818).AsPéronnotes,itisdifficultto imaginehowthewomenwereabletocollectgiantcrabs.MariaIslandisclosetotheedge ofthecontinentalshelfsogiantcrabswillbefoundclosertolandthaninmostotherareas ofTasmaniaandoccasionalmayhavewanderedinclosetoland.Thesemayhave beenwashedashoreaswiththespecimencollectedbyPéronortheymayhavebeen actuallycollectedbydivingasPéronasserts.Oysters( Ostrea angasi ),abalone( Haliotis rubra ), andsouthernrock( edwardsii )werecollectedbydivingsoitisconceivablethat giantcrabsmayhavebeenencountered.

ColonisationofTasmaniabyEuropeansoccurredin1802andresultedinthenear exterminationofAboriginessothatby1847nonewereleftinTasmaniasavesmall populationsontheBassStraitIslands(Flannery,1994).Asaresult,subsequentfishingfor giantcrabswasmainlybyEuropeans.

Post-Colonisation History

Harvestofrocklobstersappearstohavecommencedsoonaftercolonisationandwas clearlyproductiveininshoreareas.In1802,theBaudinexpeditionassignedafewcrew memberstocatchingrocklobsterswithlines,afairlyineffectivemethod,yettheywereable tocatchenoughwithinafewhourstofeedtheentirecrew(Plomleyetal.,1990).By1884, WilliamSavilleKent,thecolonyofTasmania’ssuperintendentandinspectoroffisheries,

22 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner hadalreadynoticedeffectsoffishingontheeastcoastwithdeclinesinsizeandabundance ofrocklobsters(SavilleKent,1884).

Giantcrabswereoccasionallycollectedasbycatchofthisrocklobsterfisheryalthougha royalcommissionintothestateofthefisheriesinTasmaniaconcludedthatthoughthey wereasplendid,theywereonlybroughttomarketoccasionallyandwerenotof muchcommercialimportance(RoyalCommissionReport,1882).Ataroundthesametime inVictoria,McCoy(1889)reportedthatgiantcrabs,especiallyfemales,wereoccasionally broughttomarketandwereespeciallycommonalongtheVictoriancoastnearPortland. ThisistheregionwheremostoftheVictoriancatchisharvestedtoday.WilliamSaville KentappearstohavebeenappointedfollowingpresentationoftheTasmanianroyal commissionreportin1882andwaskeentoseetheharvestofdiversifiedto providegreatervarietyofseafoodtotheTasmanianpublic.Heseemedtobeexasperated bythestateofTasmaniantechnologyandwrote:

“The use of crab pots, as utilised in almost every other country on the face of the globe, might be advantageously recommended to the fishermen of Tasmania” (Saville-Kent, 1884).

SavilleKentwasoneofthevisionariesofAustralianmarinescienceinmanyrespects, notablyinaquaculturewherehe:publishedmethodologyforrearingoftheEuropean lobster( Homarus gamarus ;SavilleKent,1883);developedtheAustralianpearlindustryin northernWesternAustralia;proposedoysterfarminginTasmanianBays,PipeclayLagoon andPittwater(whichoccurredalmost100yearslater);andproposedtheconstructionofa statehatcheryforaquaculturetrialswiththegiantTasmanian( Astacopsis gouldii )and thestripedtrumpeter( Latris lineata )(whichoccurredaround100yearslater).Aswithmost oftheseotherprojects,SavilleKent’sideasoncrabfishingdidnotdevelopfurtheruntil the1970’swhenTasmanianandVictoriancrabfisherieswereinvestigatedintwoprojects: “DevelopmentofSmallScaleInvertebrateFisheriesinTasmanianWaters”(bythe TasmanianFisheriesDevelopmentAuthority;SumnerandDix,1980);and“Experimental TrappingoftheGiantCrab Pseudocarcinus gigas ”(bytheFisheriesandWildlifeDivision, Victoria;Winstanley,1979).

TheTasmanianprojectwasheadedbyColinSumnerandTrevorDixandaddressed fisheriesforavarietyofinvertebratesincludingthreecrabspecies,thesandcrab( ;),thespidercrab( Leptomithrax gaimardii ;Majidae),andgiantcrabs. Thesurveyconcludedthattherewaspotentialfordevelopmentofafisheryforgiantcrabs,

23 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner primarilyasbycatchfromtherocklobster( )fishery,ratherthanasatargeted species.Thedevelopmentofafisherywasconsideredtorestonmarketingaspriceswere generallytoolowtowarrantfishersbotheringwithcrabs(20c/kg,1977/78).Fishingfor giantcrabsinvolvesgreaterexpensethanforrocklobstersasgiantcrabsinhabitdeeper, offshoreareas;vesselsneedtobelargetowithstandhighseasandgearismoreexpensive withlargerpothaulersandmoreroperequired.Crabswereprocessedbyhandpickingthe meatandmarketingtrialswerealsomadewithwholecookedcrabs.Thereappearedtobe promiseforthedevelopmentofafisheryandfurthermarketingtrialswererecommended (SumnerandDix,1980).

Furthermarketresearchwasnotundertakenandmarketpricesdidnotimproveforseveral yearssomostgiantcrabbycatchremainedunderutilised.Althoughmostbycatchwas takenbyrocklobsterfishers,trawlersalsocapturedsomegiantcrabsonmuddysubstrates andtheseweregenerallydiscarded.Crabscollectedbyrocklobsterfisherswereusually smashedsothattheycouldberemovedmoreeasilyfromthewickerlobsterpotsandalso becausetheywereconsideredtointerferewiththeentryofrocklobsters(SumnerandDix, 1980).

Researchconductedtoimprovelivetransportofrocklobstersinthelate1980’sallowed processorstogainhigherpricesforliverocklobsterexportstoAsia.Theimproved methodsalsoenhancedsurvivalofgiantcrabssothattheycouldbesoldforfarhigher pricesthanwaspreviouslypossible(VDCNR,1995a).Thisopenedthewayforthe developmentofagiantcrabfisheryasprocessorsbegantoofferpricesthatwerehigh enoughtoallowlargevesselstoprofitablyfishthedeeperwatersattheedgeofthe continentalshelf(Yasuhara,1995;Fig.3).Tasmaniancatchesgrewfrom133kgin1990to 243tonnesin1995andVictoriancatchesalsoincreaseddramatically(Fig.4;VDCNR, 1995b;TDPIF,1995).Asthemarkethasbecomeincreasingawareofgiantcrabs,prices havesteadilyclimbedsothatbeachpricewasover$50/kgforsmallcrabsin1997.This highpriceisbasedonthecolourofcrabs,nottheiruniquesize,assmallcrabsoflessthan 3kgreceivearounddoublethatofcrabsgreaterthan5kg(onaperkgbasis).

Thegiantcrabfisherywasinitiallysubjecttoonlytwolevelsofinputrestriction,seasonal closuresandpotlimit—artefactsoftherocklobsterfisheryassimilargearwasusedfor bothspecies.Thefisherygrewatsucharapidratethataminimumsizerestrictionof150 mmcarapacelengthwasintroducedin1994acrosssouthernAustraliawhichresultedina declineincatchinVictoria(Fig.4).Thissizelimitwasintroducedasaninterimmeasure 24 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner untilvalidbiologicalinformationcouldbecollectedanditisstillinplace.Amoredetailed discussionofchangesinfisherymanagementisdocumentedelsewhere(Gardner,1998).

Figure 3. Commercial fishing operation targeting giant crabs with purpose-built traps.

Figure 4. Historical patterns of catch of giant crabs in Tasmania and Victoria since 1989 (data from the Victorian Department of Conservation and Natural Resources and the Tasmanian Department of Primary Industries and Fisheries).

250 Tasmania

200 Victoria

150

Tonnes 100

50

0 1989 1990 1991 1992 1993 1994 1995 1996 1997 Year

Historyofresearch

TheoldestwrittenrecordofgiantcrabsexistsinFrancoisPéron’saccountsofhisjourney aroundTasmania(1802),asdiscussedearlier.Péronwasinterestedintherelationship

25 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner betweenorganismsandtheenvironmentandhisideascontributedtotheformationofthe scienceofecologysome50yearslater.Hedevelopedtheideaofhabitatpreferencein relationtogiantcrabs,andothercrustaceans,byfirstdiscussingtheterrainandthenthe interactionwithcrabsandlobsters 2.

“... everything here [on Maria Island] bears the marks of the worlds upheavals, everything here attests to its great antiquity, everything recalls the painful struggle that it had to carry on against the fury of the waves, everything speaks of their ancient dominion over the land... the traces of their gradual recession are to be seen everywhere and in the shape and distribution of the rocks as well as their nature. There, ramparts of granite seem to present an insurmountable barrier to the ocean. Steep and sheer they rise to a height of two or three hundred feet. In their sides there are sometimes more or less large caves, in which the waters, as they surge tumultuously in produce dull boomings like the sound of distant thunder.

..it remains for me to say a few words about the genus Cancer, using the name in all its Linnean generality. Among the rocks that I have described and in the furthest depths of those caves which I have spoken, it is easy to conceive that the largest species of this genus [, the giant crab,] must not only multiply freely, but also reach a gigantic size.... Be that as it may, one further finds in connection with this genus of animals, a new and striking proof of the influence of nature of the seabed upon the existence of such and such a species in preference to all others. Lobsters, which seek out holes in rocks and their debris, exist in prodigious numbers around Maria Island, they were generally rare in D’Entrecasteaux Channel....On the other hand, spider crabs, which delight in filth and mud, abounded to excess on every point in the Channel and yet apparently did not exist around Maria Island. The different nature of the terrain must in fact repel them...”(Plomley et al., 1990).

FollowingonfromPéron’sreport,severalreferencestogiantcrabshavebeenmade, generallyofataxonomicnature,althoughasmallamountofbiologicalinformationwas alsocollected.ThefirsttaxonomicaccountwasbyJeanBaptisteLamarck,whoisfamous forhisearlycontributiontoevolution,publishedin“ZoologicalPhilosophy”(1809). Althoughheinventedtheterm“biology”,Lamarck’soriginalcareerplanshadbeenwith thearmyuntilaneckinjuryforcedhimtoseekotherdirections(Elliot,1914).Atage50, hehadspent25yearsstudyingbotanywhenthreechairswerecreatedattheMuseum

2Asanaside,itisalsointerestingtonotehisviewsontheearth’sageasthedayofcreationhadbeenfixedin Péron’seraat23October4004BCbyArchbishopUssher.Thisviewwasbeginningtobequestionedinthe earlynineteenthcenturyandwasfinallyshatteredbyCharlesLyell’s“PrinciplesofGeology,183033”(Carey, 1995).

26 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Nationald’HistoireNaturelleinParis.ThebotanychairhadbeenfilledsoLamarckwas appointedprofessorofzoology,insects,wormsandmicroscopicanimals.Hepractically abandonedbotanyandlaunchedintotheepictaskofclassifyingtheworld’sinvertebrate animals;theresultsofhisresearchwerethenpublishedin Histoire Naturelle des Animaux sans vertèbres ,asevenvolumeworkpublishedfrom18151822.Thegiantcrabwasincludedin the1818volumeanditisthelastcrabthatLamarckdescribedbeforemovingontoanother invertebrategroup.Hisdescriptionisverybriefandsoundsalmosttired:

“Giant Crab (Cancergigas)

Inhabits the waters of New Holland, in Port Jackson. Péron and Lesueur [collectors]. The shell of an entire individual is 10 inches width; however according to a found anterior leg which is of human arm size, it can be of a huge size. The front of the shell bears four small teeth. Its posterior sides bear small sparse tubercles. The end articulation of the legs are slightly spiky. Etc.

It is in the museum collection, which owns plenty of other species still undescribed”(Lamarck, 1818).

Theholotypeismaleofaround2728cmcarapacewidthandisstillheldattheFrench MuseumNationald’HistoireNaturellealthoughitisdryandsomelegsaredetached (MNHNB13171;pers.comm.,DanièleGuinot).

LamarckliststhecollectinglocationofthisholotypeasPortJackson,generallyknownas SydneyHarbouralthoughtheapparentlyoldlabelontheholotypeindicates“Tasmanie”as thecollectinglocation.ThelocationofSydneyisunlikelygiventhecurrentknowledgeof thedistributionandappearstobeanerror,possiblyintroducedbyPéronorLesueur.The largeanteriorlegthatLamarckmentionsisalmostcertainlythatfoundbyPérononMaria Island,andthewholespecimenmayhavebeenonecollectedbyAboriginesfromthesame area.ThelargelegcannolongerbelocatedinthecollectionoftheMuseumNational d’HistoireNaturelle.

ThomasWhitelegge(1889)continuedtheprobableerrorinthecollectinglocationofthe holotypebyincludingthegiantcrabinaspecieslistforPortJacksonandheliststhe collectinglocationasLaneCoveRiver,ashelteredbrackishestuary.Whiteleggenotesthat histaskwasdifficultgiventhepaucityofbooksinthecolonyandinmanycaseshis quotationsaresecondhand.Thisdifficultyseemstohaveaffectedhisinclusionofthe giantcrab,hecitedLamarck’sdescriptionincorrectlyandincludedLaneCoveRiverasa collectingsitewhenitwasnotpreviouslylisted.

27 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

TaxonomicaccountsofthegiantcrabincludedthosebyMilneEdwards(1834),Haswell (1882),McCoy(1889),Rathbun(1926),andHale(192729).ThedescriptionbyMcCoyis byfarthemostaccurateanddetailedandincludestheearliestknownillustrationsofthe speciesincludingthedissectedmouthpartsandabdomensofbothsexes(Fig.5).McCoy completedhisdescriptionaspartofamassivetwovolumeseriesonthenaturalhistoryof Victoria,“AProdromusoftheNaturalHistoryofVictoria”.Onlyafewcopiesofthis publicationhavesurvivedsohisdescriptionisreproducedinAppendix1.

Figure 5 (proceeding pages). Illustrations of female (first) and male (second) P. gigas by McCoy (1889) including dissected mouthparts. The plates were produced by lithography which reverses the image – the original crabs depicted both bore the larger molariform cheliped on the right hand side which is typical.

Theoriginalfigurecaptionwas:

EXPLANATIONOF FIGURES .

PLATE 179.Fig.1,female,aboutonethirdnaturalsize.Figla,abdomenoffemale,onethirdthenatural size.Fig.1b,antennules,orinnerantennae,movableportionwithoutgreatfixedbase,twicethenaturalsize.Fig lc,antennae,or outerantennae,withoutthe smallbasaljoint,twicethenatural size.Fig.lg,mandibleandfirst andsecondmaxillipedes,naturalsize.Fig.1d,thirdorexternalmaxillipede,naturalsize.Fig.2,abdomenof male,onethirdnaturalsize.

PLATE 180Fig.1,male,aboutonethirdnaturalsize.(Forabdomen,seepl.179,f.2).

28 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

29 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

30 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Mostofthedescriptivetextsalsomentionsomebiologicalinformationaboutgiantcrabs. Haswell(1882)statesthatthecarapaceissometimes2feetinbreadth;however,using regressionsderivedformalecrabsinthesubmittedstudy,thiswouldequatetotheunlikely weightofaround60kg.McNeill(1920)alsodiscussesthesizeofgiantcrabsandhegives moreaccuratemeasuresfromaspecimenattheTasmanianMuseumandArtGallery(still ondisplay)of330mmcarapacewidthandhandlengthof438mm.Severalauthorshave notedthebeautifulcolouringwhichseemstovaryforeachanimalinanindividualpattern (McCoy,1889;McNeill,1920;Rathbun,1926;Hale,1927).McCoy(1889)andRathbun (1926)observedincreaseddimorphismofthechelaewithincreasedbodysizeandthat mostanimalswererighthanded.Rathbun’s(1926)workwasbasedoncollectionsmadeby thefederaltrawler,“TheEndeavour”,from19091914andMcNeill(1920)presented informationrecordedbyamemberofthestaffaboardthevesselfortheseexpeditions,Mr A.R.McCulloch.Henotedthatseveraljuvenilespecimens,aslittleas1inchcarapace width,werefoundinspongecavitiesondifferentoccasions.Thisremainstheonlyreliable informationpublishedonthehabitatoccupiedbyjuvenilegiantcrabs.

Verylittleresearchofanynaturewasconductedongiantcrabsuntilthefisheriesresearch bySumnerandDixinthelate1970’s.TrevorDix(1980)alsosuggestedthatgiantcrabs mightbeculturedalthoughtherewasinsufficientknowledgetoassesstheirpotential.

Ithasnotbeenuntilthe1990’s,afterthedevelopmentofthefishery,thatthebiologyof thegiantcrabhasbeguntobestudiedinanydetail;amongtheinformationcollectedis thatreportedinthisthesis.

References

Carey,J.1995.TheFaberBookofScience.FaberandFaber,London.p.71.

Christy,J.H.1987.Competitivemating,matechoiceandmatingassociationsofbrachyurancrabs.Bull.Mar. Sci.41:177191.

Dawson,E.W.1989.Kingcrabsoftheworld(Crustacea:Lithodidae)andtheirfisheries:acomprehensive bibliography.NewZealandOceanographicInstitute,Misc.Pub.101.

Dix,T.1980.Aquaculture,what’sthefuture.Fintas,2:3335.

Elliot,H.1914.Introductiontotranslationof[Lamarck,J.B.,1809.ZoologicalPhilosophy],Macmillan, London..

31 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Flannery,T.1994.TheFutureEaters.ReedBooks,Sydney.423pp.

Fleming,C.A.1962.AMiocenecrabbedinWairarapaDistrict,NewZealand,andnotesonallometryin Tumidocarcinus giganteus Glaessner.Trans.Royal.Soc.N.Z.(Geol.),1(14):207213.

Gardner,C.1998.TheTasmaniangiantcrabfishery:asynopsisofbiologicalandfisheriesinformation. TasmanianDepartmentofPrimaryIndustryandFisheries,InternalReport43,40pp.

Griffin,D.J.G.1970.Australiancrabs.Aust.Nat.Hist.,16(9):304308.

Griffin,D.J.G.andYaldwyn,J.C.1968.Theconstitution,distributionandrelationshipsoftheAustralian decapodcrustacea.Proc.Linn.Soc.N.S.W.,93:164183.

Hale,H.M.192729.TheCrustaceansofSouthAustralia.GovernmentPrinter,SouthAustralia.380pp.

Haswell,W.A.1882.CatalogueoftheAustralianstalkandsessileeyedcrustacea.Sydney:Australian Museum,326pp,4pls.

Holthuis,L.B.1993.ThenonJapanesenewspeciesestablishedbyWideHaanintheCrustaceavolumeof FaunaJaponica(18331850).In:T.andK.Baba,1993,Ph.F.vonSieboldandNaturalHistoryinJapan. Crustacea.T.Yamaguchi(Ed.).CarcinologicalSocietyofJapan,Tokyo,599646.

Lamarck,J.B.1818.HistoireNaturelledesAnimauxSansVertèbres.p272(inFrench).

Levings,A.,Mitchell,B.D.,Heeren,T.,Austin,C.andMatheson,J.1996.Fisheriesbiologyofthegiantcrab (Pseudocarcinus gigas ,Brachyura,Oziidae)insouthernAustralia.HighLatitudeCrabs:Biology,Management, andEconomics.AlaskaSeaGrantCollegeProgramReportNo.9602,UniversityofAlaskaFairbanks,125 151.

McCoy,F.1889.AProdromusoftheNaturalHistoryofVictoria(Zoology).p293.

McLay,C.L.1988.BrachyuraandcrablikeAnomuraofNewZealand.LeighLab.Bull.,22:iiv,1463.

McNeill,F.A.1920.StudiesinAustraliancarcinology,no.1.RecordsoftheAustralianMuseum,13:108 109.

MilneEdwards,H.1834.HistoireNaturelledesCrustacea.1:409(inFrench).

MNFSA1995.MarketingnamesforfishandseafoodinAustralia.FisheriesPolicyBranch,Departmentof PrimaryIndustriesandEnergy,Canberra.170pp.

Nations,D.1975.Thegenus Cancer (Crustacea:Brachyura):systematics,biogeographyandfossilrecord.Nat. Hist.Mus.L.A.ScienceBulletin,23:1104.

Orensanz,J.M.,Parma,A.M.,Armstrong,D.A.,Armstrong,J.andWardrup,P.1995.Thebreedingecology of Cancer gracilis (Crustacea:Decapoda:Cancridae)andthematingsystemsofcancridcrabs.Zool.Lond.,235: 411437.

Plomley,B.,Cornell,C.andBanks,M.1990.FrancoisPéron’snaturalhistoryofMariaIsland,Tasmania. RecordsoftheQueenVictoriaMuseum,no.99.50pp.

Rathbun,M.J.1926.ReportonthecrabsobtainedbytheF.I.S.“Endeavour”onthecoastsofQueensland, NewSouthWales,Victoria,SouthAustraliaandTasmania.ReportontheOxyrhyncha,Oxystomata,and .Biol.Res.Fish.Exp.Aust.5(3):93156.

RoyalCommissionReport.1882.FisheriesoftheColonyofTasmania,presentedtothegovernor,SirGeorge Strahan.

SavilleKent,W.1883.Theartificialcultureoflobster.InternationalFisheriesExpedition,London(unseen, citedbySavilleKent,1884).

32 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

SavilleKent,W.1884.ReporttotheGovernorAddressingDirectionsfortheFishingIndustriesof Tasmania.6pp.

Sumner,C.E.andDix,T.G.1980.DevelopmentofsmallscaleinvertebratefisheriesinTasmanianwaters. FishingIndustryResearchTrustAccount,FinalReport,78/17.

TDPIF(TasmanianDepartmentofPrimaryIndustryandFisheries).1995.Interimaccessoptionsforthe kingcrabfishery.FishingToday,8(5):2021.

VDCNR(VictorianDepartmentofConservationandNaturalResources).1995a.Regulatoryimpact statement:Fisheries(kingcrab)regulations.VictorianDepartmentofConservationandNaturalResources. 11pp.

VDCNR.1995b.VictorianFisheriesCatchandEffortInformationBulletin1995.VictorianDepartmentof ConservationandNaturalResources.

Wallace,C.1984.TheLostAustraliaofFrancoisPéron.NottinghamCourtPress.

Whitelegge,T.1889.ListofthemarineandfreshwaterinvertebratefaunaofPortJacksonandthe neighbourhood.Proc.Roy.Soc.N.S.Wales,13:227.

Winstanley,R.H.1979.Experimentaltrappingofthegiantcrab Pseudocarcinus gigas offwesternVictoria. FisheriesandWildlifePaperNo.22,FisheriesandWildlifeDivision,Victoria.7pp.

Yasuhara,T.1995.NotesontheTasmaniangiantcrab, Pseudocarcinus gigas ,(,Crustacea)in Tasmania.Cancer,4:2729(inJapanese).

33 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

General Introduction: Larval Biology of the Giant Crab Pseudocarcinusgigas

2

34 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Researchonthelarvalbiologyofthegiantcrab Pseudocarcinus gigas (Lamarck)wasdirected towardstwoaims:toprovidebiologicalinformationtoassistresearchonrecruitment processes;andtoconductapreliminaryassessmentofthepotentialforhatchery productionof P. gigas .

Therapidincreaseinthevalueofgiantcrabsfrom1992promptedhighlevelsoffishing exploitationinsomeregionsleadingtoconcernsthatcrabsmaybedepletedfromsome areas,particularlyinnorthwesternTasmaniaandwesternVictoria(seeChapter16).The impactofdepletionofcrabsthroughfishingisespeciallyseverewheredispersalislimited, aslocalisedrecruitmentfailuremayresult.Althoughcrabsmaywalklargedistancesas adults,dispersalisusuallyduringplanktoniclarvalstages(exceptingamongraftingspecies) makinginformationonthelarvaevitalforassessingthepotentialfordispersal(Hitchcock, 1941;KingsfordandChoat,1985;Havenhand,1995).

Atthecommencementofthisproject,commercialfishersreportedthat P. gigas larvaehad directdevelopmentwhichisunusual,butdoesoccurinotherxanthoidcrabsinthe Australasianregion(e.g. Pilumnus novaezelandiae and P. vestitus ;McLay,1988).Thiswould implythattherewashighpotentialforrecruitmentfailurefollowinglocaliseddepletion. However,shortlyafterwards,anovigerousfemalereleasedfreeswimmingzoeas 3inatank whichdemonstratedthatdevelopmentwasnotdirect(A.Levings,DeakinUniversity,Pers. Comm.).Beyondthis,nothingwasknownofthelarvaeandmoreinformationwas requiredonthedurationoftheplanktonicstage.Detailedanalysisofdispersaloflarvae alsorequiresinformationonverticalmigrationbehaviour.

Thelarvaeof P. gigas hadnotbeendescribedpreviouslyandthiswasundertakentopermit identificationfromsamples.Descriptionofthelarvaewasalsouseful taxonomicallyas P. gigas hasnotbeenincludedinrecentreviewsofxanthoidcrabs(see preface,Chapter1).PlanktonarchivesinTasmanianmarineresearchfacilitieswerethen searchedformaterialcollectedinoceanicareasduringlatespringandsummer.This materialwassortedfor P. gigas larvaetoassessverticaldistributioninnaturalconditions, andtofindevidenceofverticalmigrationstimulisuchastimeofday(i.e.light)and temperature(Chapter4).Unfortunately,fewlarvaewereobtainedfromfieldsamples.

3ZoeaandmegalopaarepluralisedaszoeasandmegalopasthroughoutthisthesisasrecommendedbyMartin (1984)andP.Clark(NaturalHistoryMuseum,London,Pers.Comm.,1998).

23 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Theinvestigationoflarvaldistributioninthefieldwascomplementedbylaboratorybased experimentalprojects.Verticalmigrationoflarvaeisinfluencedbyarangeof stimuliincludingpressure,polarisationoflight,gravity,absolutelightintensity,salinity, changeinlightintensity,predatorfields,preyfields,andtemperature(KnightJonesand Morgan,1966;Umminger,1969;LatzandForward,1977;Forwardetal.,1984;Gliwicz andPijanowska,1988;andForward,1990).Inaseminalpaper,Sulkin(1984)considered thatverticalmigrationofcrablarvaeresultsfromacombinationoforientatingcues, principallygravity,combinedwithchangesinupwardswimmingspeedinresponseto variousenvironmentalcues,principallylight.Healsoconsideredthatchangeinpressure wasimportantinregulatingswimmingspeed,particularlyintheabsenceoflight(Sulkin, 1973).Consequently,thislaboratorystudyfocusedontheresponseof P. gigas larvaeto gravity,changesinlight,andchangesinpressure.Mostresearchontheverticalmigration behaviourofcrablarvaehasbeenwithinshore,coastalspecies. Pseudocarcinus gigas are fishedaroundthecontinentalshelfsothereispotentialforthelarvaetomigratethrough depthsofover300m.Itwasconsideredthatchangeintemperaturemaybeanimportant migrationcueinthisenvironmentsoadditionaltrialswereconductedtoassesstheeffectof temperatureandthermoclines.

Researchonthepotentialforhatcheryproductionwasintendedtoprovidepreliminary informationasitwasrecognisedthataconsiderableresearcheffortisrequiredtoachieve commercialproductionofanewspecies.Nonetheless,commercialproductionofgiant crabs,oranyotherspecies,ishighlydependentonhatcherytechniquessothiswasacritical areaforinitialresearch.Giantcrabsarehighlyvaluedwithbeachpricesin1997fluctuating seasonallybetween$30/kgand$50/kgforsmallcrabsunder3kg.Marketswouldprefer crabsofaround100mmcarapacelengthwhichissmallerthanthecurrentminimumlegal sizeof150mmcarapacelength,introducedin1994.Thismarketdemandcanonlybe filledbyaquacultureandprocessorshaveindicatedthatpriceswouldbehigherthanfor legalsizedcrabs.

Atthecommencementofthisproject,theonlygrowthinformationavailableongiantcrabs wasfromthemoultofajuvenilegiantcrabcapturedinOctober1993.Thisanimal moultedfrom70mmto94mmcarapacelengthwhichwasanimpressive34%increasein lengthandindicatedsomepotentialforrapidgrowth(Frusher,1994).Crabculture worldwideissmallandhasreceivedrelativelylittleresearcheffort,withtheexceptionof

24 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner enhancementoperationsinJapan,soresearchonthecultureof P. gigas larvaeisofgeneral interestforcrabculture(Cowen,1982).

Muchoftheresearchonbehaviourof P. gigas larvaeoverlappedwiththesecondaimof assessingthepotentialforhatcheryproductionofP. gigas .Unlikefinfish,crablarvaeare negativelybuoyantandmustswimtoavoidsinking.Cultureconditionsthatinitiate upwardswimmingwillexhaustenergyreserves,whilecuesthatinitiatesinkingmaycause larvaetoaccumulateatthebaseofculturetanks,thusincreasingcontactwithdetritus. Researchonoptimisinglarvalrearinginvestigatedoptimallightingandtemperatureasthese parametersaffectswimmingactivity,intermoultduration,metabolism,rateofcannibalism, larvalsize,utilisationofenergyreserves,feedingrate,andmetamorphosis(Eaglesetal., 1986;WaddyandAiken,1991;HechtandPienaar,1993;Minagawa,1994).

Thefinalaspectofresearchonassessinghatcheryproductionof P. gigas wastocontrol disease.Inpreliminarytrials,larvalmycosiscausedhighmortalitysoadditionalresearch wasundertakentorefinetheuseofprophylactictreatmentsforthisspecies.

References

Cowen,L.1982.CrabsbythemillioninJapan’sranchingprogramme.FishFarmingInternational,9:16.

Eagles,M.D.,Aiken,D.E.andWaddy,S.L.1986.InfluenceoflightandfoodonlarvalAmericanLobsters, Homarus americanus .CanadianJournalofFisheriesandAquaticSciences,43:23032310.

Forward,R.B.Jr.1990.Behaviouralresponsesofcrustaceanlarvaetoratesoftemperaturechange.Biological Bulletin,178:195204.

Forward,R.B.Jr.,Cronin,T.W.andStearns,D.E.1984.Controlofdielmigration:photoresponsesofalarval crustacean.LimnologyandOceanography,29:146154.

Frusher,S.1994.Giantcrabmoult:apromiseofthingstocome?FishingToday7:2.

Gliwicz,M.Z.andPijanowska,J.1988.Effectofpredationandresourcedepthdistributiononvertical migrationof.BulletinofMarineScience,43:695709.

Havenhand,J.N.1995.Evolutionaryecologyoflarvaltypes.In:McEdward,L.(ed.),EcologyofMarine InvertebrateLarvae.CRCPress,NewYork,pp.79122.

Hecht,T.andPienaar,A.G.1993.Areviewofcannibalismanditsimplicationsinfishlarviculture.Journal oftheWorldAquacultureSociety,24:246261.

Hitchcock,H.B.1941.Thecolourationandcolourchangesofthegulfweedcrab, Planes minutus .Biological Bulletin,80:2630.

25 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Kingsford,M.J.andChoat,J.H.1985.Thefaunaassociatedwithdriftalgaecapturedwithaplanktonmesh purseseinenet.LimnologyandOceanography,30:618630.

KnightJones,E.W.andMorgan,E.1966.Responsesofmarineanimalstochangesinhydrostaticpressure. OceanographyandMarineBiologyAnnualReview,4:267299.

Latz,M.I.andForward,R.B.Jr.1977.Theeffectofsalinityuponphototaxisandgeotaxisinalarval crustacean.BiologicalBulletin,153:163179.

McLay,C.L.1988.BrachyuraandcrablikeAnomuraofNewZealand.LeighLaboratoryBulletin,22:iiv,1 463.

Martin,J.W.1984.Notesandbibliographyonthelarvaeofxanthidcrabs,withakeytotheknownxanthid zoeasofthewesternAtlanticandGulfofMexico.BulletinofMarineScience,34:220239.

Minagawa,M.1994.Effectsofphotoperiodonsurvival,feedinganddevelopmentoflarvaeoftheredfrog crab, ranina .Aquaculture,120:105114.

Sulkin,S.D.1973.Depthregulationofcrablarvaeintheabsenceoflight.JournalofExperimentalMarine BiologyandEcology,13:7382.

Sulkin,S.D.1984.Behaviouralbasisofdepthregulationinthelarvaeofbrachyurancrabs.MarineEcology ProgressSeries,15:181205.

Umminger,B.I.1969.Polarotaxisincopepods,III.Alightcontrastreactionin Diaptomus shoshone Forbes. Crustaceana,16:202204.

Waddy,S.L.andAiken,D.E.1991.Scotophaseregulationofthedieltimingofthemetamorphicmoultin larvalAmericanlobsters, Homarus americanus .JournalofShellfishResearch,10:287.

26 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Larval Development of the Giant Crab Pseudocarcinusgigas (Lamarck, 1818)(Decapoda: Eriphiidae) Reared in the Laboratory

3

Researchforthischapterhasbeenpreviouslypublishedas: Gardner,C.andQuintana,R.,1998.LarvaldevelopmentoftheAustralian giantcrab Pseudocarcinus gigas (Lamarck,1818)(Decapoda:Oziidae)rearedin thelaboratory.JournalofPlanktonResearch,20(6):11691188.

27 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Abstract

Thelarvaeof Pseudocarcinus gigas ,obtainedfromfemalescollectedfromeasternTasmania, wererearedfromhatchingtometamorphosis.Thelarvalserieshasfivezoealandone megalopalstages.Thischapterpresentsadescriptionofthesestagesandacomparisonwith othermembersofthesubfamilyOziinae.

Introduction

Pseudocarcinus isamonospecificgenusandhasnotbeenincludedinrecentreviewsof Xanthoidea(e.g.Guinot,1978;Serene,1984)althoughitappearstobelongtothesubfamily OziinaewithinthefamilyEriphiidae 4(P.Davie,QueenslandMuseum,personal communication).LarvalinformationisavailableforseveralotherspecieswithintheOziinae including rugulosus (KakatiandNayak,1977); O. truncatus (Wear,1968;Wearand Fielder,1985); Baptozius vinosus (Sabaetal.,1978a); (Martin,1988;Martinetal., 1988); M. nodifrons (Scotto,1979); M. rumphii (Kakati,1977); M. mercenaria (Porter,1960);and Epixanthus dentatus (Sabaetal.,1978b).

Thischapterexpandsuponapreliminarydescriptionofthefirststagezoeaof P. gigas (Quintanaetal.,1996;Appendix2)tofullydescribethezoealstagesandmegalopaof P. gigas .Theimplicationsfortaxonomicaffinitiesarediscussed.

Materialsandmethods

Ovigerouscrabswerecollectedfromdepthsintherangeof300–380mofftheeastcoast ofTasmania(41°17'S;148°40'E)inJune1995.Femalesrangedinsizefrom2.2–3.5kgand

4EriphiidaeissynonymouswithOziidaeandMenippidae(Holthuis1993).

50 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner wereheldcommunallyin4m 3tankswithflowthrough,unfiltered,seawater.Larvaewere collectedatduskonthesamedayfromtwotankstoensurethatlarvaewerenotfroma singleparent;furthermixingprobablyoccurredasseveralfemaleswerereleasinglarvaein eachtank.

Newlyhatchedlarvaewererinsedin0.2mfilteredseawater(32‰salinity)thentransferred to1.8l,black,rectangularculturevessels.Onehundredlarvaewereplacedineachvessel andmaintainedinatemperaturecontrolroomat15.5°C.Cultureswerenotaerated (Appendix3).ZoealstageswerefedamixofProteinSelco™(INVEaquaculture, Oeverstraat7,Baasrode,Belgium)enrichedrotifers (Brachionus plicatilis) andartemia 5nauplii forthefirsttwoinstarsandenrichedartemiaonlythereafter.Ongrownartemia(7d)were suppliedtomegalopa(Appendix4).Larvaeweretransferredbypipetteintocleanedsterile containers(2l)withfresh,0.2mfilteredseawaterdaily(3234‰salinity).Larvaeand exuviafromeachstagewerepreservedfordescriptioninbuffered5%formalin.Voucher specimenshavebeendepositedwiththeTasmanianStateMuseum,theLaboratoirede ZoologieArthropodes,MuséumNationald’HistoirenaturelleandtheNaturalHistory Museum,London(registrationnumber1996.1195).

Measurementsanddescriptionswereusuallymadefromtenlarvaeforeachstage. Measurementstakenwere:forthezoealstages,(TT)thedistancebetweentipsofdorsaland rostralspines,(CW)betweenthetipsofthelateralspines,and(CL)fromthebaseofthe rostralspinetotheposteriormarginofthecarapace;forthemegalopa,(CW)themaximum distanceacrossthecarapace,and(CL)themaximumdistancealongthecarapace.Dissected appendageswerefirststainedinLeesmethylenebluebeforepreparationaswetmounts. DrawingsweremadeusingaWildM5™stereomicroscopeandanNikonOptiphot2™ compoundmicroscope,bothequippedwithacameralucida.Drawingsofthefirstzoeal stagewerethenretracedandeditedbycomputerusingAdobeIllustrator .Measurements weremadebyimageanalysisusingNIHImage™software.Setalcountsareproximalto distal.Setaewereclassedassimple(S),sparselyplumose(SP),plumose(P),highlyplumose (HP),orplumodenticulate(PD)(GreenwoodandFielder,1984).

5Artemiaisnotitalicizedthroughoutthisthesisasithasdevelopedintoacommonnameforawellknown organism,aswitheucalyptus,melaleucaorgorilla.

51 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Severalotherlarvalrearingtrialswereconductedtoinvestigatetheeffectsoftemperature, lightintensity,photoperiod,andprophylacticdiseasetreatment.Insomeofthesetrials, larvaedevelopedtoanintermediatestageafterzoea5,particularlyfollowingprolonged exposuretohighdosesofoxytetracycline(GardnerandNortham,1997;Chapter8).None oftheselarvaedevelopedfurther.Thisstagewasconsideredabnormalsoitisnotincluded inthepresentdescription.

Results

Underrearingconditionsusedinthistrial,meantimetakentoreachmegalopawas54.0d (SD=3.2;n=180)andmeantimetocompletelarvaldevelopment(crab1)was91.8d (SD=3.93;n=26).Therateofdevelopmentof Pseudocarcinus gigas larvaeisdiscussedinmore detailelsewhere(GardnerandNortham,1997;Chapter8).

Prezoea (Figure 1A)

Prezoealarvaewereobtainedfromeggmassesoffemaleswherehatchingwasinprogress andwerenevercollectedwithfreeswimminglarvaetakenfromtanksimmediatelyafter hatching.Aswithprezoealarvaeofotherdecapods(QuintanaandKonishi,1986),the prezoealcuticleenvelopedsetaesothatdetailsofstructurecouldnotbeseen.Carapace spinesweredepressedalthoughtheabdominallateroventralspineswereclearlyapparent.

Zoea I

Carapace (Figs. 1B, 3A; Table 1): eyesimmobile;allcarapacespineswelldevelopedand prominent(frontalspine=0.63mm;dorsalspine=1.36mm;lateralspines=0.43mm); dorsalspineslightlycurvedbackwardsandpointed;lateralspinesconspicuousandwith slightventralcurvature;frontalspinesmooth,distallypointed,andwithslightanterior flexure;anterodorsalsetaeabsent;1pairofposterodorsalsetae;theventralmarginsofthe carapacewithoutsetae.

52 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Antennule (Fig. 3C): uniramous,endopodabsent;exopodunsegmentedwith3aesthetascs and2simple(S)setae.

Antenna (Fig. 3D): protopodalprocesslessthanhalfthelengthofthefrontalspineand bearingaround25spinulesinrowsalongdistalhalf;endopodabsent;exopodrudimentary, unsegmentedwith3unequalsetae(S).

Mandible (Fig. 3E): solidwithmolarandincisorprocesseswelldeveloped(clearly observedinwellpreservedexuviae);incisorprocesswithsmallmarginalteeth;endopodpalp absent.

Maxillule (Fig. 3F): coxawithoutsetae;coxalenditewith7plumodenticulate(PD)setae and1seta(S);basialenditewith5setae(PD);endopodbisegmented,proximalsegmentwith 1sparselyplumose(SP)seta,distalsegmentwith2+2+2setae(SP);exopodsetaabsent.

Maxilla (Fig. 3G): coxalenditebilobedwith6+4setae(PD);basialenditebilobedwith6+5 setae(PD);endopodbilobedwith3+5setae(PD);exopod(scaphognathite)marginwith4 highlyplumose(HP)setaeand1long,plumosedistalstoutprocess.

First maxilliped (Figs. 3H, 3H’): coxawithoutsetae;basiswith2+3+3+3setae(S); endopod5segmentedwith2,2,1,2,56setae(PDexcept12simplesetaeonterminal); exopod2segmented,distalsegmentwith4terminalsetae(HP).

Second maxilliped (Figs. 3I, 3I’): coxawithoutsetae;basiswith4setae(S);endopod3 segmentedwith1,1,4setae(PDexcept2simplesetaeonterminal);exopod2segmented, distalsegmentwith4terminalsetae(HP).

Third maxilliped: absent.

Pereiopods (Fig. 3J): uniramousandrudimentary.

Abdomen (Figs. 3B, 3B’): fivesomites;somite1withmidposterodorsalspineandno dorsomedialsetae;somites2and3withanterolateralknobs,inaddition,thelaterwithsharp lateroventralspinesasinsomites4and5;somites25withaposterodorsalprominence bearing2minutedorsalsetae;somite2withaminutemidposteroventralseta;pleopodbuds absent.

Telson (Figs. 3B, 3B’): broad,bifurcated,curvedbackwards;eachfurcadistallypointed, withawelldeveloped,smoothlateralspinewithasmallspineontheinnermargin;inner 53 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner marginoffurcaewith3+3biplumosesetaelateraltoacutemediannotch;smalldorsomedial spinepresentoneachtelsonfurca,arisingwellposteriortosetaebases.

Zoea II

Carapace (Figs. 1C, 2A; Table 1): eyesnowmobile;carapacelarger,withtwopairsof anterodorsalsetaeandeachventralmarginwith3setae(1plumose(P)anteriorsetaand2 sparselyplumose(SP)posteriorsetae),posterodorsalsetationunchanged;dorsalspinemore robust.

Antennule (Fig. 4A): exopodwith4aesthetascs,otherwiseunchanged.

Antenna (Fig. 4F): unchanged.

Mandible (Fig. 5A): unchanged.

Maxillule (Fig. 6A): coxanowwith1seta(HP);coxalenditewith910setae(PD);basial enditewith78setae(PD);otherwiseunchanged.

Maxilla (Fig. 7A): coxalenditewith7+4setae(PD);basialenditewith7+6setae(PD); endopodunchanged;exopod(scaphognathite)marginwith1718setae(HP)and rounded distally .

First maxilliped (8A): setaeonbasisunchangedinnumberbutnowplumodenticulate; terminalsegmentofendopodwith5setae(PD);exopoddistalsegmentwith6terminalsetae (HP);otherwiseunchanged.

Second maxilliped (8F): setaeonbasisunchangedinnumberbutnowplumodenticulate; exopoddistalsegmentwith6terminalsetae(HP);otherwiseunchanged.

Third maxilliped: absent .

Pereiopods (Fig. 9A ):budsmoredevelopedandchelipednowchelate.

Abdomen (Figs. 10A, 10B): firstabdominalsomitewith2dorsomedialsetae;lateroventral spinesofabdominalsomites35ofsimilarlength,overlappingnextsomitebyapproximately threequarterlength;innermarginoffurcaewithadditionalbiplumosesetaelateraltoacute mediannotchgivingformulaof4+4;otherwiseunchanged.

54 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Zoea III

Carapace (Figs. 1D, 2B; Table 1): largerthaninpreviousstageswithventralmargin developedintotwonotches;6pairsofanterodorsalsetae;eachventralmarginwith9setae(1 plumoseanteriorsetaand8sparselyplumoseposteriorsetae);otherwiseunchanged.

Antennule (Fig. 4B): endopodwithadditionalaesthetasc;otherwiseunchanged.

Antenna (Fig. 4G): endopodbudpresent;otherwiseunchanged.

Mandible (Fig. 5B): unchanged.

Maxillule (Fig. 6B): coxawith23setae(HP);coxalenditewith1112setae(PD);basial enditewith1113setae(PD);endopodunchanged.

Maxilla (Fig. 7B): coxalenditewith810+5setae(PD);basialenditewith8+7setae(PD); endopodunchanged;exopod(scaphognathite)marginwith2831setae(HP).

First maxilliped (Fig. 8B): basisunchanged;terminalsegmentofendopodwith6setae (PD);exopoddistalsegmentwith10setae(HP);otherwiseunchanged.

Second maxilliped (Fig. 8G): numberofsetaeonbasisunchangedbutnow plumodenticulate;endopodunchanged;exopoddistalsegmentwith10setae(HP).

Third maxilliped (Fig. 9B): present,rudimentaryandbiramouswithendopodslightly longerthanexopod.

Pereiopods (Fig. 9B): developingwithdifferentiationofsegments,segmentswithoutsetae.

Abdomen (Fig. 10C): now6segmented;posterodorsalsurfaceofsomite1with6setae(S); othersomitesaspreviouslybutwithventralswellinginpresumptivepleopodregion;inner marginoffurcaewithadditionalbiplumosesetaelateraltoacutemediannotchgiving formulaof5+5;otherwiseunchanged.

55 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Zoea IV

Carapace (Figs. 1E, 2C; Table 1): ridgealongtheposteriormarginiswelldefined; carapacenowwith8pairsofanterodorsalsetaeandeachventralmarginwith15setae(1 plumoseanteriorsetaand14sparselyplumoseposteriorsetae).

Antennule (Fig. 4C): endopodbudabsent;exopodnowwith6aesthetascsand1setae(S) terminallyandwith1aesthetascand1setae(S)subterminally.

Antennae (Fig. 4H): endopodbudonantennaapproximatelyonehalfthelengthof exopod;otherwiseunchanged.

Mandible (Fig. 5C): nowwithmandibularpalpbud.

Maxillule (Fig. 6C): coxaunchanged;coxalenditewith1215setae(PD);basialenditewith 1720setae(PD);endopodunchanged.

Maxilla (Fig. 7C): coxalenditewith1011+6setae(PD);basialenditewith910+810setae (PD);endopodunchanged;exopod(scaphognathite)marginwith3943setae(HP).

First maxilliped (Fig. 8C): basisnowwith1+3+3+4setae(PD);endopodunchanged; exopoddistalsegmentwith14setae(HP).

Second maxilliped (Fig. 8H): basisandendopodunchanged;exopoddistalsegmentwith 14setae(HP).

Third maxilliped (Fig. 9C): furtherdeveloped;nowwithepipod.

Pereiopods (Fig. 9C): furtherenlargedanddifferentiatedintosegments;nosetaepresent.

Abdomen (Fig. 10D): midposterodorsalspineonabdominalsomite1reduced;pleopod budsonabdominalsomites26uniramouswithendopodabsent;secondlateralspineand dorsomedialspineontelsonreduced;innermarginoffurcaewithadditionalbiplumose setaelateraltoacutemediannotchgivingformulaof6+6;otherwiseunchanged.

56 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Zoea V

Carapace (Fig. 1F, 2D; Table 1): nowwith14pairsofanterodorsalsetaeandeachventral marginwith24setae(1plumoseanteriorsetaand23sparselyplumoseposteriorsetae); otherwiseunchanged.

Antennule (Fig. 4D): endopodbudpresent;exopodnowwith1113aesthetascsand2 setae(S)terminally,and2subterminalaesthetascs.

Antenna (Fig. 4I): endopodbudpartiallysegmentedandapproximatelyaslongasexopod; otherwiseunchanged.

Mandible (Fig. 5D): endopodbud(palp)moredevelopedbutunsegmentedandunarmed.

Maxillule (Fig. 6D): coxaunchanged;coxalenditewith21setae(PD);basialenditewith 2325setae(PD);endopodunchanged.

Maxilla (Fig. 7D): coxalenditewith1314+89setae(PD);basialenditewith1315+11 setae(PD);endopodunchanged;exopod(scaphognathite)marginwith5156setae(HP).

First maxilliped (Fig. 8D): exopoddistalsegmentwith15longterminalsetae(HP); otherwiseunchanged.

Second maxilliped (Fig. 8I): numberofsetaeonterminalsegmentofendopodunchanged butallnowplumodenticulate;exopoddistalsegmentwith17longterminalsetae(HP); otherwiseunchanged.

Third maxilliped (Fig. 9D): furtherdevelopedwithpartialsegmentation;otherwise unchanged.

Pereiopods (Fig. 9D): furtherenlargedwithpartialsegmentation.

Abdomen (Fig. 10E): somite1nowwithmidposterodorsalspinefurtherreducedand10 posterodorsalsetae;pleopodbudsonabdominalsomites26furtherdevelopedandelongate, nowbiramouswithendopodspresentexceptonpleopod5(somite6);thedorsomedialspine onthetelsonisfurtherreducedorabsent;otherwiseunchanged.

57 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Megalopa

Carapace (Fig. 11A): dimensions,CW2.92±0.18mm,CL3.57±0.22mm;carapace roughlyquadrangular,broadestimmediatelybeloworbitsandnarrowingposteriorly;surface hasacoveringofsetules,densertowardsmarginsasillustrated;intraorbitalplatesimple, overhalfwidthofcarapace,lateralmarginsalmostparallel,slightlybilobedwithmedial depression,anddirectedobliquelydownward.

Antennule (Fig. 4E): peduncle3segmentedwith3,5,0setae(S)respectively;endopod2 segmentedwith2,6setae(S)respectively;exopod4segmentedwith0,5+6,5+4,4+3 subterminalaesthetascsrespectively,segment4with3setae(S).

Antenna (Fig. 4J): peduncle3segmentedwith7(2S,5PD),6(PD),6(S)setae respectively;flagellum8segmentedwith0,2,4,12,5,2,4,5setae(S)respectively.

Mandible (Fig. 11B): endopodpalp3segmentedalthoughdivisionsbetweensegments1 and2sometimesunclear,terminalsegmentwith1923marginalsetae(PD).

Maxillule (Fig. 6E): coxawith6setae(3P,3PD);coxalenditewith3339setae(PD);basial enditewith3537setae(PD);endopodnowunsegmentedwith2+2+2+2setae(PD).

Maxilla (Fig. 7E): coxalenditebilobedwith2326+1113setae(PD);basialenditebilobed with1721+1618setae(PD);reducedendopodwhichisnolongerbilobate,with814setae (711HP,13PD);exopod(scaphognathite)marginwith8088setae(HP)and3lateralsetae (P)oneachside.

First maxilliped (Fig. 8E): welldevelopedtriangularepipodwith2026longsetae(S); coxalenditewith2227setae(PD);basialenditewith5361setae(PD);endopod unsegmentedwith57spines,36subterminalsetae(PD)and25terminalsetae(PD); exopod2segmentedwith58(P)and68(HP)setaerespectively.

Second maxilliped (Fig. 8J): epipodbilobatewith2122longsetae(HP);coxawith2setae (PD);basiswith6setae(PD);endopod5segmentedwith4,58,6,1215,1012setae(PD) respectively;exopod2segmented,firstsegmentwith47spinesand1setae(S),terminal segmentwith8setae(HP).

Third maxilliped (Fig. 11C): epipodwith3953longsetae(P)andarthrobranchgill;coxa andbasisnotdifferentiatedwith1628setae(816S,812PD);endopod5segmentedwith 58 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

5763,>40,>30,>30,1721setae(PD)respectively;exopod2segmentedwith68(S),78 (1S,67HP)setaerespectively.

Pereiopods (Figs. 11D-F): chelipedwith2curvedspinesonischium,onemoreprominent; pereiopods25thinandsetose;dactylusofpereiopods24withastrong,inwardlyflexed terminalspineandwith910,89,and78spinesoninnermarginrespectively;strongspine ondistalinnermarginofpereiopods24,strongestinpereiopod2;pereiopod5withno spinesalonginnermarginofdactylus,46smallterminalspines,and34subterminallong setae.

Sternal plates: platesanteriorof2ndpereiopods(plates13)fusedwithrowof8setae alonganteriorthird;behindthisrowofsetaeisaminutemedialspineflankedby810pairs ofsetae.Remainingsternalplatesunarmed.

Abdomen (Figs. 10F-I): 6somitespresentplustelsonwithdorsalsetationasfigured; exopodsofpleopods14withrespectively3234,3335,2931,and2630natatorysetae; endopodswith67,5,5,45couplinghooksontheinnermargin;uropodswithoutendopod, with1920natatorysetaeondistaland1setaonproximalsegments;telsonrounded, posteriormarginwith5setae.

Table I. Dimensions of zoeas of Pseudocarcinus gigas (in mm; mean of 10 individuals per zoeal stage, standard deviation in brackets).

ZoealStage Feature 1 2 3 4 5 Dorsaltorostralspine 2.59(0.10) 2.99(0.23) 3.61(0.21) 4.44(0.21) 5.56(0.33) (TT) Lateralspinerange(CW) 1.65(0.13) 1.72(0.06) 2.11(0.09) 2.50(0.15) 3.32(0.16) Baseofrostralspineto 0.93(0.07) 1.29(0.07) 1.57(0.06) 2.05(0.11) 2.54(0.12) posteriormarginof carapace(CL) RatioTT/CW 1.6 1.7 1.7 1.8 1.7 RatioCW/CL 1.8 1.3 1.3 1.2 1.3

59 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 1. Pseudocarcinus gigas : A, prezoea, lateral view; B, first zoea; C, second zoea; D, third zoea; E, fourth zoea; F, fifth zoea.

60 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 2. Pseudocarcinus gigas : Carapace ventral margin: A, second zoea; B, third zoea; C, fourth zoea; D, fifth zoea.

61 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 3. Pseudocarcinus gigas : First zoeal stage: A, frontal view; B and B’, abdomen, dorsal view and lateral view; C, antennule; D, antenna; E, mandible; F, maxillule; G, maxilla; H and H’, first maxilliped and endopod detail; I and I’, second maxilliped and endopod detail; J, pereiopod buds. Scale bars are 0.5 mm for A and B; and 0.1 mm for C to J.

62 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 4. Pseudocarcinus gigas : Antennule: A, second zoea; B, third zoea; C, fourth zoea; D, fifth zoea; E, megalopa. Antenna: F, second zoea; G, third zoea; H, fourth zoea; I, fifth zoea; J, megalopa.

63 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 5. Pseudocarcinus gigas : Mandible: A, B, C, D, second to fifth zoea. Posterior view (left), frontal view (right).

64 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 6. Pseudocarcinus gigas : Maxillule: A, B, C, D, second to fifth zoea; E, megalopa.

65 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 7. Pseudocarcinus gigas : Maxilla: A, B, C, D, second to fifth zoea; E, megalopa.

66 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 8. Pseudocarcinus gigas : First maxilliped: A, B, C, D, second to fifth zoea; E, megalopa. Second maxilliped: F, G, H, I, second to fifth zoea; J, megalopa.

67 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 9. Pseudocarcinus gigas : Rudimentary third maxilliped and pereiopods: A, B, C, D, second to fifth zoea. The third maxilliped is absent at the second zoeal stage.

68 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 10. Pseudocarcinus gigas : Abdomen: A, lateral view, second zoea; B, C, D, E, dorsal view, second to fifth zoea; F, megalopa; G, pleopod 1; H, endopod of pleopod one enlarged; I, telson and uropods.

69 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 11. Pseudocarcinus gigas : Megalopa: A, dorsal view; B, mandible; C, third maxilliped; D, cheliped; E, fourth pereiopod; F, fifth pereiopod.

70 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Discussion

Phylogenetic significance of larval characters

Severalauthorshaveattemptedtoexplainphylogeneticrelationshipsofxanthoidcrabsbased onlarvalcharacters.Wear(1970)consideredthatthemostimportantsinglezoealcharacter fordistinguishingmajorgroupsisthelengthoftheantennalexopodinrelationtothatofthe protopodalprocess.Rice(1980)dividedxanthoidzoealarvaeintofourgroupsusingseveral characterswithemphasisontheantennalexopod.Thisschemewasexpandedfurtherby Martin(1984)tocovertwoadditionalgroupsalthoughtheoriginalgroupsproposedbyRice (1980)remainedunaltered. Pseudocarcinus gigas fallsintogroupIIIoftheseclassificationsas thezoealarvaehavearobustantennalexopodwiththreeunequalterminalsetae.In addition,theothercharactersusedbyRice(1980)andMartin(1984)todefinegroupIIIare alsopresentalthoughtherearefivezoealstages,acharactermoretypicalofgroupIV.

ThezoealgroupsproposedbyRice(1980)andMartin(1984)correspondonlylooselywith theclassificationofGuinot(1978)whichwasbasedonadultcharacters.ZoealgroupIII includesgenerafromEriphiidae,,andPlatyxanthidaewhilethegenera Menippe and Sphaerozius areinzoealgroupIValthoughthesealsoliewithinGuinot’sEriphiidae (termedMenippidaebyGuinot,1978;seeHolthuis,1993).Althoughthezoealgroupingsare broad,theydonotchallengetheplacementof P. gigas withintheEriphiidae.

Someofthelarvalcharactersof P. gigas indicateaffiliationwiththegenus Ozius whichisalso presentinsouthernAustralia.Thefirstabdominalsomitesof P. gigas zoealarvaebeara singledorsalspinewhichisanunusuallarvalcharacterandhasbeensuggestedasageneric featureof Ozius basedon O. truncatus and O. rugulosus rugulosus (Wear,1968;Kakatiand Nayak,1977;WearandFielder,1985).Thechelipedischiumofthe P. gigas megalopabearsa prominentrecurvedspinewhichisalsopresentonthetwodescribed Ozius species,butnot foranyothermemberoftheOziinaewithdescribedlarvae(listedinIntroduction).

Martin(1988)presentedadetailedanalysisofphylogeneticrelationshipsofxanthoidcrabs basedon16megalopalcharacters;whenmegalopasof Ozius spp.and P. gigas arecompared withthismoreextensivelistofcriteria,anyrelationshipappearstobelessclear(see 71 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Appendix5).UsingMartin’s(1988)criteriaformegalopas, P. gigas appearstobemore closelyaffiliatedwiththegenus Menippe whichalsobelongstoOziinaeyetfallsintogroupIV ofMartin’s(1984)groupingofxanthoidzoealarvae.Thisapparentaffiliationofmegalopas islargelyduetohighersetalcountsonappendages.Setalcountsonmouthpartsegments tendtoincreasewitheachzoealstagesoitisnotsurprisingthat P. gigas and Menippe spp., eachwithfivezoealstages,tendtohavemoresetaeatmegalopathanothermembersof Oziinaewhichonlyhavefourzoealstages.

Number of zoeal stages

Mostxanthoidcrabshavefourzoealstagesalthoughthisnumberisvariable,evenwithin genera(Wear,1970);forexample, Pilumnus lumpinus hasonlyasinglenonplanktoniclarval stage(WearandFielder,1985)whilemostother Pilumnus specieshave4zoealstages.Martin (1984)discussedtrendsinthenumberoflarvalinstarsandnotedthatabbreviated developmenthasbeenattributedtodevelopmentwithinrestrictedestuarine(Rice, 1980),althoughheconsideredthistheoryuntenablegiventhatnumerousexceptionsexist. Advanceddevelopment(greaterthanfourzoealstagesinxanthoids)wasdiscussedbyScotto (1979)whoattributedtheprolongeddevelopmentofMenippe speciestoaretainedprimitive feature,beingsimilartocancrids.TheexplanationofScotto(1979)impliesthatretentionof 5larvalstagesisaprimitivetraitandthat Menippe isaprimitivegenus.However,other authorshaveconsideredthegenusderived(Rice,1980).Theexamplealreadylistedof variationinthenumberoflarvalstagesin Pilumnus impliesthatnumberofzoealstagesis relativelyplasticandmaybeapoorindicatorofphylogeny.

DispersalwillbeinfluencedbythenumberoflarvalstagesalthoughHavenhand(1995) notedthatdispersalofadultsbyraftingordriftingmaybemorewidespread,andmore important,thanisgenerallyappreciated.Clearly,chancesofdispersalofadultsbydriftingis greatestinsmallspecies.Theadvancedlarvaldurationof Menippe and Pseudocarcinus may simplybearesponsetothelimitedpotentialfordispersaloftheadultsastheseareamong thephysicallylargestgeneraoftheXanthoidea.

72 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

References

Gardner,C.andNortham,M.1997.Useofprophylactictreatmentsforlarvalrearingofgiantcrabs Pseudocarcinus gigas (Lamarck).Aquaculture,158,203214.

Greenwood,J.G.andFielder,D.R.1984.Thecompletelarvaldevelopment,underlaboratoryconditions,of Heteropanope glabra Stimpson1858(Brachyura,Xanthidae),fromAustralia.Aust.Zool.,21,291303.

Guinot,D.1978.Principesd’uneclassificationévolutivedescrustacésdécapodes.Bull.biol.Fr.Belg.,112, 211292.

Hale,H.M.192729.TheCrustaceansofSouthAustralia.GovernmentPrinter,SouthAustralia.

Havenhand,J.N.1995.Evolutionaryecologyoflarvaltypes.InMcEdward,L.(ed.),EcologyofMarine InvertebrateLarvae.CRCPress,NewYork,pp.79122.

Holthuis,L.B.1993.ThenonJapanesenewspeciesestablishedbyWideHaanintheCrustaceavolumeof FaunaJaponica(18331850).InBaba,T.andBaba,K.(eds),Ph.F.vonSieboldandNaturalHistoryinJapan, Crustacea.CarcinologicalSocietyofJapan,Tokyo,pp.599646.

Kakati,V.S.1977.Larvaldevelopmentofthecrab (Fabricius)asobservedintheLaboratory . Proc.Symp.WarmWaterPlankton,Spec.Publ.Nat.Inst.Oceanogr.,60a,634641.

Kakati,V.S.andNayak,V.N.1977.Larvaldevelopmentofthexanthidcrab, Ozius rugulosus rugulosus Stimpson (Decapoda,Brachyura)underlaboratoryconditions.IndianJ.Mar.Sci.,6,2630.

Levings,A.,Mitchell,B.D.,Heeren,T.,Austin,C.andMatheson,J.1996.Fisheriesbiologyofthegiantcrab (Pseudocarcinus gigas ,Brachyura,Oziidae)insouthernAustralia.HighLatitudeCrabs:Biology,Management,and Economics.AlaskaSeaGrantCollegeProgramReportNo.9602,UniversityofAlaska,Fairbanks,pp.125 151.

Martin,J.W.1984.Notesandbibliographyonthelarvaeofxanthidcrabs,withakeytotheknownxanthid zoeasofthewesternAtlanticandGulfofMexico.Bull.Mar.Sci.,34,220239.

Martin,J.W.1988.Phylogeneticsignificanceofthebrachyuranmegalopa:evidencefromtheXanthidae.Symp. Zool.Soc.Lond.,59,69102.

Martin,J.W.,Truesdale,F.M.,andFelder,D.L.1988.Themegalopastageofthegulfstonecrab, Menippe adina WilliamsandFelder,1986,withacomparisonofmegalopaeinthegenus Menippe .Fish.Bull.,86,289297.

Porter,H.J.1960.Zoealstagesofthestonecrab, Menippe mercenaria Say,ChesapeakeSci.,1,168177.

Quintana,R.andKonishi,K.1986.Ontheprezoealstage:observationsonthree Pagurus species(Decapoda, Anomura).J.Nat.Hist.,20,837844.

Quintana,R.,Gardner,N.C.andKonishi,K.1996.Onthelarvaeofthegiantcrab, Pseudocarcinus gigas (Lamarck):apreliminaryreport.AbstractsforthemeetingoftheJap.Soc.Fish.Sci.,Tokyo,April,1996.pp. 93.

Rice,A.L.1980.CrabzoealmorphologyanditsbearingontheclassificationoftheBrachyura.Trans.Zool. Soc.London ,35,271424.

Saba,M.,Takeda,M.,andNakasone,Y.1978a.Larvaldevelopmentof Baptozius vinosus (H.MilneEdwards). Proc.Jap.Soc.Syst.Zool.,14,2538.

Saba,M.,Takeda,M.,andNakasone,Y.1978b.Larvaldevelopmentof Epixanthus dentatus (White)(Brachyura, Xanthidae).Bull.Nat.Sci.Mus.Tokyo(Zool.),4,151161. 73 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Scotto,L.E.1979.LarvaldevelopmentoftheCubanstonecrab, (Brachyura,Xanthidae)under laboratoryconditionswithnotesonthestatusofthefamilyMenippidae.Fish.Bull.U.S.,77,359386.

Serene,R.1984.Crustacésdécapodesbrachyouresdel’OcéanIndienOccidentaletdelaMerRouge. Xanthoidea:XanthidaeetTrapeziidae,avecaddendum:CarpiliidaeetMenippidae,parA.Crosnier.Faune trop.,24,1349.

Wear,R.G.1968.LifehistorystudiesonNewZealandBrachyura.2.FamilyXanthidae.Larvaeof Heterozius rotundifrons A.MilneEdwards,1867, H.MilneEdwards,1834,and Heteropanope ( Pilumnopeus ) serratifrons (Kinahan,1856).N.Z.J.Mar.Freshwat.Res.,2,293332.

Wear,R.G.,1970.Notesandbibliographyonthelarvaeofxanthidcrabs.Pac.Sci.,24,8489.

Wear,R.G.andFielder,D.R.1985.ThemarinefaunaofNewZealand:larvaeoftheBrachyura(Crustacea, Decapoda).N.Z.Oceanogr.Inst.Mem.,Wellington,92.

74 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

A Small Sample of Giant Crab Pseudocarcinusgigas Larvae Collected from Southern Tasmania

4

Researchforthischapterhasbeenpreviouslypublishedas: Gardner,C.Firstrecordoflarvaeofthegiantcrab Pseudocarcinus gigas inthe plankton.PapersandProceedingsoftheRoyalSocietyofTasmania,132:47 48.

75 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Animportantaspectofthebiologyofgiantcrabs Pseudocarcinus gigas formanagementis larvaldevelopmentanditsinfluenceondispersal.Althoughseverallaboratorystudies conductedonthelarvaeofthegiantcrabaredescribedinthisthesis,nolarvaeorrecently settledjuvenileshavebeencollectedfromthewildpreviously.Thischapterdocumentsthe collectionofthreestageII Pseudocarcinus gigas zoeasfromoceanicwatersinthevicinityof PedraBrancaoffsouthernTasmania(withintheregion:longitude147°09'32"147°28'30": latitude44°11'23"–44°12'30"),anareaatthesouthernlimitoftherangeof P. gigas.

Thedielverticaldistributionofbrachyuranlarvaewasdeterminedfromplanktontowsat 10samplingdepths,from10to900m,collectedat9periodsover48hours(Fig.1). DifferentdepthsweresampledinacontinuoustowusinganEZplanktonnet(1m 2 mouth)deployedfromthe Southern Surveyor, CSIROFisheriesResearchVessel(modified Tuckertrawl,seeHardingetal.,1987).SamplingwasconductedinNovember1992near theedgeofthecontinentalshelf.Bottomdepthrangedfrom965to1584mandsampling depthofplanktontowswasat100mintervals,from10to900m.Thevolumeofwater filteredateachsamplingdepthrangedbetween1650to550m 3 andaveraged1140m 3. Samplingwasconductedalmostcontinuallyover14and15November1992.

Onlyhigherbrachyuranlarvaeweresortedfromplanktonsamplessocountsfortotal BrachyuraprobablyexcludelarvaeofcrabsfromthefamiliesHomolidaeandDromiidae, bothofwhicharepresentintheregion.Atotalof342brachyuranlarvaewerecollected andofthese,only3wereidentifiedas Pseudocarcinus gigas .Identificationwasbasedonform ofthetelson,presenceofadorsalspineonthefirstabdominalsomite,andonthesetation patternsofthemaxilluleandmaxillae(GardnerandQuintana,1998;Chapter3).Allthree P. gigas larvaewereatthesecondofthefivezoealstagesandwerefoundintheupper100 m;thisdepthwasalsowheremostofthebrachyuranzoeaswerecollected.

Totalbrachyuranlarvaeweredistributedpredominantlyinthesurfacewaters,above100m, andthisdistributiondidnotappeartobeaffectedbytimeofsampling.Onlyonesample appearedtohaveadifferentpatternoflarvaldistributionwithmostbrachyuranlarvaeat >800m(middaysample:11.3414.30;Fig.1).Thepresenceofzoeasatthisdepthisrare (Rice,1979)althoughveryfewlarvaewerecapturedinthistow(n=13)sotheunusual depthdistributionmaybespurious.Thetemperaturegradientwasrelativelyconstantwith depthandtherewerenoindicationsofthermoclines.

55 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Thepresenceofveryfew P. gigas larvaeinsamplesisprobablyduetothesouthernlatitude ofthesamplingprogram.Thedateofsamplingappearstobeappropriateas P. gigas larvae shouldhavebeenreleasedpriortothesamplingtrip.Hatchingusuallyoccursinlate October/earlyNovemberandthepresenceofstage2zoeasalsosuggeststhattheplankton samplingwasafterthepeakperiodofhatch.Likewise,thepresenceofstage2larvae suggeststhatsettlementwouldnothaveoccurredbythisdate.Further,thelarvalduration oflaboratoryrearedlarvaeisaround50dayswhichsuggeststhatsettlementwouldnot occurbeforelateDecember(GardnerandNortham,1997;Chapter8).Samplingwas conductedneartheedgeofthecontinentalshelf,anappropriateregionasitsuspectedto bewherelarvalreleaseoccurs(Levingsetal.,1996).Consequently,apossibleexplanation forthelowcapturerateof P. gigas larvaeisthesoutherlylatitude.Althoughcommercial fishersoccasionallycaptureadult P. gigas inthisregionasbycatch,highdensitiesand targetedfishinggenerallyonlyoccursfurthernorthabove42°30'.

56 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 1. Effect of time of day on brachyuran zoeal density (bars) in relation to water depth and temperature (lines) at Pedra Branca on 14th and 15 th November 1992. A total of only 3 Pseudocarcinus gigas larvae were collected; these samples are marked with an asterisk (*).

Time of sample 1.52-4.37 8.52-11.49 14.20-17.15 (24 h clock) 5 7.5 10 12.5 5 7.5 10 12.5 5 7.5 10 12.5 Temperature (°C) 0 200 400 600 depth(m) 800

0 10 20 30 40 0 1 2 3 4 5 6 0 0.5 1 1.5 2 2.5

Time of sample 21.43-0.33 2.17-4.37 7.09-9.12 (24 h clock) 5 7.5 10 12.5 5 7.5 10 12.5 5 7.5 10 12.5 Temperature (°C) 0 * 200 * 400 600 depth(m) 800

0 10 20 30 40 0 50 100 150 200 0 10 20 30 40 50

Time of sample 11.34-14.30 16.01-18.55 20.59-23.55 (24 h clock) 5 7.5 10 12.5 5 7.5 10 12.5 5 7.5 10 12.5 Temperature (°C) 0 * 200 400 600 depth(m) 800

0 2.5 5 7.5 10 0 25 50 75 100 0 1 2 3 4 5

density of larvae (larvae/1000m 3)

References

Gardner,C.andNortham,M.1997.UseofProphylacticTreatmentsforLarvalRearingofGiantCrabs Pseudocarcinus gigas (Lamarck).Aquaculture,158:203214. Gardner,C.andQuintana,R.LarvaldevelopmentoftheAustraliangiantcrab Pseudocarcinus gigas (Lamarck 1818)(Decapoda:Oziidae)rearedinthelaboratory.J.Plank.Res.,20(6):11691188. Harding,G.C.,Pringle,J.D.,Vass,W.P.,Pearre,S.Jr.,andSmith,S.J.1987.Verticaldistributionanddaily movementsoflarvallobsters Homarus americanus overBrownsBank,NovaScotia.Mar.Ecol.Prog. Ser.,41: 2941. Levings,A.,Mitchell,B.D.,Heeren,T.,Austin,C.andMatheson,J.1996.Fisheriesbiologyofthegiantcrab (Pseudocarcinus gigas ,Brachyura,Oziidae)insouthernAustralia.HighLatitudeCrabs:Biology,Management, andEconomics.AlaskaSeaGrantCollegeProgramReportNo.9602,UniversityofAlaskaFairbanks,125 151.

57 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Rice,A.L.1979.AremarkablebenthiccatchofPortunidcrabzoeae(Decapoda,Brachyura).Crustaceana, Suppl.5,1721.

58 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Behavioural basis of depth regulation in the first zoeal stage

5

Researchforthischapterhasbeenpreviouslypublishedas: Gardner,N.C.1996.Behaviouralbasisofdepthregulationinthefirst zoealstageofthegiantcrab Pseudocarcinus gigas (Brachyura:Oziidae). ProceedingsoftheInternationalSymposiumonBiology,Management, andEconomicsofCrabsfromHighLatitudeWaters.Anchorage,Alaska, Oct.1995.Pp.229253.

59 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Abstract

Theresponsesofthefirstzoealstageof Pseudocarcinus gigas (Lamarck)tostimuliaffecting verticalmigrationweredetermined.Larvaearenegativelybuoyantandsinkpassivelyat 0.61cm/sat35pptsalinity.Negativegeotacticresponsewasweakinlarvaeimmediately afterhatching,however,larvaeexhibitedstrongnegativegeotaxisintestsat15and20 hours;thispatternwaslessevidentinsubsequentsamplesuptoday13.Itissuggestedthat astrongnegativegeotacticresponseisimportantinitiallytoinduceupwardmigrationof larvaefromthesiteofrelease,atapproximately160250mdepth,tothesurface.Light adaptedlarvaeweresensitivetochangeinlightintensityfromoverheadlightingwithboth decreasesandincreasesinintensityinducingdownwardmigration;thisnegativephototactic responsewasonlyinducedatlowlightintensities(below230lux).Itissuggestedthatthis maybeashadowresponsewhichhasnotbeenpreviouslyreportedforincreasesin intensity.Distributionsoflarvaeinangledtestingcolumnssuggestthatthelarvaeare activelyswimmingawayfromthelightsourcewhennegativephototaxisoccurs.Where positivephototaxisoccurred,larvaeappearedtoorientatewithgravitywhilelightprovided thestimulusforincreasedlocomotoryactivity.Larvaedidnotrespondtosmallchangesin pressure(0.242.70cmwater/s,atsurface)ofasimilarmagnitudetothatwhichtheywould experiencebyverticalswimming.Theywereabletodetectcurrentsandmostlarvaecould maintainpositionincurrentsof1.12cm/s.

Introduction

Developmentofthelarvaeofgiantcrabsconsistsofaprezoea,5zoealstagesanda megalopa(GardnerandQuintana,1998;Chapter3).Verticalmigrationoftheselarvae,and theirresponsetocurrents,islikelytoinfluencedispersal,survivalandgrowth.Mechanisms controllingmigrationinplanktoniccrustaceansarehighlycomplexandcanbeinfluenced byarangeofstimuliincludingpressure,polarisationoflight,gravity,absolutelight intensity,salinity,changeinlightintensity,predatorfields,preyfields,andtemperature (KnightJonesandMorgan,1966;Umminger,1969;LatzandForward,1977;Forwardet al.,1984;GliwiczandPijanowska,1988;andForward,1990).Whilemanystimulimaybe 83 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner perceivedbybrachyuranlarvae,andcontributetoverticalmigration,itappearsthat migrationispredominantlycontrolledbyphototaxisinthepresenceoflight(Thorson, 1964),andgeotaxis(gravity)andbarokinesis(pressure)intheabsenceoflight(Sulkin, 1973).

Theresponsetoexternalstimulivariesbetweenspeciessothatwidelydifferentmigration strategiesexistinrelationtodepthanddielcycle.Plankton,includingdecapodlarvae,do notshowacleargeneraldielpatterninoceanicwateroffTasmania;somespeciesexhibit nocturnalupwardmigrationwhileothersarefoundonthesurfaceduringdaylighthours (Pers.comm.,BarryBruce,Div.Mar.Sci.,CSIRO,Hobart,Australia,Sept.1995). Consequently,noassumptionscanbemadeonthegeneralpatternoflarvalmovementin P. gigas .Further,itisnotpossibletopredictlarvalmovementsofthegiantcrabbasedon otherstudiesasdeepwatercrabs,orthosewithoceaniclarvalstages,havereceivedscant attentioninbehaviouralresearch.Mostotherstudiesonbrachyuranlarvalbehaviourhave focusedonestuarinespecieswithonlyoneotherdeepwaterspecies, Geryon quinquedens , havingbeenstudied(Kellyetal.,1982).

Theaimofthisresearchwastoprovidebehaviouralinformationtoassistwith understandingmovementofgiantcrablarvaeandtocontributetoresearchondeepwater crabsingeneral.Anadditionalaimwastoidentifylarvalenvironmentalpreferencesto assistwithsmallscaleproductionofjuveniles.Theresponsesofstage1larvaetoseveral stimuliinfluencingverticalmigrationwereassessed;gravity,spectralsensitivity,absolute lightintensity,changeinlightintensity,orientationoflightandchangeinpressure.Larvae werealsotestedfortheirresponsetolateralcurrentmovement.

Materialsandmethods

Source of larvae

Thirtyovigerousfemaleswerecollectedfromdepthsintherangeof300–380moffthe eastcoastofTasmania(41°,15'S;148°40'E)inMay1994byacommercialfisher.These femalesrangedinsizefrom2.2–3.5kgandwereheldintwo4m 3tankswithflow

84 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner through,unfiltered,watersupply.Crabswerefedtwiceweeklywithabalone( Haliotis spp.) ormackerel( Trachurus sp.)andfoodremainswereremovedafter48hours.

HatchingoflarvaecommencedinNovember1994andcontinuedforthreeweeks.Stage onezoeaswerecollectedforbehaviouralexperimentsbyfirstflushingthesystemofany zoeaspresentinthetanks,andthenreducingflowsothatonlynewlyhatchedlarvaecould bedrawnfromthetanks.Zoeasweremixedbydrawingsamplesfromeachofthetwo holdingtanks,sothatnofemalecontributedmorethan50%ofthelarvaeinanytrial. Furthermixingoflarvaewasachievedwithintanks,asdailymonitoringoftheeggmasses indicatedthatonanydaywherelarvaewerecollected,hatchingoccurredintheeggmasses ofatleastthreefemales.

Sinking and swimming rates

Sinkingratesweredeterminedfor30stageonezoeascollectedfromeachofthetwo holdingtanksandnarcotiseduntilimmobileinasolutionof0.05%2phenoxyethanolin seawater.Thelarvaewerethenallowedtosinkthroughaseawaterfilledplexiglascolumn andtheirrateofdescentmeasuredfor25cmafteraninitialdescentof25cm.

Swimmingratewasmeasuredfor30larvaewhichwereintroducedtoaclear,horizontal plexiglascolumnwithilluminationfromoneend(500lux).Thetimerequiredforlarvaeto swim15cmwithoutstoppingorturningwasmeasured.

General experimental procedures for geotaxis, phototaxis and barokinesis experiments

Zoeaswerediscardedafteruseinanexperimentandwerereplacedifheldformorethan fourhoursaftercollectionbeforeuseinabehaviouraltrial(withtheexceptionofgeotaxis experimentswherezoeasupto13daysoldwereused).

Allexperimentswerereplicatedfourtimeswitheachreplicatestaggeredbetweenother treatmentlevels.Forinstance,thebehaviouralresponsesofzoeastoeachleveloflight intensitywastestedwithasingletrialateachlevelandthentheentiresetoftrialswas repeatedtoatotaloffourtimes.Trialswereconductedat13°Cinatemperature

85 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner controlledroom.Allwaterusedwas0.2mfilteredseawaterofconsistently35ppt salinity.

Themovementoflarvaewasmeasuredbyplacingapproximately30larvaeintoaclear plexiglascolumndividedintoeleven5cmsegments(30mminternaldiameterx550mm length)andrecordingtheirpositionaftersubjectingtoastimulus.Larvaewereintroduced intothemiddleofthecolumnwithatransparent60mlsyringe.Thelightintensitythat larvaeareadaptedtohasbeenshowntoinfluencetheirbehaviourinresponsetolight stimulus(Forward,1974).Topreventconfoundingofexperimentsfrompreviouslight exposure,larvaewereacclimatisedtothelightingfor10minwithinthetransparentsyringe. Preliminarytrialsestablishedsuitabledurationoftrialstobe2min.Longerperiodsthan thisresultedinallthelarvaegatheringateitherendofthetestingchamber.Also,no changeinthenatureofthelarvalresponseoccurredintrialsof15mincomparedwith2 mintrials.Barokinesistrialswerereducedto1.5minduetoconstraintsontheapparatus usedtoalterpressure.

Injectionoflarvaeintothetestingcolumncausedcurrentswhichtendedtomovethe larvaeverticallyupwards.Tocompensateforthiseffect,theinitialpositionofthelarvae wasdeterminedbyrepeatedlyintroducinglarvaeintothetestingcolumnandrecording theirpositionimmediately(433zoeasintheangledcolumn,394intheverticalcolumn). Themeancolumnpositionoftheselarvaewasusedasthepointoforigininalltrials.

Significantdifferencebetweentreatmentswasdeterminedusingthemethodoutlinedby Sulkinetal.(1980)."Meanpositionvalue"wascalculatedbyassigningweightsfrom111 foreachofthesectionsalongthetestingchamber,multiplyingtheweightsbythenumber oflarvaeineachsectionanddividingtheproductbythetotalnumberoflarvae.Themean positionvaluewascalculatedforeachreplicateandthesevalueswerethenusedtocompare treatmentswiththenonparametricMannWhitneyUtest(Zar,1974).Differencesin meanswereconsideredsignificantatP<0.05.

Geotaxis

Significantupwardsmovementofthelarvaeintheabsenceoflightorpressurechanges wasattributedtonegativegeotaxis.Theapparatususedtostudygeotacticresponseis illustratedinFig.1.Geotacticresponseoflarvaewastestedat:immediatelyposthatch,15 h,20h,2d,6d,9d,and13d.Larvaeweremaintainedina1000ltankonarecirculating

86 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner watersystemwithUVsterilisationandbiofiltration.Larvaewerefed2nd instarartemia naupliienrichedwithProteinSelco™andtheymoultedtosecondstagezoeasafter7days. Attheculminationofthegeotaxistrials(13d),larvaewerestillatsecondstagezoea.

Figure 1. Detail of testing chamber and experimental apparatus used to measure larval response in darkness and also to light of 617 nm and 478 nm. Wavelength and light intensity was altered with optical filters held in a rack between the light source (quartz halogen flood light) and the testing chamber. Larvae were introduced through the entry port and water and air bubbles displaced through the exit port.

DRAIN

EXIT PORT

BALL VALVE

ENTRY PORT TESTING CHAMBER

OPTICAL FILTERS

LIGHT SOURCE

Phototaxis

Severalaspectsofphototacticresponsewereinvestigated:spectralsensitivity,responseto constantlightintensity,responsetochangeinlightintensity,andtheeffectofincident angleoflightsource.Alllightingwasfromquartzhalogenglobeswhichwasdiffused throughneutraldensityopticalfilters.Generally,intensityoflightingwasalteredbetween treatmentsbychangingthewattageoftheglobeortheneutraldensityfilteralthough,for changeinlightintensitytrials,theintensitywasalteredbymovingthelightsourceawayor towardsthetestingchamber.LightintensitywasmeasuredinluxwithaGossenProfisix™ plandiffuserlightmeter.

87 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

TheapparatususedtostudyspectralsensitivityisillustratedinFig.1.Lightingwasfrom beneathandwavelengthwasalteredwithred(Kodak#25,dominantwavelength=617 nm)andblue(Kodak#47A,dominantwavelength=478nm)gelatinefilters.

Responsetoconstantlightintensity,responsetochangeinlightintensity,andtheeffectof incidentangleoflightsourceweredeterminedwiththeapparatusillustratedinFig2. Naturalunderwaterdistributionoflightwasapproximatedbysubmergingthetesting chamberina400ltank,usingangledlightanddiffusingthelightsourcewithneutral densityfilters.Thewallsoftheoutertankwereblackenedwallsandthetankwasfilled with0.2mfilteredseawater.Alltrialswithconstantlightintensitywereconductedwith thelightsourceinthelowerposition.Testintensitiesrangedfrom3luxto40000lux, recordedfromthetopofthetestingchamber.

Totesttheeffectofchangeinlightintensity,thelightsourcewasmovedtowardsoraway fromthetestingchamberbyavariablespeed12Velectricmotor(Fig.2).Thechangein intensitycommencedasthelarvaewereintroducedtothecolumn,andcontinuedforthe durationofeachtrial.Theeffectofchangeinlightintensitywasexaminedforboth increasinganddecreasingintensitiesforintensitiesbetween6and2000lux.Therangeof intensitiesexperiencedbylarvaeforeachtreatmentisgiveninFig.8.Ratesofchangein lightintensity,undernaturalconditionsatsunset,weredeterminedbymeasuringdeclinein lightintensityontwodaysinSeptember.Readingsweretakeneverytwominutesandrates ofchangeaveragedforthetwodays.Simulateddeclinesinintensitywereconsiderably fasterthanthatwhichoccursatsunset(Table1).

88 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 2. Experimental apparatus used to measure larval response to fixed intensity white light and change in light intensity. The light source was moved up or down the track to adjust intensity with a variable speed, 12 V, electric motor connected to a gearbox so as to reduce speed of revolution and increase torque. Initial light intensity was adjusted with neutral density filters or by changing the wattage of the quartz halogen globe.

GEARBOX AND SPOOL MOVEABLE TESTING LIGHT SOURCE CHAMBERS EXIT PORT SPEED ADJUSTMENT

ENTRY PORTS

Theeffectofincidentangleoflightsourcewastestedbycomparinglarvaldistributionsina testingchamberangleddirectlytowardstheangledlightsourcewithatestingchamber orientedvertically(Fig.2).Theangleoflightincidentonthetestingchamberswas45°to verticalafterrefractionthroughthewatersurface.Trialsconductedtocomparetheeffect ofincidentangleoflightsourcewereconductedsimultaneouslyfortheverticalandangled testingchambers.

89 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Table 1. Change of light intensity during natural sunset compared with experimental rates of intensity decline.

Simulatedchangeinintensity InitialIntensity Natural a(lux/min) Slow Rapid (lux) (lux/min) (lux/min)

15 2.8 3 4.5 230 20.9 60 95 900 57.5 175 395 2000 103.9 450 875 aValuesfornaturalchangeinintensityatsunsetar ederivedfromaregressionfittingrecordedintens ity changes.

Barokinesis

Aswithphototaxisexperiments,thetestingchamberwassubmergedinawaterfilled, blackenedtank(Fig.3).Thetestingchamberwasorientatedverticallyandtheresponseof larvaetochangeinpressurewasmeasuredindarknessandalsowith800luxlighting, angledat45°.Larvaewereintroducedtothetestingchamberthroughaballvalvewhich couldbeclosedtosealthechamber.Silicontubingwasconnectedtothetestingchamber andfilledwithseawatersothatthewaterwascontinuouswiththatinthetestingchamber. Pressurewasthenalteredbyraisingorloweringthistubingwithavariablespeedelectric motorandtherateofpressurechangerecordedasverticalcmpersecond.Thismethodof recordingchangeinpressureallowedpressurechangetobedirectlyrelatedtopotential larvalmovementinsurfacewaters.

90 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 3. Experimental apparatus used to measure larval response to rate of change in pressure. Pressure in the testing chamber was regulated by the height of the silicon tubing, as the water in the tubing was continuous with that in the testing chamber. Change in pressure was achieved by raising or lowering the silicon tubing at different rates with a variable speed, 12 V, electric motor. Lighting was with a 50 W, quartz halogen floodlight. The ball valve was opened to introduce larvae into the testing chamber, with the syringe, and then sealed for pressure trials. The syringe and testing chamber supports were orientated away from the light source to prevent shadowing.

LIGHT SOURCE, 800 LUX AT TESTING CHAMBER

CLEAR SILICON TUBING

TESTING CHAMBER GEARBOX AND SPOOL SYRINGE

BALL VALVE .

Rheotaxis experimental method

Rheotacticresponsesofindividualzoeasweremeasuredwithina10mminternaldiameter glasstubeconnectedtoaperistalticpumptoprovidecurrent(Fig.4).Larvaewere introducedtotheapparatuswitha60mlsyringeandpulsationwaslargelyremovedby constrictingthe1.5mlengthofexpandablesilicontubing,feedingfromthepump,witha screwvalve.Currentspeedwasadjustedwiththeperistalticpumpandmeasuredby recordingthespeedofpassageofbubblesthroughtheapparatus.Therheotacticresponses oflarvaeweretestedforcurrentspeedsfrom0.35–1.87cm/s.Lightingwasat90°tothe currentflowandorientedhorizontallytoproduceanintensityof80luxincidentonthe testingchamber.Apositiverheotaxisresponsewasrecordedwhenlarvaeactivelyoriented

91 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner themselvesandswamintothecurrentormaintainedposition;anegativeresponsewas recordedifthelarvaeweresweptalongthetestingchamberorswamindifferentlytothe current.Atleastthirtylarvaewereusedforeachcurrentspeedtested.

Figure 4. Apparatus used for rheotaxis experiments. Pulsation in flow from the peristaltic pump was reduced by including 1.5 m of silicon tubing between the pump and the glass testing chamber and then constricting tubing immediately before the testing vessel. This caused the silicon tubing to expand and contract, which removed pulsation. Lighting was from a 50 W quartz halogen floodlight, 2.5 m distant and angled at 90° to the testing chamber to produce 80 lux incident on testing chamber.

LIGHT SOURCE

CLEAR SYRINGE

TESTING CHAMBER

SCREW VALVE SILICON DRAIN RUBBER TUBING

PERISTALTIC PUMP

RESERVOIR

Results

Swimming and sinking speeds

Themeanverticalupwardsswimmingspeedoflarvae,withoutpausing,was1.61(±0.38 s.d.,n=30)cm/s.Assumingthatlarvaedidnotpauseinswimmingandalsochosetoswim verticallyupwards,thisrateofswimmingwouldenablelarvaereleasedat350mdepthto

92 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner reachthesurfacewatersinabout6hours.Larvaeswamwiththedorsalspineforemostand sankintheoppositemanner,withthedorsalspinetrailing.Theaveragesinkingratefor anaesthetisedlarvaewas0.61(±0.084s.d.,n=30)cm/s.

Geotaxis

Therewasatendencyforstage1zoeastobenegativelygeotacticbutthisappearedtobe influencedbytheageofthelarvae,orpossiblytimeofday(Fig.5).Immediatelyafter hatchingthelarvaedidnotexhibitanycleargeotacticresponse.Larvaeexhibitedstrong negativegeotaxisintestsat15hand20hbutthestrengthofresponsedeclinedinolder larvae.Themeanresponseoflarvaetestedat2dand13dwaspositivelygeotactic althoughthepatternofmovementforalllarvaetestedwasnotclearwithsomelarvae movingupwardsinthecolumnandothersdownwards.

93 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 5. Ontogenic change in geotactic response of stage 1 and 2 zoeas. “Int. Pos.” is the distribution of larvae immediately after introduction to the testing column; the mean of this distribution was used to define the zero position of column height in the subsequent geotactic response plots. "Hatch" plot is for larvae collected and tested within 10 minutes of release.

INT.POS. HATCH 15 HOUR 20 HOUR 225 225 225 225 175 125 125 125 125 75 25 25 25 25 -25 -75 -75 -75 -75 -125 -175 -175 -175 -175

ColumnPosition(mm) -225 -275 -275 -275 -275

0 25 50 75 0 10 20 30 40 0 25 50 75100 0 25 50 75100 2 DAYS 6 DAYS 9 DAYS 13 DAYS 225 225 225 225 175 125 125 125 125 75 25 25 25 25 -25 -75 -75 -75 -75 -125 -175 -175 -175 -175

ColumnPosition(mm) -225 -275 -275 -275 -275

0 10 20 30 0 5 10152025 0 5 10152025 0 10 20 30 40

Phototaxis

Fixed intensity

IntheexperimentalsituationshowninFigure1(results,Fig.6.),downwardmovementis positivephototaxis.Therewasstrongphototaxistobluelightof2luxwhilelarvaefailed toexhibitastrongphototacticresponsewhenexposedtoredlightof11lux(Fig.6).Inthe experimentalsituationshowninFigure2(resultsFig.7),apositivephototacticresponse willresultinupwardsmovement.Larvaewerephototactictoallintensitiestestedforwhite light(340000lux,Fig.7)andatnointensitywerelarvaeinducedtoswimorsink downwards.Therewerenosignificantdifferencesbetweenlarvalresponsestoany intensitiestested(P<0.05),inboththeangledandtheverticalcolumns.

94 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 6. Vertical migration of Z1 larvae in response to white, red (617 nm) and blue (478 nm) light directed from below the vertical testing column. The response of larvae in darkness was measured and has been plotted as the lowest intensity reading for the white light series. This point has been artificially allocated an intensity of 0.5 lux so that light intensity could be plotted on a logarithmic scale. Negative values indicate positive phototaxis ie. movement towards the light below the testing chamber (see Fig. 1).

102 104 45 79 104 n, white 258 121 158 154 90 n, red 113 184 121 121 n, blue 250 200 150 100 50 0 -50 -100 -150 -200 -250

mean column position std dev. + -300 1 10 100 1000 intensity (lux) white light red light (617 nm) blue light (478 nm)

Figure 7. Migration response of Z1 larvae, in vertical and angled testing columns, to light of different intensities. Means have been artificially displaced sideways to prevent overlap of error bars. Significant differences between distributions of angled and vertical tests are denoted by * at P<0.05. Squares -angled column, diamonds – vertically orientated column. Positive values indicate positive phototaxis i.e. movement towards the light above the testing chamber (see Fig. 2).

183 147 128 254 227 279 n, angled 144 137 158 168 251 172 n, vertical 300

200

100 * * *

0

-100

Mean larval position in testing column std dev. ± Dark 3 18 800 2500 40000 Light intensity (lux)

95 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Effect of change in light intensity

Therewasasignificant(P<0.01)effectofchangeinlightintensityoncolumnpositionof larvae(Table2).Downwardmovement(negativephototaxis,Fig.2)wasmostevidentin larvaeexposedtochangesinintensitybetween915luxand615lux(Figs.8to10).Inthe verticalcolumn,therewasasignificantlygreatermovementawayfromthelightsourceat slowratesofchangesinintensitythanatfasterrates(P<0.05;Fig.8).Thereappearedtobe noeffectofdirectionoflightchange(increasingordecreasingintensity)onlarval movement(Fig.9).

Table 2. Statistical comparisons of the effect of different light intensity changes under different regimes of: rate of change; increasing or decreasing intensity; and angled or vertical testing column. Light intensity changes are ranked from lowest to most positive phototactic response, left to right respectively. Bars beneath intensity ranges denote significance by joining non-significant tests (P<0.01). See Fig. 2 for experimental apparatus. "n" = number of larvae per treatment level.

Treatment Intensityrange(lux) n Rapidlyincreasingintensity(angled) 615 40230 2502000 110900 1098 Rapidlydecreasingintensity(angled) 156 23040 900110 2000250 728 Slowlyincreasingintensity(angled) 915 130230 550900 11002000 838 Slowlydecreasingintensity(angled) 159 230130 20001100 900550 938 Rapidlyincreasingintensity(vertical) 615 40230 110900 2502000 1001 Rapidlydecreasingintensity(vertical) 156 23040 2000250 900110 1012

Slowlyincreasingintensity(vertical) 915 130230 550900 11002000 985 Slowlydecreasingintensity(vertical) 159 230130 20001100 900550 860

96 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 8, a-d. Effect of rate of change of light intensity on vertical migration in Z1 larvae exposed to different varying light intensities. The effect of fast and slow rates of change were tested in combinations of decreasing/increasing intensity and with the testing column orientated directly towards the angled light source (angled) or else orientated vertically (vertical). Plot symbols have been artificially displaced sideways to prevent overlap of error bars. Positive values indicate positive phototaxis (see Fig. 2). * indicates significance at P<0.05.

a. Increasing intensity, angled column 200 100 0 -100 -200 Rapid -300 Slow Mean Column Position (mm)dev std ± -400 light 6-15/9-15 40-230/130-230 110-900/550-900 250-2000/1100-2000 intensity (lux) b. Increasing intensity, vertical column 200 100 0 * -100 * -200 Rapid -300 Slow Mean Column Position (mm)dev std ± light 6-15/9-15 40-230/130-230 110-900/550-900 250-2000/1100-2000 intensity (lux) c. Decreasing intensity, angled column 200 100 0 -100 -200 * Rapid -300 Slow Mean Column Position (mm)dev std ± light 15-6/15-9 230-40/230-130 900-110/900-550 2000-250/2000-1100 intensity (lux) d. Decreasing intensity, vertical column 300 200 100 * 0 -100 * -200 Rapid

Mean Column Position (mm)dev std ± -300 Slow light 15-6/15-9 230-40/230-130 900-110/900-550 2000-250/2000-1100 intensity (lux)

97 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 9, a-d. Effect of direction of change (increasing or decreasing) of light intensity on vertical migration in Z1 larvae exposed to different varying light intensities. The effect of direction of change was tested in combinations of rapid/slow change in intensity and with the testing column orientated directly towards the angled light source (angled) or else orientated vertically (vertical). Plot symbols have been artificially displaced sideways to prevent overlap of error bars. Positive values indicate positive phototaxis (see Fig. 2). * indicates significance at P<0.05.

a. Angled column, rapid change in intensity 200 100 0 -100 -200 Increasing -300 Mean Column Position (mm)dev. std ± Decreasing light 6-15/15-6 40-230/230-40 110-900/900-110 250-2000/2000-250 intensity (lux) b. Angled column, slow change in intensity 200 100 * 0 -100

-200 Increasing

Mean Column Position (mm)dev. std ± -300 Decreasing light 9-15/15-9 130-230/230-130 550-900/900-550 1100-2000/2000-1100 intensity (lux) c. Vertical column, rapid change in intensity 200 100 0 -100 -200 Increasing Decreasing Mean Column Position -300 (mm)dev. std ± light 6-15/15-6 40-230/230-40 110-900/900-110 250-2000/2000-250 intensity (lux) d. Vertical column, slow change in intensity

200 * 100 0 -100 -200 Increasing

Mean Column Position (mm)dev. std ± -300 Decreasing light 9-15/15-9 130-230/230-130 550-900/900-550 1100-2000/2000-1100 intensity (lux)

98 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 10, a-d. Effect of orientation of testing column to light source on vertical migration in Z1 larvae exposed to different varying light intensities. The effect of orientation was tested in combinations of decreasing/increasing intensity, at rapid/slow rates. Plot symbols have been artificially displaced sideways to prevent overlap of error bars. Positive values indicate positive phototaxis (see Fig. 2). * indicates significance at P<0.05.

a. Slowly increasing intensity 200 100 0 -100

-200 Angled -300 Vertical Mean Column Position (mm)dev. std ± light 9-15 110-230 550-900 1100-2000 intensity (lux) b. Rapidly increasing intensity 200 100 0 -100 * -200 Angled -300 Vertical Mean Column Position (mm)dev. std ± light 6-15 40-230 110-900 250-2000 intensity (lux) c. Slowly decreasing intensity 200 100 0 -100 -200 Angled -300 Vertical Mean Column Position (mm)dev. std ± light 15-9 230-110 900-550 2000-1100 intensity (lux) d. Rapidly decreasing intensity 200 100 0 -100 * -200 Angled -300 Vertical Mean Column Position (mm)dev. std ± light 15-6 230-40 900-110 2000-250 intensity (lux)

Effect of orientation of light source.

Theeffectoforientationoflightsourcewasinvestigatedbyexposingthelarvaetoan angledlightsourceandcomparingthedistributionoflarvaeinaverticalandanangled testingchamber(Fig.2).Thiswastrialedwithlarvaeexposedtowhitelightoffixed intensity(Fig.7)andalsowithvaryingintensity(Fig.10).Inthefixedlightintensity experiments,therewassignificantlygreatermovementoflarvaealongthecolumninthe verticallyorientedcolumn,thaninthecolumnangleddirectlytowardsthelightsource

99 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

(P<0.05;Fig.7).Thistrendwasnotsignificantatthehigherlightintensitiesmeasured, 2500and40000luxorindarkness(P>0.05).

Inthevaryinglightintensityexperiments,significantlydifferentmovement,betweenthe verticalandangledcolumns,onlyoccurredwhenlarvaeexhibitednegativegeotaxisin responsetorapidlychanginglightintensity(P<0.05;Fig.10).

Barokinesis

Larvaedidnotclearlyresponddifferentlytoincreasingordecreasingpressureunder conditionsoftotaldarknessorwith800luxoverheadlighting(Fig.11).Although significantdifferenceswereobserved,thesewereconsideredinconclusiveastherewasno consistenteffectoftherateofchangeofpressureonlarvalmovement.However,itis noteworthythatthemeanupwardmovementoflarvaewhenexposedtooverheadlighting wassmallest,althoughstillupwards,whenthewatercolumnwaslowered(decreasing pressure)at1.85cm/s(Fig.11b).Thisrateofchangewastherateclosesttotheobserved swimmingspeedofstage1zoeas,1.61cm/s.

100 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 11, ab. Comparison of the effect of increasing and decreasing pressure of different rates on the vertical migration of Z1 larvae held in darkness (a) or with 800 lux overhead lighting (b). Means have been displaced sideways to prevent overlap of error bars. Increasing pressure - squares, decreasing pressure - diamonds.

a. 153 141 209 129 n increasing 126 113 186 165 n decreasing 250

200

150

100 * 50

0

-50

-100 0.24 cm/s 1.1 cm/s 1.85 cm/s 2.7 cm/s

145 109 230 169 n increasing b. 127 155 135 124 n decreasing

250

200

150

Mean positionstd dev. in columntesting ± * 100

50

0

-50 0.24 cm/s 1.1 cm/s 1.85 cm/s 2.7 cm/s Rate of change of pressure

101 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Rheotaxis

Larvaeexhibitedpositiverheotaxiswiththegreatestproportionoflarvaerespondingata currentspeedof1.12cm/s(Fig.12).Atlowercurrentspeeds(0.35&0.59cm/s),many larvaeappearedtobeunawareofthecurrentandswambackandforthalongthetesting columnapparentlyinresponsetothelighting.Atcurrentspeedsgreaterthan1.12cm/s (1.4&1.87cm/s)larvaetendedtoswimintothecurrentbutfailedtomaintainposition.

Figure 12. Rheotactic response of stage 1 larvae to current velocities of 0.35-1.87 cm/s. Values represent percentage of total larvae responding to stimuli so no measure of error is presented.

30 32 30 33 37 n 100

75

50

25 % Maintaining Position % Maintaining

0 0.35 0.59 1.12 1.4 1.87 Current Speed, cm / s

Discussion

Thepatternofverticalswimmingresultinginupwardmovementwasthesameasthat describedbySulkin(1984);larvaearenegativelybuoyantwhichiscounteredbyupwards orientationandlocomotiontoproduceupwardsswimming.Passivesinkingratesof P. gigas (x=0.61cm/s)weresimilartothatofstageonezoeasofseveralotherbrachyuranspecies: Cancer magister ,0.64cm/s(Jacoby,1982); Ebalia tuberosa ,0.60cm/s(Schembri,1982);and Hemigrapsus oregonensis ,0.67cm/s(AranaandSulkin,1993).Theupwardslocomotoryforce ofthesespeciesissufficienttocountersinkingandproducessimilarmeanupwards swimmingspeedtothatof P. gigas (1.61cm/s): Cancer magister ,0.95cm/s(Jacoby,1982); 102 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Ebalia tuberosa ,0.96cm/s(Schembri,1982);and Hemigrapsus oregonensis ,1.78cm/s(Arana andSulkin,1993).AsdiscussedbySulkin(1984),depthregulationreliesontheinteraction betweenpassivesinking,activeswimming,andorientation.Orientationandthespeedof swimmingarethenadjustedinresponsetoexternalstimuli,suchasgravity,lightand pressure,toinducedepthregulatoryresponse.

Geotaxis

Theobservedpatternofgeotaxissuggeststhatlarvalswimmingisnotclearlyaffectedby gravityimmediatelyafterhatching.Afterthisinitialperiodthelarvaeexhibitstrong negativegeotaxiswhichsuggeststhatlarvaemigrateupwardstothesurfacewaters.The speedoflarvalswimmingsuggeststhatthiswouldbeaccomplishedinaperiodofaround6 hoursifthelarvaewerereleasedat350manddidnotrest.Anegativegeotacticresponse wasalsoobservedinthefirstzoealstageofthedeepseacrab, Geryon quinquedens (Kellyet al.,1982).

Thestrongnegativegeotacticresponseobservedfor P. gigas decreasedinolderlarvaeandit maybethattheprimaryfunctionofthegeotacticresponseistoinduceupwardmigration fromthedeepwatersiteofreleasetothepreyrichsurfacelayers.Anontogenicchangein geotacticbehaviourbetweeninstarshasalsobeenreportedforshallowwaterspecies Leptodius floridanus and Panopeus herbstii (Sulkin,1973), (Sulkinetal.,1980), and Ebalia tuberosa (Schembri,1982).However,thechangesingeotaxisobservedin P. gigas differfromthesereportsastherewasadeclineingeotacticresponsewithinstage1,rather thanbetweeninstars.

Althoughthepatternofgeotacticresponseupto20hoursappearsclear,theresultsoftrials from2to13daysaremoredifficulttointerpretandtheymaybeconfoundedbyatleast twofactors.Dielcycleshavebeenshowntopersistinthelaboratorywhichmayhave influencedresultsfromthesetrials(CroninandForward,1986).Attemptsweremadeto onlytesthealthylarvaebyselectingactivelarvae,however,lessfitlarvaemayhavebeen selectedfortestingandmayhavecompromisedresults.

103 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Phototaxis

Thespectralsensitivityoflarvaeinthisstudywasessentiallythesameasthatdescribedfor severalotherspeciesinmoredetailbyForward(1987),andForwardandCronin(1979). Larvaeweremoresensitivetoshorterbluewavelengths,whichhavebetterpenetration, thanredwavelengths.

Lightadaptedlarvaewerenotinducedtodescendinresponsetooverheadwhitelightof anyintensitytested.Theexperimentaldesignusedinthisstudywasintendedto demonstratetheapproximatefieldconditionswheresinkingmayhavebeeninducedby light.Consequently,thetestingchamberwasorientedverticallysothatnegativephototaxis wouldberequiredtocounternegativegeotaxisinordertoproducenetdownward movement(lightinducedpositivegeotaxis).Comparisonsbetweenotherstudieswhere phototacticresponsewasexaminedwithhorizontallyorientedcolumnsshouldbemade cautiously.

Wherephototaxishasbeenexaminedindependentlyofgeotaxisbytheuseofhorizontal testingcolumns,larvaetendtoexhibitnegativegeotaxisatlowintensitiesandpositive phototaxisathighintensities.Thispatternhasbeenobservedin: Rhithropanopeus harrisii (Forwardetal.,1984); Cancer gracilis , Lophopanopeus bellus bellus , Hemigrapsus oregonensis (Forward,1987);and Paralithodes camtschatica (ShirleyandShirley,1988).Forward(1987) attributedthispatterntopredatoravoidance.

Avoidancebehaviour,ornegativephototaxisatlowlightintensity,isnotclearly demonstratedinverticallyorientedcolumnswherethenaturalbehaviourofnegative geotaxisisincorporated.BothSchembri(1982, Ebalia tuberosa )andJacoby(1982, Cancer magister )testedtheresponseofcrablarvaetodifferentlightintensitiesinverticalcolumns andobservedonlyupwardmovement.Itistemptingtoinferthatthepositivephototactic responseof P. gigas (Fig.7)indicatesthatthelarvaecongregateatthesurfaceduringthe day.However,Forward(1985&1988)considerstheabsenceofnegativephototaxisin verticallyorientedcolumnstobealaboratoryartefactinmoststudies.Forexample, StearnsandForward(1984)foundthatthecopepod Acartia tonsa waspositivelyphototactic toalllightintensitiesalthoughthenaturalmigrationpatternisnocturnal.Simulatednatural underwaterlightingdistributionisdifficulttoachieve,sotheobservedresponseof P. gigas maybenothingmorethanalaboratoryartefactdespiteattemptedsimulationofnatural lightdistribution. 104 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Larvaeexposedtochangeinintensityatlowlightlevelsrespondedbydownward movement.Conversely,larvaeexposedtochangeinintensityathigherlightlevelswere unaffected.Thisresponsewasmorepronouncedatslowerratesofchangeinintensity(in theverticalcolumnonly)butwasnotaffectedbythesignofintensitychange(increasingor decreasing).

Lightinduceddownwardmovementinresponsetochangeinlightintensity,regardlessof whetherintensityisincreasingordecreasing,hasnotbeenpreviouslyreported.This responsemaybeavariationofthepredatoravoidanceorshadowresponseproposedby Forward(1986)wherenegativephototaxiswasinducedbyarapiddecreaseinintensity. TheshadowresponseproposedbyForward(1986)wasonlyinitiatedbyrapiddecreasesin intensityandnotincreasesaswasobservedinthisstudy.Forward(1986)notedthatthe changeinintensitieswhichresultedinnegativephototaxisweretoorapidtosimulatedusk ordawn.Becauseofthis,hebelievedthatthelarvalresponsesdidnotrepresentatypical behaviourrelevanttodielverticalmigration.Thesimulatedratesofintensitychangesin thisstudywerealsogreaterthanthatatdawnordusk(Table1),suggestingtheresponsein P. gigas wasapredatoravoidance,shadowresponse.Theresponseofstage1 P. gigas zoeas tochangeinlightintensity,onlyatlowlightlevels,suggeststhatthelarvaeareadaptedto respondtolowlevels;thissupportsthedismissaloftheresultsoffixedlightintensitytrials asalaboratoryartefact.

Therewassignificantlygreater(P<0.05)upwardmovementoflarvaeinthevertically orientedcolumnexposedtofixedintensityoflight,comparedwiththecolumnangled directlytowardsthelightsource(45°).Thissuggeststhatgeotaxisistheorientingcue whilephotokinesiscontrolslocomotoryactivity.Forward(1985)observedthissame interactioninlarvaeofthexanthidcrab Rhithropanopeus harrisii .Geotaxisappearedtobe lessimportantinthelarvalresponsetochangesinlightintensityatlowlightlevels.When downwardmovementoccurredinresponsetorapidlychangingintensity,thelarval distributionwasfurtherfromtheoriginintheangledcolumn.Thissuggeststhatlarvae wereactivelyswimmingfromthelight,ratherthanpassivelysinking.Inthiscase,the responseisatruenegativegeotaxisratherthanlightinduced,positivegeotaxis.

105 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Barokinesis

Larvaldetectionandresponsetosmallchangesinpressurehavebeenusedtoexplain verticalmigrationpatterns,asitisconsideredthatpressureresponseprovidesanegative feedbackonverticalmovement(KnightJonesandMorgan,1966).Stage1zoeasof P. gigas didnotappeartorespondtosmallpressurechanges;thishasbeenreportedelsewherefor specieswherethelarvaeoccupywaterofconsiderabledepth: Callinectes sapidus (Sulkinetal., 1980); Geryon quinquedens (Kellyetal.,1982);and Hemigrapsus oregonensis (AranaandSulkin, 1993).Barokinesishasbeenshowntochangedramaticallywithontogeny(Bentleyand Sulkin,1977;WheelerandEpifanio,1978)soolderlarvaeof P. gigas maypossessgreater pressuresensitivity.

Rheotaxis

Stage1zoeasof P. gigas wereabletodetectcurrentsandactivelyswamagainstthem. Larvaeappearedtobeunabletodetectslightcurrentsbelow1.12cm/sandtheywere sweptalongbycurrentsslowerthantheirmaximumswimmingspeed(1.4and1.61cm/s respectively).Thecombinationoftheabilityoflarvaetodetectcurrents,andthentoswim againstthem,resultedinanarrowwindowwithinwhichlarvaecouldmaintainposition. Thissuggeststhatrheotaxismaynotbeimportantinlarvaldispersal.Rheotaxishasalso beenobservedinestuarinespeciessuchasthemegalopasof Cancer magister (Fernandezet al.,1994)andisthoughttoassistinmovementtoandfromtheestuary.Withopenocean species,thefunctionofrheotaxisislessobviousastheenvironmentismorehomogeneous. ShirleyandShirley(1988)alsoobservedrheotaxisinanoceanicspecies, Paralithodes camtschatica,andsuggestedthatthefunctionofrheotaxisintheoceanicenvironmentmay beimportantforzoealfeedingandpredatoravoidance.

Conclusions

Basedonobservednegativegeotaxis,firststagezoeasofgiantcrabprobablyascendtothe surfacewatersafterhatching.Thisinitialupwardsmigrationisprobablythemainfunction oftheinitiallystronggeotacticresponseoflarvae.Asthegravityinitiatedstrongupward swimmingdeclineswithage,theroleofgeotaxismaybetoorientatelarvaeratherthanto

106 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner inducemigration.Thiswouldproduceverticalmovementinresponsetoangledlight stimuliasappearedtooccurinthisstudy.Theobservednegativephototaxisoflarvaeto increasesanddecreasesinlowlightintensitieshasnotbeenobservedinestuarinespecies andmaybeavariationofthepreviouslyreportedshadowresponse.However,assigning functiontothisunusualresponseisspeculativeandfurtherresearchisrequiredifthe functionistobeclarified.Sensitivityoflarvaetointensitychangesatonlylowlightlevels suggeststhatlarvaeareadaptedforlowlightconditions.Thepresenceofarheotactic responseissurprisinginanoceanicspeciesandmayaffectthedispersionoflarvaeby currents.Althoughrheotaxismayaffectdispersal,thebiologicalfunctionoftheresponse islikelytobeotherwiseinanoceanicenvironment,perhapspredatoravoidanceorprey capture.

Behaviouralresponsesofoceanic,deepwaterspecieshavebeeninvestigatedinonlyafew studies.Understandingthenatureoftheseresponsestooceanicconditionsmayassistin understandingothermechanismssuchassurvivalanddispersal.

References

Arana,M.andSulkin,S.1993.BehaviouralbasisofdepthregulationinthefirstzoealstageofthePacific shorecrab, Hemigrapsus oregonensis (Brachyura:Grapsidae).Pacif.Sci.47:256262.

Bentley,E.andSulkin,S.D.1977.TheontogenyofbarokinesisduringthezoealdevelopmentoftheXanthid crab Rhithropanopeus harrisii (Gould).Mar.Behav.Physiol.4:275282.

Cronin,T.W.andForward,R.B.Jr.1986.Verticalmigrationcyclesofcrablarvaeandtheirroleinlarval dispersal.Bull.Mar.Sci.,39(2):192201.

Fernandez,M.,Iribarne,O.andArmstrong,D.1994.SwimmingbehaviourofDungenesscrab, Cancer magister Dana,megalopaeinstillandmovingwater.Estuaries17:271275.

Forward,R.B.Jr.1974.Negativephototaxisincrustaceanlarvae:possiblefunctionalsignificance.J.Exp. Mar.Biol.Ecol.16:1117.

Forward,R.B.Jr.1985.Behaviouralresponsesoflarvaeofthecrab Rhithropanopeus harrisii (Brachyura: Xanthidae)duringdielverticalmigration.Mar.Biol.90:918.

Forward,R.B.Jr.1986.Areconsiderationoftheshadowresponseofalarvalcrustacean.Mar.Behav.Physiol. 12:99113.

Forward,R.B.Jr.1987.Comparativestudyofcrustaceanlarvalphotoresponses.Mar.Biol.94:589595.

Forward,R.B.Jr.1988.Dielverticalmigration:zooplanktonphotobiologyandbehaviour.Oceanogr.Mar. Biol.Ann.Rev.26:361393.

107 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Forward,R.B.Jr.1990.Behaviouralresponsesofcrustaceanlarvaetoratesoftemperaturechange.Biol.Bull. 178:195204.

Forward,R.B.Jr.andCronin,T.W.1979.Spectralsensitivityoflarvaefromintertidalcrustaceans.J.Comp. Physiol.133:311315.

Forward,R.B.Jr.,Cronin,T.W.andStearns,D.E.1984.Controlofdielmigration:photoresponsesofalarval crustacean.Limnol.Oceanogr.29:146154.

Gardner,C.andQuintana,R.1998.LarvaldevelopmentoftheAustraliangiantcrab Pseudocarcinus gigas (Lamarck1818)(Decapoda:Oziidae)rearedinthelaboratory.J.Plank.Res .20:11691188.

Gliwicz,M.Z.andPijanowska,J.1988.Effectofpredationandresourcedepthdistributiononvertical migrationofzooplankton.Bull.Mar.Sci.43(3):695709.

Jacoby,C.A.1982.Behaviouralresponsesofthelarvaeof Cancer magister Dana(1852)tolight,pressure,and gravity.Mar.Behav.Physiol.8:267283.

Kelly,P.,Sulkin,S.D.andVanHeukelem,W.F.1982.Adispersalmodelforlarvaeofthedeepsearedcrab Geryon quinquedens baseduponbehaviouralregulationofverticalmigrationinthehatchingstage.Mar.Biol.72: 3543.

KnightJones,E.W.andMorgan,E.1966.Responsesofmarineanimalstochangesinhydrostaticpressure. Oceanogr.Mar.Biol.Ann.Rev.4:267299.

Latz,M.I.andForward,R.B.Jr.1977.Theeffectofsalinityuponphototaxisandgeotaxisinalarval crustacean.Biol.Bull.153:163179.

Schembri,P.J.1982.Locomotion,feeding,groomingandthebehaviouralresponsestogravity,lightand hydrostaticpressureinthestage1zoealarvaeofEbalia tuberosa (Crustacea:Decapoda:).Mar. Biol.72:125134.

Shirley,S.M.andShirley,T.C.1988.Behaviourofredkingcrablarvae:phototaxis,geotaxisandrheotaxis. Mar.Behav.Physiol.13:369388.

Stearns,D.E.andForward,R.B.Jr.1984.Photosensitivityofthecalanoidcopepod Acartia tonsa .Mar.Biol. 82:8589.

Sulkin,S.D.1973.Depthregulationofcrablarvaeintheabsenceoflight.J.Exp.Mar.Biol.Ecol.13:7382.

Sulkin,S.D.1984.Behaviouralbasisofdepthregulationinthelarvaeofbrachyurancrabs.Mar.Ecol.Prog. Ser.15:181205.

Sulkin,S.D.,VanHeukelem,W.F.,Kelly,P.andVanHeukelem,L.1980.Thebehaviouralbasisoflarval recruitmentinthecrab Callinectes sapidus Rathburn:alaboratoryinvestigationofontogenicchangesingeotaxis andbarokinesis.Biol.Bull.159:402417.

Thorson,G.1964.Lightasanecologicalfactorinthedispersalandsettlementoflarvaeofmarinebottom invertebrates.Ophelia1(1):167208.

Umminger,B.I.1969.Polarotaxisincopepods,III.Alightcontrastreactionin Diaptomus shoshone Forbes. Crustaceana16:202204.

Wheeler,D.E.andEpifanio,C.E.1978.Behaviouralresponsetohydrostaticpressureinlarvaeoftwospecies ofXanthidcrabs.Mar.Biol.46:167174.

Zar,J.H.1974.BiostatisticalAnalysis.PrenticeHall,Inc.,EnglewoodCliffs,N.J.620pp.

108 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Effects of temperature and thermoclines on larval behaviour and development

6

109 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Abstract

Thebehaviouralresponsesofgiantcrab Pseudocarcinus gigas larvaetotemperatureinthe absenceoflightwereanalysedinexperimentalwatercolumns.Inaddition,larvaewere rearedat12temperatures(in1 °Cincrementsbetween10.5and21.1 °C)todeterminethe effectsoftemperatureoninstarduration,somaticgrowthandsurvival.Behavioural experimentswereconductedwithfirstandsecondinstarzoeasandthesereadilypenetrated experimentalthermoclinesofapproximately2,5and10 °C.Bothstageshadsimilar behaviourwithupwardswimminginducedinwatertemperatures ≤12.7 °Canddownward swimminginducedbytemperatures ≥16.2 °C.Behaviouralresponsetotemperature appearedtoconstituteanegativefeedbacksystemwhichcouldcontributetodepth regulation.Intermoultdurationdecreasedwithincreasingtemperaturesothatmostrapid developmentthroughthefivezoealstagestomegalopawas41dat20.2 °C.Morerapid growthathighertemperatureswasattheexpenseofsomaticgrowthwithsmaller megalopasoccurringinwarmertreatments.Bestoverallsurvivalwasintreatments between15.8and20.2 °Cwithnolarvaesurvivingtomegalopainthosetreatmentsbelow thethresholdtemperaturewhereupwardswimmingwasinducedinbehaviourtrials(10.5 and11.7 °C).Manymegalopasdiedshortlyaftermoultingfromzoea5,particularlyin treatmentswithrapidgrowth(>16.8 °C).Optimalsurvivalofmegalopaswasintreatments belowtemperatureswheredownwardmigrationofstage1and2zoeaswasinduced.These resultssuggestthattemperatureisanimportantfactorindetermininglarvalvertical migration,intheabsenceoflight,andlarvalrearingstudiesindicatethatthisprovides metabolicadvantages.

106 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Introduction

Temperatureprofoundlyinfluencesdevelopmentofdecapodlarvaeandnumerousstudies havedemonstratedeffectsoninstarduration,morphology,feedingrate,size,incidenceof deformity,andsurvival(Johns,1981;Shirleyetal.,1987;Minagawa,1990).Theseeffects arespeciesspecificandthischapterpresentsresultsoftrialstoassesstheeffectof temperatureonlarvaldevelopmentofthegiantcrab Pseudocarcinus gigas (Lamarck , 1818).

Crustaceanlarvaedonotexperiencetemperaturepassivelybutregulatetheirvertical migrationbehaviour,andthusdepth,inresponsetobothabsolutetemperatureandratesof temperaturechange(Forward,1990).Sulkin(1984)reviewedtheeffectoftemperatureon verticalmigrationandnotedthatinmostcasesthereisadirectrelationshipwithswimming speed.Theorientationofswimmingresponsesmayalsobeaffectedsothatthegeotaxis responseisreversed(Forward,1990).Forward(1990)consideredthatlarvalresponseto temperatureconstitutedanegativefeedbacksystemsothatdepthwasregulatedrelativeto temperature.

Innature,theseresponsesoforganismstotemperaturearecompoundedbythermoclines whichinfluencetheverticaldistributionofarangeofplanktonicanimals(Harder,1968). Evidencefromlaboratorystudieswithcrablarvaeindicatesthatthermoclinesdonothave aninhibitoryeffectonverticalmigrationalthoughresultsfromfewspecieshavebeen reported( Geryon quinquedens ,Kellyetal.,1982; Eurypanopeus depressus, Sulkinetal.,1983; Callinectes sapidus, McConnaugheyandSulkin,1984).Unlikemostspecieswhoselarval behaviourhasbeenstudied, P. gigas isarelativelydeepwater,oceanicspecies.Thischapter presentsresultsofstudiesonthebehaviouralresponseof P. gigas toabsolutetemperature andtemperaturechange(thermoclines).

Despiteimprovedunderstandingofthemechanismsofthebehaviouralresponseofcrab larvaetotemperature,understandingofthefunctionoftheresponseremainsvague. Haney(1988)discussedarangeofhypothesestoexplaintheadaptiveadvantageofdiel migrationofplanktonicorganismsandtheseincludepredatoravoidance,avoidanceof damagingsolarradiation,trackingofpreyitems,andmetabolicadvantages.AsHaney (1988)noted,therehasbeenrelativelylittleexperimentalsupportforproposedmetabolic advantages.Comparisonsbetweenthebehaviouralanddevelopmentalresponsesof P. gigas

107 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner larvaewereintendedtoprovideamethodofassessingifthebehaviouralresponseto temperaturehadmetabolicadvantages.

Materialsandmethods

Trialswereconductedtoinvestigatetheeffectoftemperatureonbehaviourandon development.Behaviouralresponsesweremonitoredforthefirsttwozoealstageswhile larvaeindevelopmenttrialswererearedthroughtomegalopa.

Source of larvae

Ovigerousfemalesforalltrialswerecollectedfromdepthsof300380mofftheeastcoast ofTasmania,Australia(41°17'S;148°40'E)inJune1995(developmenttrials)andJuly1996 (behaviouraltrials).Femalesrangedinsizefrom2.24.5kgandwereheldcommunallyin4 m3flowthroughtanksreceivingunfilteredseawater.Temperatureinbroodstocktanks rangedfrom8to14 °Candthelightingregimewasapproximately10hlight.

Fordevelopmenttrials,larvaewerecollectedfromtwotankstoensurethatlarvaewerenot fromasingleparent;furthermixingprobablyoccurredasseveralfemaleswerereleasing larvaeineachtank.Forbehaviourtrials,8femaleswereseparatedinto4tanksbefore larvalreleasesothatlarvaecouldbecollectedseparately.Eachofthesetanksyieldeda replicategroupoflarvaewhichwererearedas200lupwellingculturesat14 °C(range ±0.3 °C)for18d,throughtothesecondzoealstage.Theculturesweremaintainedina reversecircadiancyclewith12hlight(i.e.lightphasefrom7pmto7am)as experimentationwasconductedindarkness.Waterforthese200lcultureswas recirculatedthroughasharedsumpandbiofiltertominimisevariationfromtankeffects. ZoealarvaeforbothtrialswerefedamixofProteinSelco™enrichedrotifers (Brachionus plicatilis) andartemiainstarIInaupliiforthefirsttwozoealstages(afterwhichbehavioural trialswereterminated)andenrichedartemiaonlythereafter.

108 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

System design for behavioural experiments

Theresponseof Pseudocarcinus gigas larvaetothermoclineswasinvestigatedwithan experimentalsystemmodifiedfromMcConnaugheyandSulkin(1984)toproduce thermoclinesinverticalcolumns(Figs.1and2).Testingcolumns(450x50x50mm)were surroundedbyheatedorchilled,upperandlowerwaterbaths,separatedbya10mm insulatedlayer.Waterinthelowerbathwasrecirculatedthroughasumpwithaheatchill unitwhilewaterintheupperbathswasheatedwithaquariumheatersandcirculatedby aeration.Temperatureoftheupperwaterbathwasincreasedrelativetothelowerwater bathtoproducethermoclinesinthetestingcolumnsofapproximately10 °,5 °,and2 °C.

Trialstoassessthepreferredtemperaturerangeofstage1and2zoeaswereconductedwith 5differenttemperaturesinthelowerwaterbathwhichwereintendedtoincreasein2 °C steps(actualvaluesapproximately11 °,12.7 °,14.5 °,16.0 °,and18.4 °C)althoughtherewas slightvariationbetweentestsonstage1andstage2zoeas(forprecisevaluesseeFig.3and 4results).Incontrolchambersattheabovetemperatures,theregimewasthesameinboth theupperandlowerwaterbathsothatnothermoclinewasgenerated.

Trialswererunindarknessfor15minandcolumnswerethenilluminated,torecordthe positionoflarvae,withredlightof617nmwavelength(Kodak™gelatinefilter#25)at10 luxwhichdoesnotinducephototaxis(Forward,1990;Gardner,1996;Chapter5).Light wasdirectedperpendiculartothetestingchamberssoanyphototaxisoflarvaewouldnot resultinverticalmovementalongthecolumn.Notrialswererunwithsimulatednatural lightingduetothedifficultyofavoidinglaboratoryartefacts(Haney,1988).

109 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 1. Experimental apparatus used to generate thermoclines in testing columns (T) measuring 50 x 50 x 450 mm. The testing column was surrounded by two water baths separated by 10 mm; the upper (U) was maintained at a higher temperature than the lower (L). Larvae were introduced to the testing column at the top or through a ball valve (V) at the base of the column. In the upper chamber, experimental temperatures were maintained with a heater (H) and circulation was achieved with aeration. Experimental temperatures were maintained in the lower chamber by pumping water (P) from a sump (S) connected to a heat/chill unit (H/C). Water was returned to the sump by gravity via a standpipe to regulate pressure. In the control testing chamber (right), water was circulated from the lower chamber to the upper so that no temperature gradient was created.

T

H U

L

V

S

H/C P

110 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 2. Vertical temperature profiles generated with the experimental system. Temperature profiles were recorded after introducing 15 ml of seawater at the base of the column to simulate the introduction of larvae.

Experimental protocol for behaviour experiments

Ineachtrial,between20and35larvaefromeachof4replicateswereintroducedtothe testingcolumnbysyringeafteracclimatisingtotheexperimentaltemperaturefor5 minutes.Eachtrialinvolvedtheuseofonecontrolcolumnanduptothreeexperimental

111 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner columnsoperatedsimultaneously.Attheconclusionofeachexperiment(15min),the positionoflarvaeineachof4divisionsalongthetestingcolumnwasrecorded.Larvae wereneverreusedinanybehaviourtrial.

Theabilityoflarvaetopenetratethermoclineswasanalysedbycomparingthelarval distributionfollowingintroductionthroughthetoporthebottomofthetestingchamber. Larvaewereintroducedtothechamberwithasyringeandthiswasattachedtoaballvalve tointroducethematthebase.Experimentstotestresponsetothermoclineswere conductedwiththecoldestlowerbathtemperatureconfiguration(11.1 °and10.8 °CforZ1 andZ2larvaerespectively)asthisinducedupwardswimming.Theproportionoflarvaein theupperhalfofthechamberwasarcsinesquareroottransformedandthedifference betweenthedistributionoflarvaeintroducedtothecolumnatthebaseorthetop comparedbyonetailed,pairedstudent’s ttests(SokalandRohlf,1981).Asignificant differenceindicatedinhibitionoflarvalmovementbythethermocline.

Additionalexperimentswereconductedtodeterminethepreferredtemperatureas indicatedbyverticaldistribution.Thesetrialsusedthesameapparatusasdescribedfor testingtheresponsetothermoclines,exceptthatlarvaewereintroducedatthetopofthe columnonlyandarangeoflowerwaterbathtemperatureswastested.Severalstudieshave demonstratedthatdecapodlarvaewillsinkpassivelytoavoidtemperaturesabovea preferredrange(OttandForward,1976;Yule,1984).Consequently,theaccumulationof larvaeinthelowerhalfofthetestingchamberindicatedthatthetemperatureabovethe thermoclinewasabovethepreferredrange.Statisticalanalyseswerebystudents ttest,as describedforthermoclineexperiments,totestthenullhypothesisthatlarvaewere distributedevenlyinthetestingcolumn,thatis,halfwereintheupperchamber.Bothsets ofexperimentswereconductedwithzoeas1and2toassessontogenicchanges.

System design and protocol for development experiments

Theeffectoftemperatureonlarvaldevelopmentwasassessedbyculturinglarvaein12 temperatureregimesseparatedbyapproximately1 °Cincrements(10.5,11.7,12.8,13.8, 14.8,15.8,16.8,17.8,18.6,19.4,20.2,and21.1 °C).The12temperaturestreatmentswere createdwithanaluminiumtemperaturegradientplateconstructedfromalargealuminium block(800x400x50mm)withchannelsateachendforcirculatingheatedorchilledwater

112 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

(EdwardsandVanBaalen,1970).Thiscreatedaneventemperaturegradientalongthe aluminiumblockand50mlculturevesselswereplacedinto12rowsofholesboredinto theblock.Sixvesselsweremaintainedateachtemperature;threereplicatelarvalcultures andthreevesselsforpreheatingwaterpriortodailytransferoflarvae(n=10perreplicate) intonewwater(0.2 µmfilteredseawater).

Larvaldevelopmentineachofthe12temperaturetreatmentswasmonitoredbyrecording thenumberandstageofdeadlarvaeandexuviae.Manylarvaemoultedthroughto megalopabutdiedshortlyafterwards.Thoselarvaewhichsurvived24haftermoultingto megalopawerescoredasviable.Allmegalopasweresacrificedatthisstagethenrinsed withdistilledwateranddriedat80 °Cfor24htodeterminedryweight.

Statistical analysis of development data

TheeffectoftemperatureonthetimingofmoultswastestedbyonewayANOVAateach zoealstageusinglogtransformedtime(days;Hayes,1949).Changesinsurvivaldueto temperaturewastestedbyKaplanMeiersurvivalanalysis(Miller,1981)toenablecensoring ofviablemegalopas.Fewlarvaesurvivedthroughtomegalopa(n=81)soitwasnot possibletoretainreplicatesforanalysisoftheeffectoftemperatureonweightandviability ofmegalopas.Consequently,standardleastsquaresregressionofweightagainst temperaturewasusedtotestthenullhypothesisthattheslope=0.Theeffectof temperatureonthenumberofviablemegalopasineachtreatmentwasassessedwitha KolmogorovSmirnovtest(SokalandRohlf,1981)bycomparingtheobservednumberof viablemegalopasagainstthepredictednumberofviablemegalopasiftherewasno temperatureeffect(thatis,predictedfrequency=initialnumberofmegalopasintreatment x(totalviablemegalopas/totalinitialnumberofmegalopas)).

113 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Results

Response of larvae to thermoclines

Therewasnoindicationofinhibitionoflarvalmovementbytheexperimentalthermoclines aslarvaeintroducedatthebaseofthecolumnhaddistributionsthatwerenotsignificantly differentfromthoseintroducedatthetop(P>0.05;Figs.3and4,firsttwocolumns).This patternwasobservedwithbothstage1and2zoeas.Twocomparisonswerealmost statisticallysignificant:the8.5 °Cthermoclinewithstage1zoeas(11.1and19.6 °C;P=0.09), andthe4.3 °Cthermoclinewithstage2zoeas(15.1and10.8 °C;P=0.08).However,these werecausedbytrendsinverticalmovementwhichwereoppositetothatwhichwould occurifthethermoclinehadinhibitedlarvalmovement.

Vertical migration

Larvaeincontroltreatmentstendedtoswimactivelyupwardsattemperatures ≤12.6 °Cand 12.7 °C,whilesinkingwasinducedat ≥16.2 °Cand18.3 °Cforstage1and2zoeas respectively(Figs.3and4,upperrow).Asimilarpatternwasdetectedintreatmentswhere twoalternativetemperatureswereseparatedbyathermocline.Theresponseofstage2 zoeastothe16.3 °C/14.0 °Ctreatmentindicatesthatstage2zoeaswillalsodescendat temperatures ≥16.3 °C.Althoughasignificantlyhigherproportionofzoea1larvaewere foundintheupperhalfofthe16.7 °C/12.6 °Ctreatment,thisappearedtobeduetolarvae swimmingupwardsfromthelowertemperatureasmostlarvaewerefoundimmediately abovethethermocline.Larvaeplacedintreatmentswhereboththeupperandlower temperaturealternativeswereoutsidetheapparentpreferredrangetendedtocongregate aroundthethermocline(19.6 °C/11.1 °Cand21.3 °C/12.6 °Cinzoea1,and17.9 °C/ 12.7 °Cinzoea2).

114 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 3. Response of stage 1 zoeas to experimental thermoclines. Bars represent mean percentage of larvae (± SE, n=4) in each of the 4 divisions along the length of the testing columns. Values are the temperature (°C) in the upper and lower halves of testing columns. Upper row represents response of larvae in control experiments without a thermal gradient. Significant deviation from 50% of larvae in the upper half denoted by * (P<0.05).

Placement of zoeas in testing column: bottom top top top top top

10.8 10.8 12.7 15.9 18.3 14.0 * * * * *

16.3 19.0 13.6 14.6 20.1 13.6 * *

18.3 10.8 10.8 12.7 14.0 * * * 15.9

17.9 15.1 19.5 21.6 15.1 23.5 * * *

18.3 10.8 10.8 14.0 * 12.7 15.9

0 50 100 0 50 100 % 19.4 19.4 22.5 23.5 * * * *

10.8 14.0 12.7 10.8

0 50 100 0 50 100 0 50 100 0 50 100 %

115 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 4. Response of stage 2 zoeas to experimental thermoclines. Bars represent mean percentage of larvae (± SE, n=4) in each of the 4 divisions along the length of the testing columns. Values are the temperature (°C) in the upper and lower halves of testing columns. Upper row represents response of larvae in control experiments without a thermal gradient. Significant deviation from 50% of larvae in the upper half denoted by * (P<0.05).

Placement of zoeas in testing column: bottom top top top top top **

11.1 11.1 12.6 15.0 16.2 18.4

* * *

14.7

13.7 17.0 17.7 20.1 13.7 * * *

16.2 18.4 15.0 11.1 11.1 * * 12.6 *

16.7 20.7 20.7 23.7 15.0 15.0 * * *

16.2 18.4 11.1 11.1 15.0 * * 12.6

0 50 100 % 19.6 19.6 21.3 23.5 25.6 * *

16.2 15.0 11.1 11.1 12.6

0 50 100 0 50 100 0 50 100 0 50 100 0 50 100 %

116 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Growth

Intermoultdurationdecreasedwithincreasingtemperatureateachinstar(N=3;P<0.0001; Fig.5).Larvaerearedat10.5 °Cfailedtodeveloppastzoea2andmeandurationofthe firstzoealstagewas32days(±0.33;N=3).Mostrapiddevelopmentthroughtomegalopa was41days( ±0.41;N=3) at20.2 °C.Theplotoflogtimeagainsttemperaturewasnot linearwhichindicatesthatthedecreaseinintermoultdurationwithincreasedtemperature isnotsimplyexponentialasoccursinchemicalsystemsbyvan’tHoff’srule(Hayes,1949; Garside,1966).Themorerapiddevelopmentoflarvaeathighertemperatureappearedto beattheexpenseofsomaticgrowthasdryweightofmegalopasdeclinedsignificantlywith increasingtemperature(P<0.01;Fig.6).

Figure 5. Effect of temperature on the timing of moulting of the planktonic larval stages of Pseudocarcinus gigas. Zoeal stages listed are the stages that zoeas moult into. Shift upwards indicates delay in the development of larvae. Missing points are due to complete mortality. Values are the means of three replicates.

2

1.8 M egalopa: R2 = 0.997 y = 0.0058x 2 - 0.237x + 4.035 1.6 Zoea 5: R2 = 0.989 y = 0.0052x 2 - 0.214x + 3.704 1.4 Zoea 4: R2 = 0.995 y = 0.0045x 2 - 0.1960x + 3.450

Log Time (days) Time Log 1.2 Zoea 3: R2 = 0.997 y = 0.0028x 2 - 0.140x + 2.845 1 Zoea 2: R2 = 0.993 y = 0.004x 2 - 0.184x + 2.978 0.8 10 13 16 19 22 25 Temperature (°C)

117 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 6. Effect of temperature on dry weight of megalopas. Values are means of individual larvae pooled from all replicates. Labels next to the means are N. The regression was derived from raw data rather than plotted means.

2.25

2 3 3 1.75 8 12 8 14 1.5 7 15 1.25 6 5

Mean weight (mg ± SD) Mean weight (mg ± 1

0.75 12 14 16 18 20 22 Temperature °C

Survival

Survivalincreasedwithhighertemperatures(P<0.001)sothatbestsurvivalwasobtained withtreatments15.820.2 °C(Fig.7).Mostmortalityoccurredatzoea1andatmegalopa (Fig.8).Althoughsurvivaltomegalopawaslow(24%),theproportionofviablemegalopas (thosealiveafter24h)appearedtobeaffectedsignificantlybytemperature.Thelargest unsigneddifferenceintheKolmogorovSmirnovtestwasat15.8 °Cwhichindicatesthat viabilityofmegalopaswashighestatthistemperature(Fig.9).

118 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 7. Effect of temperature on survival of larvae, measured by survival to each instar with censoring of viable megalopas. Replicates in temperatures 14.8 and 19.4 suffered atypical mass mortality so the values plotted are drawn from single replicates. The regression was derived from raw data, rather than plotted means.

5

4

3

2

1

y = -13.750 + 1.927x - 0.052x 2 r 2 = 0.7320 Mean Survival SE, n=3) (instars ± 0 10 12 14 16 18 20 22 Temperature °C

Figure 8. Patterns of mortality in larval rearing at different temperatures; temperatures were paired and survival averaged to show general trends. "M" is number of stage 5 zoeas moulting to megalopa, "M+" is megalopas active after 1 day.

100 90 10.5 & 80 11.7°C 12.8 & 70 13.8°C 60 14.8 & 50 15.8°C 16.8 40 &17.8°C % Survival 30 18.6 & 19.4°C 20 20.2 & 10 21.1°C 0 Z1 Z2 Z3 Z4 Z5 M M+ Instar

119 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 9. Viability of larvae reared at different temperatures. Megalopas often died after moulting, those that moulted successfully and were active after 1 day were scored as viable. Larvae did not survive to megalopa in all treatments (n total megalopas per treatment at base of column).

8 100 Frequency % Viable 6 75

4 50 Percentage Frequency

2 25

0 0 2 8 412 71214 6 15 5 0 0 10.5 11.7 12.8 13.8 14.8 15.8 16.8 17.8 18.6 19.4 20.2 21.1 Temperature °C

Discussion

Behavioural responses to temperature

Sulkin(1984)describedthemechanismforverticalmigrationofbrachyuranlarvaeasa combinationbetweencuestoorientateswimming,andcuestoinfluencelocomotor responses,eitherthroughpassivesinkingoractiveswimming.Theprincipalfactor influencinglocomotionandorientationduringdaylighthoursislightandthereispotential forthistobeimportantto Pseudocarcinus gigas larvaeevenatthedepthofhatching,around 300m(Beebe,1934 6;Clarke,1970;Levingsetal.,1996).However,phototacticresponses donotaccountforlarvalmigrationpatternsduringthenight.Inanearlypaper,Sulkin

6Thelightat230mdepthwasdescribedbyWilliamBeebefollowingthefirstbathyspheredescent,6thJune, 1930“Wewerethefirstlivingmentolookoutatthestrangeillumination:anditwasstrangerthanany imaginationcouldhaveconceived.ItwasofanindefinabletransclucentbluequiteunlikeanythingIhave everseenintheupperworld,anditexcitedouropticnervesinamostconfusingmanner.Wekeptthinking andcallingitbrilliant,andagainandagainIpickedupabooktoreadthetype,onlytofindIcouldnottellthe differencebetweenablankpageandacolouredplate....Itactuallyseemedtometohaveabrillianceand intensitywhichthesunshinelacked”.

120 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

(1973)proposedthatdecapodlarvaeregulatedepthintheabsenceoflightbya combinationofresponsestohydrostaticpressureandgravity.Sincethen,theresponseof larvaetotemperaturehasbeenstudiedingreaterdetailanditappearsthatthermokinesisis alsocriticalinmaintainingdepth(OttandForward,1976;Kellyetal.,1982). Pseudocarcinus gigas zoeasdonotappeartorespondtochangeinhydrostaticpressure(Gardner,1996; Chapter5)sothethermokinesisobservedinthesetrialsmaybeanalternativemechanism forregulatinglocomotion.Althoughitisnotpossibletospeculateontheeffectof temperatureontheresponseof P. gigas larvaeduringdaylighthours,theobserved temperatureresponseindicatesthattheverticalpositionofstage1and2zoeasatnight wouldbemaintainedwithinwaterof12.6and16.3 °C.Thisimpliesthatwherethesurface temperatureislessthan16.3 °C, P. gigas larvaewillmigratetothesurface.

Behavioural responses to the thermocline

Thedistributionofplanktonicorganismsinnatureisoftenstronglyinfluencedbythe presenceofthermoclineswithorganismsrestrictedtooneside,orfoundingreatest abundancearoundthislayer(KeiferandKremer,1981;SouthwardandBarrett,1983; Hardingetal.,1987).Variousmechanismshavebeenproposedforthisphenomenon including:aggregationaroundareasofgreatestpreydensityassociatedwiththenitrite maximaatthethermocline(KeiferandKremer,1981),aninabilitytopenetratedensity gradients(Harder,1968),andanegativefeedbacksystemofdepthregulationbasedon ratesoftemperaturechange(Forward,1990;Boudreauetal.,1991).Itisimportanttonote thatthelastoftheseproposedmechanisms,responsetoratesoftemperaturechange, involveslarvaedetectingchangesintemperatureinrelationtotime,ratherthanresponses toabsolutetemperatures.Forward(1990)demonstratedthatthisresponsewasexhibited by Rhithropanopeus harrisii ,althoughnoresponsewasdetectedwithstageIVzoeasof Neopanope sayi .

ThethermoclinesresultingfromthesystemdesignedbyMcConnaugheyandSulkin(1984), andreproducedhere,areveryabruptandmoreextremethanthatobservedinthefield wherethermoclinesof5 °Cmayoccurthroughadepthof5meters(eg.Gray,1996). Consequently,extrapolationfromcrablarvalresponseintheexperimentalsystemtothe naturalenvironmentmaybeflawed,especiallywherelarvalmovementappearsinhibitedby theexperimentalthermocline.Experimentalresultsindicatingnoeffectaremorereadily

121 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner transferredtomodellingofthenaturalsystemifthelarvaedonotrespondtotheabrupt temperaturechangesgeneratedexperimentally,thentheyareunlikelytobeinfluencedby themoregentlechangesoccurringinnature.

Stage1and2 P. gigas zoeaswerenotinfluencedbytheexperimentalthermoclinesproduced inthistrialandthishasalsobeenreportedforthreeothercrabspecies, Geryon quinquedens (Kellyetal.,1982), Eurypanopeus depressus (Sulkinetal.,1983),and Callinectes sapidus (McConnaugheyandSulkin,1984).Thisabsenceofaninhibitoryeffectofthermoclineson zoealmovementsuggeststhatthereisnophysicalbarriertorestrictlarvalmovement. Rather, P. gigas larvaeappearedtomigrateverticallyinresponsetoabsolutetemperatureso thattheyaccumulatedeitheraboveorbelowthethermocline.Asimilarresponsewas observedwith Callinectes sapidus wherelarvaefailedtopenetrateathermoclineonlywhen theupperabsolutetemperaturewasextreme(McConnaugheyandSulkin,1984).These observationsindicatethattheprimaryfactorinfluencingcrablarvalaccumulationarounda thermoclineisdepthmaintenancetoavoidtemperatureextremes,whilethemagnitudeof naturaltemperaturegradientsacrossthermoclineswouldnotimpedemigration.Response toabsolutetemperaturesmaystillresultinaccumulationoflarvaeononesideofa thermoclineasreportedwith Homarus americanus (Hardingetal.,1987).

Grey(1996)reportedthatthermoclinesformedinwatersatthenorthernendoftherange of P. gigas inNewSouthWales(McNeill,1920)didnotappeartoinfluencethebroadscale distributionoflarvalfishes.Similarresultswouldbeexpectedwith P. gigas although absolutetemperatureprofilesarelikelytobecriticalformodellinglarvaldistribution.

Comparison between the effect of temperature on development and behaviour

Depthmaintenanceisusedbyestuarinespeciestoregulatedispersal(Epifanioetal.,1984; CroninandForward,1986)butthisroleisunlikelytobeimportantforoceanicspecies wheresuitablesitesforsettlingaremorewidespreadandcurrentflowisnotbidirectional withtides.In P. gigas ,verticalmigrationbehaviourinresponsetotemperatureislikelyto bedirectedtowardsoptimisingphysiologyandthiswassupportedbyobservationson larvaldevelopmentatdifferenttemperatures.

Thegeneralpatternofaretardingeffectoflowtemperatureandacceleratingeffectofhigh temperatureonintermoultdurationwasthesameasthatreportedfornumerousother 122 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner decapodlarvae(Anger,1983;SulkinandMcKeen,1994;Goncalvesetal.,1995).The relationshipbetweenlogtimeandlarvalinstarwasnotlinearsovan’tHoff’srulefor chemicalreactionswasnotmet(JohansenandKrough,1914;Garside,1966)andlarval developmentalmostceasedinthe10.5 °Ctreatmentwithnolarvaesurvivingbeyondzoea II.Thisimpliesthatthethermalrequirementsforgrowthof P. gigas larvaehaveanoptimal rangeandarenotentirelycumulative(degreedays),butinvolvesomecomponentof thresholdphenomena(WaddyandAiken,1996).

Nolarvaesurvivedtomegalopaintemperatures<12.8 °Cwhichisintheorderofthe absolutetemperatureinitiatingupwardmigrationofstage1and2zoeas(12.6and12.7 °C respectively).Whilethereappearedtobeclosesimilaritybetweenverticalmigration patternsandlarvalsurvivalatlowertemperatures,overallsurvivalwasrelativelyhighin treatmentsabovetemperatureswheredownwardverticalmigrationbehaviourwasinduced (>16.2 °C).Bestoverallsurvival,averagedacrossinstars,appearedtobebetween14.8and 20.2 °C(inclusive)althoughthereispotentialforthistobeconfoundedbyontogenetic changesinthermaltolerance(SulkinandMcKeen,1989;RasmussenandTande,1995) whichwasnotpossibletoassessinthetrialwithP. gigas .

Despitethehighoverallsurvival(cumulativeforallinstars)intreatmentsgreaterthan 16.8 °C,fewlarvaemoultedsuccessfullytoviablemegalopasandthisissimilartothe situationwheredownwardverticalmigrationofstage1and2zoeaswasinitiated(16.2and 16.3 °Crespectively).Larvalresponsetotemperatureisknowntochangeduring developmentinotherspecies(Forward,1990)sothebehaviouralresponseofstage1and2 larvaeisnotdirectlyapplicabletothefinalzoealstage.Nonetheless,itisnoteworthythat theoptimaltreatmentforviabilityofstage5zoeasmoultingtomegalopa(15.8 °C)was withintherangethatstage1and2larvaewouldmigratetointheabsenceoflightandwas thecontroltemperaturewithuniformlarvaldistribution.

SulkinandMcKeen(1989)consideredthefinalzoealstageof Cancer magister tobethemost sensitivetotemperaturestressand P. gigas appearstobesimilarasmortalitywashighestat thisstage.Incidenceofdeformityincreasesatextremehightemperatureinmostorganisms (Battle,1930)andthismayhaveaccountedforthelowsurvivaltomegalopawhichis typicallyreducedbyhightemperatures(Minagawa;1990;ChaoshuandShaojing,1992; Okamoto,1993).Johns(1981)notedthatlarvalsizeof wasgreatestinthe midrangeofthermaltolerancealthoughlarvalweightmoretypicallydeclineswith 123 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner increasedtemperatureaswasobservedwith P. gigas (Shirleyetal.,1987;Minagawa,1990; SulkinandMcKeen,1994).Lowweightoflarvaerearedathighertemperaturesmaybe indicativeofreducedenergystores(Minagawa,1990)andthiscouldalsohavecontributed tothepoorsurvivaltomegalopaintreatmentsgreaterthan16.8 °C.

Implications of temperature on distribution of Pseudocarcinusgigas

Veryfew P. gigas larvaehavebeenobtainedfromplanktontows(Chapter4)sothereis insufficientinformationtoassessdistributionanddevelopmentoflarvaeinnature. Consequently,studiesoflarvaeinthelaboratoryprovidethebestindicationsoftheeffect oftemperatureondevelopmentof P. gigas althoughcompoundingfactorssuchegg incubationtemperaturewillinevitablyinfluenceresults(LaughlinandFrench,1989). Severalstudiesonbrachyuranshavedemonstratedcloserelationshipsbetweenlaboratory resultsandobservationsfromplanktonsamplingastemperaturehasaprofoundeffecton development(Anger,1983;Shirleyetal.,1987).

Factorslimitingthedistributionofaspeciesfallintothreegroups:theintroductionor historicalpresenceofaspeciesinalocation;abioticfactors;andbioticfactors.Kinne (1963)consideredthattemperaturewastheprincipalabioticfactorinfluencingdistribution anditalsoinfluencesbioticfactorsbyincreasingexposuretopredationwheninstar durationisextended(JamiesonandArmstrong,1991).Giventhelowsurvivalof P. gigas larvaeintreatmentslessthan14 °C,itislikelythatzoeallarvaehaveaplanktonperiodof lessthan3monthsandhencetheremaybelittlepotentialforlongdistancedispersal (Thorson,1961). P. gigas hasnotcolonisednearbyNewZealand(McLay,1988)whileother specieswithlongerlarvalduration,suchas Jasus edwardsii (1224monthlarvalduration; PhillipsandSastry,1980),arefoundinbothlocations.Lowsurvivalof P. gigas larvaein treatmentsbelow14 °CwouldalsoindicatelowsurvivalinsouthernTasmaniawhichis confirmedbythefishery,asonlyoccasionalcrabsarecaughtinthisregion.Likewise,poor survivaltomegalopaintreatmentsabove16.8 °Cwouldlimitthenorthernrangeofthe speciesexplainingtherarityofspecimensfromthestateofNewSouthWales(most northerlyrecord,34 °25'S;McNeill,1920).

124 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

References

Anger,K.1983.Temperatureandthelarvaldevelopmentof Hyas araneus L.(Decapoda:Majidae); extrapolationoflaboratorydatatofieldconditions.J.Exp.Mar.Biol.Ecol.69(3),203215.

Battle,H.I.1930.Effectsofextremetemperaturesandsalinitiesonthedevelopmentof Enchelyopus cimbrius (L.).Contrib.Can.Biol.Fisheries5,109192.

Beebe,W.,1934.HalfMileDown,HarcourtBrace,NewYork.

Boudreau,B.,Simard,Y.andBourget,E.1991.Behaviouralresponsesoftheplanktonicstagesofthe Americanlobster Homarus americanus tothermalgradients,andecologicalimplications.Mar.Ecol.Prog.Ser. 76(1),1323.

Chaoshu,Z.andShaojing,L.1992.Effectsoftemperatureonsurvivalanddevelopmentofthelarvaeof .J.Fish.China16(3),5866.

Clarke,G.L.1970.Lightconditionsintheseainrelationtothediurnalverticalmigrationpatternsofanimals. In:G.B.Farquhar(Ed.),Proceedingsofaninternationalsymposiumonbiologicalsoundscatteringinthe ocean.MauryCenterforOceanScience,DepartmentoftheNavy,WashingtonD.C.,pp.4150.

Cronin,T.W.andForward,R.B.Jr.1986.Verticalmigrationcyclesofcrablarvaeandtheirroleinlarval dispersal.Bull.Mar.Sci.39(2),192201.

Edwards,P.andVanBaalen,C.1970.Anapparatusforthecultureofbenthicmarinealgaeundervarying regimesoftemperatureandlightintensity.Bot.Mar.13,4243.

Epifanio,C.E.,Valenti,C.C.andPembroke,A.E.1984.Dispersalandrecruitmentofbluecrablarvaein DelawareBay,U.S.A.Estuar.Coast.ShelfSci.18,112.

Forward,R.B.Jr.1990.Behaviouralresponsesofcrustaceanlarvaetoratesoftemperaturechange.Biol.Bull. 178(3),195204.

Gardner,N.C.1996.Behaviouralbasisofdepthregulationinthefirstzoealstageofthegiantcrab (Pseudocarcinus gigas ,Brachyura,Xanthoidea,Oziidae).Highlatitudecrabs:biology,management,and economics.AlaskaSeaGrantCollegeProgramReportNo.9602,UniversityofAlaska,Fairbanks,pp.229 253.

Garside,E.T.1966.Effectsofoxygeninrelationtotemperatureonthedevelopmentofembryosofbrook troutandrainbowtrout.J.FisheriesRes.BoardCan.23(8),11211134.

Goncalves,F.,Ribeiro,R.andSoares,A.M.V.M.1995.Laboratorystudyofeffectsoftemperatureand salinityonsurvivalandlarvaldevelopmentofapopulationof Rhithropanopeus harrisiifromtheMondegoRiver estuary,Portugal.Mar.Biol.121(4),639645.

Gray,C.A.1996.Dothermoclinesexplaintheverticaldistributionsoflarvalfishesinthedynamiccoastal watersofsoutheasternAustralia?Mar.FreshwaterRes.47(2),183190.

Haney,J.F.1988.Dielpatternsofzooplanktonbehaviour.Bull.Mar.Sci.43(3),583603.

Harder,W.1968.Reactionsofplanktonicorganismstowaterstratification.Limnol.Oceanogr.13,156168.

Harding,G.C.,Pringle,J.D.,Vass,W.P.,Pearre,S.Jr.andSmith,S.J.1987.Verticaldistributionanddaily movementsoflarvallobsters Homarus americanus overBrownsBank,NovaScotia.Mar.Ecol.Prog.Ser.41(1), 2941.

125 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Hayes,F.R.1949.Thegrowth,generalchemistry,andtemperaturerelationsofsalmonideggs.Quart.Rev. Biol.24(4),281308.

Jamieson,G.S.andArmstrong,D.A.1991.SpatialandtemporalrecruitmentpatternsofDungenesscrabin thenortheastPacific.Mem.Qld.Mus.31,365381.

Johansen,A.C.andKrough,A.1914.Theinfluenceoftemperatureandcertainotherfactorsupontherateof developmentoftheeggsoffishes.ConseilPerm.Int.ExplorationdelaMer,Public.deCirconstance68,144.

Johns,D.M.1981.Physiologicalstudieson Cancer irroratus larvae.I.Effectsoftemperatureandsalinityon survival,developmentrateandsize.Mar.Ecol.Prog.Ser.5(1),7583.

Kelly,P.,Sulkin,S.D.andVanHeukelem,W.F.1982.Adispersalmodelforlarvaeofthedeepsearedcrab Geryon quinquedens baseduponbehaviouralregulationofverticalmigrationinthehatchingstage.Mar.Biol.72, 3543.

Kiefer,D.A.andKremer,J.N.1981.Originsofverticalpatternsofphytoplanktonandnutrientsinthe temperate,openocean:astratigraphichypothesis.DeepSeaRes.28A(10),10871105.

Kinne,O.1963.Theeffectsoftemperatureandsalinityonmarineandbrackishwateranimals.I. Temperature.Oceanogr.Mar.Biol.Ann.Rev.1,301340.

Laughlin,R.B.Jr.andFrench,W.1989.Interactionsbetweentemperatureandsalinityduringbroodingon subsequentzoealdevelopmentofthemudcrab Rhithropanopeus harrisii .Mar.Biol.102(3),377386.

Levings,A.,Mitchell,B.D.,Heeren,T.,Austin,C.andMatheson,J.1996.Fisheriesbiologyofthegiantcrab (Pseudocarcinus gigas ,Brachyura,Oziidae)insouthernAustralia.Highlatitudecrabs:biology,management,and economics.AlaskaSeaGrantCollegeProgramReportNo.9602,UniversityofAlaskaFairbanks,pp.125 151.

McConnaughey,R.A.andSulkin,S.D.1984.Measuringtheeffectsofthermoclinesontheverticalmigration oflarvaeof Callinectes sapidus (Brachyura:Portunidae)inthelaboratory.Mar.Biol.81(2),139145.

McLay,C.L.1988.BrachyuraandcrablikeAnomuraofNewZealand.LeighLab.Bull.22(14),1463.

McNeill,F.A.1920.StudiesinAustraliancarcinology,no.1.Rec.Aust.Mus.13,108109.

Miller,R.G.Jr.1981.SurvivalAnalysis.JohnWileyandSons,N.Y.,pp.238.

Minagawa,M.1990.Influenceoftemperatureonsurvival,feedinganddevelopmentoflarvaeoftheredfrog crab, (Crustacea,Decapoda,).NipponSuisanGakkaishi56(5),755760.

Okamoto,K.1993.Influenceoftemperatureonsurvivalandgrowthoflarvaeofthegiantspidercrab, Macrocheira kaempferi (Crustacea,Decapoda,Majidae).NipponSuisanGakkaishi59(3),419424.

Ott,F.S.andForward,R.B.Jr.1976.Theeffectoftemperatureonphototaxisandgeotaxisbylarvaeofthe crab Rhithropanopeus harrisii (Gould).J.Exp.Mar.Biol.Ecol.23,97107.

Phillips,B.F.andSastry,A.N.1980.Larvalecology.In:J.S.CobbandB.F.Phillips(Eds.),Thebiologyand managementoflobsters,Vol.II.ecologyandmanagement.AcademicPress,NewYork,pp.1157.

Rasmussen,T.andTande,K.1995.Temperaturedependentdevelopment,growthandmortalityinlarvaeof thedeepwater rearedinthelaboratory.Mar.Ecol.Prog.Ser.118(13),149157.

Shirley,S.M.,Shirley,T.C.andRice,S.D.1987.LatitudinalvariationintheDungenesscrab, Cancer magister : zoealmorphologyexplainedbyincubationtemperature.Mar.Biol.95(3),371376.

Sokal,R.R.andRohlf,F.J.1981.Biometry,seconded.W.H.Freeman,NewYork,pp.859.

126 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Southward,A.I.andBarrett,R.L.1983.Observationsontheverticaldistributionofzooplanktonincluding postlarvalteleostsoffPlymouthinthepresenceofathermoclineandachlorophylldenselayer.J.Plank. Res.5(4),599618.

Sulkin,S.D.1973.Depthregulationofcrablarvaeintheabsenceoflight.J.Exp.Mar.Biol.Ecol.13,7382.

Sulkin,S.D.1984.Behaviouralbasisofdepthregulationinthelarvaeofbrachyurancrabs.Mar.Ecol.Prog. Ser.15(12),181205.

Sulkin,S.D.andMcKeen,G.L.1989.Laboratorystudyofsurvivalanddurationofindividualzoealstagesas afunctionoftemperatureinthebrachyurancrab Cancer magister .Mar.Biol.103(1),3137.

Sulkin,S.D.andMcKeen,G.1994.Influenceoftemperatureonlarvaldevelopmentoffourcooccurring speciesofthebrachyurangenus Cancer .Mar.Biol.118(4),593600.

Sulkin,S.D.,VanHeukelem,W.andKelly,W.1983.Behaviouralbasisofdepthregulationinthehatching andpostlarvalstageofthemudcrab Eurypanopeus depressus .Mar.Ecol.Prog.Ser.11(2),157164.

Thorson,G.1961.Lengthofpelagiclarvallifeinmarinebottominvertebratesasrelatedtolarvaltransport byoceancurrents.V.Pbl.Amer.Assoc.AdvancementSci.67,455474.

Waddy,S.L.andAiken,D.E.1996.TemperaturecontrolofrecruitmentintheAmericanlobster.J.Shellfish Res.15(2),495.

Yule,A.B.1984.Theeffectoftemperatureontheswimmingactivityofbarnaclenauplii.Mar.Biol.Lett. 5(1),111.

127 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Effect of photoperiod and light intensity on larval survival, development and cannibalism

7

Researchforthischapterhasbeenpreviouslypublishedas:

Gardner,C.andMaguire,G.B.,inpress.Effectofphotoperiodandlightintensity onsurvival,developmentandcannibalismoflarvaeoftheAustraliangiantcrab Pseudocarcinus gigas (Lamarck).Aquaculture.

128 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Abstract

Pseudocarcinus gigas larvaewererearedtomegalopaundertwolightintensities(2and500lux) infivephotoperiodregimes(0,6,12,18,and24hlight).Survivalwasnotsignificantly affectedbyphotoperiodorlightintensity(P>0.05)althoughothereffectswereobserved whicharediscussedinrelationtoswimmingactivityandfeeding.Larvaehadshorter intermoultdurationintreatmentswithlongerphotoperiodsandbrighterlightwithmost rapiddevelopmenttomegalopainthecontinuouslight,500luxtreatment(49.2d).Size (measuredastelsonwidth)ofstage4zoeaswasaffectedbyphotoperiodwithsmallest zoeasinthecontinuouslydarktreatment,whereasallothertreatmentsweresimilar. Cannibalismwasstronglyinfluencedbylightingwithgreaterdamagetothedorsalspine occurringwithincreasingphotoperiodandalsoindimmer(2lux)treatments.Lowest incidenceofcannibalismwasobservedincontinuousdarkness.Viabilityoflarvaeafter metamorphosistomegalopawasvariableandnotreatmenteffectwasobservedalthough viabilitywaslowestinthetwocontinuouslighttreatments.Resultsofthistrialindicate thatcontinuouslightordarkregimesshouldbeavoided.Optimallightintensityforculture waslessclearandisdiscussedinrelationtointermoultdurationandcannibalism.

Introduction

Inanattempttooptimiselarvalrearingof Pseudocarcinus gigas (Lamarck)theeffectsof photoperiodandlightintensitywereassessed.Lightisoneofthemajorfactorsinfluencing swimmingandfeedingbehaviourindecapodlarvae(Sulkin,1984;MinagawaandMurano, 1993)andtheeffectofphotoperiodonlarvalsurvivalhasbeenstudiedinseveralspecies (e.g.SandozandRogers,1944;Dalley,1980;RadhakrishnanandVijayakumaran,1986; Nakanishi,1987;Minagawa,1994).Changesinsurvivalanddevelopmentofdecapod larvaeindifferentlightingregimesareoftensimplyattributedtoeffectsonfeeding. However,otheraspectsofbehaviourandphysiologymaybeinfluencedbylighting including:swimmingactivityandthusmetabolism(Gardner,1996);cannibalism(Hecht andPienaar,1993);entrainmentofphysiologicalprocessestocircadiancycles(Dalley,

124 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

1980);initiationofecdysis(WaddyandAiken,1991);andendocrinecontrolof metamorphosis(Eaglesetal.,1986).

Duetothepotentiallycomplexnatureofeffectsoflightonlarvaldevelopment,research onthistopictendstoinvolvemeasurementofawiderangeofresponses(Aikenetal., 1981;Minagawa,1994).Thisstudyexaminedtheeffectofphotoperiodandlightintensity onlarvalsurvival,intermoultduration,size,cannibalism,andmetamorphosistomegalopa. Resultsaredirectlyapplicabletocultureof P. gigas butinformationofpotentialrelevanceto decapodcultureingeneralwasalsogained.AsnotedbyMinagawa(1994),theeffectsof continuouslighttreatmentshasseldombeenexamined.Theeffectoflightintensityon larvaldevelopmenthasalsoreceivedlittleattentiondespitetheimportanceofintensityon swimmingbehaviour(Sulkin,1984).

Materialsandmethods

Source of larvae

Ovigerousfemaleswerecollectedfromdepthsof300–380mofftheeastcoastof Tasmania,Australia(41°17'S;148°40'E)inJune1995.Femalesrangedinsizefrom2.2– 3.5kgandwereheldcommunallyin4m 3tankswithflowthrough,unfiltered,seawater. Temperatureinbroodstocktanksrangedfrom8to14°Candthelightingregimewas approximately10hourslightperday.Larvaewerecollectedatduskfromtwotanksto ensurethatlarvaewerenotfromasingleparent;furthermixingprobablyoccurredas severalfemaleswerereleasinglarvaeineachtank.

Culture methods and experimental design

Newlyhatchedlarvaewererinsedin0.2mfilteredseawater(32‰salinity)and100were transferredtoeachof36(9treatmentsx4replicates),1.8l,black,rectangularstaticculture vessels.Zoeasweremaintainedinatemperaturecontrolroomat15.5°Candwerefeda mixofProteinSelco™enrichedrotifers( Brachionus plicatilis )andinstarIIartemianauplii forthefirsttwoinstarsandartemiaonlythereafter.Larvaewerepipettedintofresh,0.2 125 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

mfilteredseawaterdaily(3234‰salinity).Althoughfourreplicateswereusedforall treatmentsinitially,thiswasreducedtothreeinsometreatmentsbyhighmortalitynot associatedwithtreatmenteffects(chlorinecontaminationofonereplicateinboththe24L, 500luxand18L,500luxtreatments).Consequently,1replicatewasrandomlydeleted fromtheremainingtreatmentstoproduce3replicatesforalltreatments.Incidenceof cannibalismwasassessedonstage1and2zoeasinallfourreplicates.Thetrialranfor99 daysafterwhichallliveanimalswerecountedandcensoredinsurvivalanalyses.

Larvaewereculturedunderfivephotoperiodregimeswithlightphasesof0,6,12,18,and 24hperday(hereafter:0,6,12,18,and24L).Dailytransferoflarvaetonewculture vesselstookaround10minpercontainer;therefore0Ltreatmentsactuallyreceivedashort lightphase.Withtheexceptionofthe0Ltreatment,thephotoperiodregimeswerefurther dividedinto2lightintensitytreatments:2and500lux.Lightinginthe500luxtreatments wasby12V,20Wquartzhalogenglobessuspended1.5movertheculturevessels.The2 luxtreatmentswereconductedinseparatecompartmentsnexttothe500luxtreatments withsmallgapsintheadjoiningwall.Thesegapsallowedlighttopassthroughwhichwas thenreflectedontotheculturevessels.Gapsintheadjoiningwallsalsoallowedcirculation ofairtoreducepotentialtemperaturedifferencebetweentreatments.Temperaturewas monitoredbetweendifferenttreatmentsandnoeffectofwarmingfromthelightsource wasdetectableataresolutionof0.1°C.LightintensitywasrecordedwithaProfisix™lux meter.

Response data collected

Theeffectsofphotoperiodandlightintensityweremonitoreddailybyrecordingthe numberandinstarofexuviaeandmortalitiestocalculatesurvivalandtimetoeachmoult. Larvalsizewasmeasuredonexuviaofstage4zoeasastreatmenteffectsshouldbemore readilyapparentthaninearlierstages.Onlyexuviaweremeasuredtoensurethesample includedonlyhealthy,activelymoultingzoeas.Thecarapacesplitsduringecdysissoitwas impossibletomeasurecarapacelengthonexuvia.Consequently,sizewasmeasuredas telsonwidthbetweentheinneranglesofthelateralspinesonexuvia(Fig.1).All measurementsweremadebyimageanalysisusingNIHImage™1.6software.

ExtentofcannibalismwasmeasuredbyasemiquantitativescalemodifiedfromMinagawa (1994)byrankingdamagetothedorsalspineinto4categories(Fig.2).Onlystage1and2 126 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner zoeaswereassessedforcannibalismasspineregenerationbymoultingmayhaveobscured patternsinlaterstagelarvae.

Mostofthemortalityof P. gigas larvaeoccurredwithinashortperiodafterthemoultto megalopa.Theeffectoftreatmentsonmegalopaviabilitywastestedbyratingany megalopaswhichsurvivedforaperiodoflongerthan1dayasviable.

Figure 1. Larval size was measured on exuvia as telson width, measured between the inner angles of the lateral spines.

127 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 2. Cannibalism was measured by a semi-quantitative scale based on damage to the dorsal spine. Undamaged spines were ranked 0 and increasing damage was ranked 1-3 with increasing damage.

Statistical analysis

Treatmenteffectswereanalysedinthreewaystoincorporatethe0Ltreatmentwhich couldbeclassedasneitherbright(500lux)nordim(2lux)intensity.First,the0L treatmentwasexcludedandtheeffectsofphotoperiod,intensityandinteractionswere assessedforthe6,12,18and24Ltreatments.Theeffectofphotoperiodonlywasthen assessedbyincludingthe0Ltreatmentandanalysingdatafromthebrightanddim intensitytreatmentsseparately.

AllstatisticalanalyseswereperformedwithJMP3.0™software(SASInstitute). Developmentof P. gigas megalopastocrab1hasbeenaccomplishedwhenongrown artemiaweresupplied(GardnerandGardner,1996).Noongrownartemiaweresupplied inthistrialwhichmayhaveaffectedmegalopasurvival,soonlymortalitiesuptothefinal zoealstage(5)wereincludedinsurvivalanalyses.Thesignificanceoftheeffectsof photoperiodandlightintensityonsurvivalweretestedwiththesemiparametric,Cox’s proportionalhazardsmodel(Miller,1981)asitwasnotpossibletomodelaccuratelythe 128 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner hazardfunctionparametrically.Dataforsurvivalanalyseswereobtainedbyrecordingthe instarofallmortalitiesthroughouttheexperiment.Survivaltoeachzoealstage,ratherthan throughtime,wasthenassessedbyCox’sproportionalhazardsmodelwithcensoringof megalopa.

Theeffectsoflightintensityandphotoperiodonmoulttimingweretestedbyrepeated measuresanalyseswithsignificancedeterminedwithWilk’slambda(Mardiaetal.,1979). Effectsoftreatmentsonsizeofstage4zoeas,cannibalismofstage1and2zoeas,the proportionofmegalopasthatwereviable,andsurvivaltostage5zoeaweretestedbytwo wayANOVA.Whereatreatmenteffectwasobserved,meanswerecomparedbyTukey KramerHSD(SokalandRohlf,1995).

Results

Survival rate

Survivalwasassessedintwoways:byCox’sproportionalhazardstoassessthesurvivalof larvaethroughoutdevelopment(Fig.3);andbytwowayANOVAtotesttheeffectsof treatmentonsurvivaltothefinalzoealstage(stage5;Table1).

Whensurvivalwasassessedthroughoutdevelopment,therewasconsiderablevariation betweentreatmentsalthoughtherewasnosignificanteffectofphotoperiodorlight intensity(Fig.3;P>0.05;Table1).Survivaloflarvaethroughoutdevelopmentwasnot significantlydifferent(P>0.05)betweenthetwoextremephotoperiods:0and24L.

SurvivaloflarvaethroughtothefinalzoealstageispresentedinTable1andtherewasno significanteffectofphotoperiodorintensityonsurvivalalthoughsurvivaltendedtobe higherinlowintensitytreatments(P>0.05).Survivaltomegalopawaslowsoinformation presentedinTable1isintendedtoprovidegeneralinformationonsurvivalandno statisticalanalysisispresented.

129 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Table 1. Percentage survival ( ± SE; n=3) of larvae to the final zoeal stage (Z5) and to megalopa in each of the lighting treatments. Survival to the final zoeal stage was not significantly affected by either photoperiod or light intensity (P>0.05).

Photoperiod(h) Intensity(lux) Z5 Megalopa 0 50.7(13.7) 5.0(1) 6 2 52.3(25.7) 7.7(7.2) 500 25.3(18.4) 3.3(1.7) 12 2 70.0(4.2) 9.3(8.3) 500 2.0(1.5) 1.3(0.9) 18 2 44.3(7.5) 9.0(3.5) 500 64.7(15.2) 10.7(5.3) 24 2 74.3(1.5) 10.3(6.0) 500 47.7(11.3) 7.0(3.1)

Figure 3. Mean survival (instars ± s.e., n=3) of Pseudocarcinus gigas larvae cultured under different photoperiods and light intensities. Larval development involves 5 zoeal stages, therefore, a mean survival of 5 instars implies that all larvae survived through the zoeal stages.

5

4 0 lx 3 2 lx 2 500 lx 1

Survival instars) (mean 0 0 6 12 18 24 Photoperiod (h)

Intermoult period and accumulated zoeal duration

Intermoultperiodwassignificantlyaffectedbybothphotoperiodandlightintensity (P<0.05;Fig.4).Larvaeculturedunder2luxlightingtendedtohavelongerintermoult periodthan500luxtreatmentsandtherewasageneraltrendofincreasingintermoult periodwithdecreasingphotoperiod.Theinteractiontermbetweenphotoperiodand intensitywasalsosignificant(P<0.05).Thisrelationshipwasinfluencedbythe12L

130 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner treatmentandwasnolongerapparentwhenthistreatmentwasexcluded(survivalwas lowerinthe12L500luxtreatmentthaninanyothertreatment).

Themostrapiddevelopmentthroughthezoealphasestomegalopawasinthe500lux24L treatment(mean=49.2d).Relativetolarvaeinthe500lux24Ltreatment,dimmerlight intensityappearedtodelaydevelopmentbyaround4days(mean=53.1d;2lux,24L)and shorterphotoperioddelayeddevelopmentbyabout10days(mean=59.6d;0L).

Figure 4. Effect of photoperiod and light intensity on duration of intermoult period in Pseudocarcinus gigas larvae. Means from larvae reared at high light intensity (500 lux) are joined by solid lines; low light (2 lux) by dotted lines. A shift towards the right implies an increase in intermoult period.

Paste picture here (printed at end of document)

131 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Size of stage 4 zoeas

Larvalsizedidnotappeartobeaffectedbylightingintensity(P>0.05).Therewasa significanteffectofphotoperiodonlarvalsize(P<0.05;Fig.5)withlarvaeculturedunder0 Lbeingsignificantlysmallerthaninallothertreatments.Meansizeoflarvaeinthe6,12, 18,and24Ltreatmentsweresimilarandnotsignificantlydifferent(P>0.05).Therewasno significantinteractionbetweenintensityandphotoperiod(P>0.05).

Figure 5. Effect of photoperiod on size of stage 4 Pseudocarcinus gigas zoeas, measured by width of telson. Light intensity appeared to have no effect (P<0.05) so treatments were combined. Consequently, the mean was derived from 3 replicates for the complete darkness treatment (0 h light/d) and from 6 replicates for all other treatments.

840

830

820

810

800

790

Mean telson width (µm± s.e.) 0 6 12 18 24 Photoperiod (h/d)

132 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Cannibalism

Patternsofcannibalismwerethesameforbothstage1and2zoeasalthoughincidence increasedwithdevelopment(Fig.6).Evidenceofcannibalismwasrarelyobservedinthe0 Ltreatmentbutincreasedsignificantlyandproportionallywithphotoperiod(P<0.001). Larvaeculturedunder2luxlightingsuffereddramaticallyhighercannibalismdamagethan thoseculturedat500lux(P<0.0001).Therewasnosignificantinteractionbetween photoperiodandintensity(P>0.05).

Figure 6. Effect of photoperiod and light intensity on extent of cannibalism in Pseudocarcinus gigas zoeas, measured by the extent of dorsal spine damage as "cannibalism index" (+s.e., n=4 replicates per treatment). Cannibalism index was measured on exuvia of stage 1 zoeas (upper) and stage 2 zoeas (lower).

1.5 Z1

1

0.5

Cannibalism Index 0 0 6 12 18 24 2.5 Z2 2

1.5

1

0.5 Cannibalism Index 0 0 6 12 18 24 Photoperiod (h) dark 2 lux 500 lux

133 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Viability of megalopas

Veryfewlarvaereachedmegalopainthe12L,500luxtreatmentsotheseresultswerenot includedinanalyses;inallothertreatmentsatleast15larvaemoultedfromthelastzoeal phaseineachreplicate.Therewaslargevariationbetweentreatments(range1624%;Fig. 7)andtherewasnosignificanteffectontheproportionofmegalopaswhichwereviable (P>0.05).

Figure 7. Effect of photoperiod and light intensity on the viability of Pseudocarcinus gigas megalopas. Larvae which died during moulting to megalopa or which failed to survive for longer than 1 day were classed as unviable. All replicates include data from at least 15 individuals. No information is presented for the 12 h, 500 lux treatment as survival was too low to allow meaningful analysis.

60 50 40 =3)

n 30 20 (+s.e., 10 0 % of% megalopae viable 0 6 12 18 24 Photoperiod (h) dark 2 lux 500 lux

Discussion

Survivalthroughoutthezoealphaseswasnotsignificantlyaffectedbyphotoperiodyet withintreatmentvariationwasrelativelysmall.Thisindicatesthat Pseudocarcinus gigas larvae aretolerantofvariousphotoperiodregimesinculture.Therewasnosignificanteffectof lightintensityonsurvivalalthoughthereappearedtobeatrendofimprovedsurvivalat lowintensity.Onlytwotreatmentswereexaminedandfurtherresearchisrequiredto clarifytheeffectoflightintensityonlarvalsurvival,especiallyathigherintensitythanthat usedinthistrial.Althoughtheeffectsoflightonoverallsurvivalappearedtobeminor, lightintensityandphotoperiodwereobservedtoaffectbothgrowthofzoeasandincidence ofcannibalism.Itisprobablethattheseeffectsresultedfromchangesineitherfeedingor swimmingbehaviourswhicharestronglyinfluencedbylightin P. gigas (Gardner,1996). 134 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Effects of photoperiod due to behaviour

Brachyuranlarvaetendtomigrateverticallyinresponsetolightbyactiveupward swimmingandpassivesinking(Sulkin,1984).Inculturesituations,thismayresultinlarvae attemptingtorisebyactivelyswimmingatthesurface,orpassivelyrestingonthebasein anattempttomigratetogreaterdepths.Thesebehavioursbecomelessapparentwhen larvaearemixedinaculturesystemsuchasplanktonkreisels(CharmantierDauresand Charmantier,1991),althoughenergeticcostsofincreasedswimmingmaystillaffect growth.Thisincreasedactivityinresponsetolightingisknowntoretarddevelopmentin teleostlarvae(BollaandHolmefjord,1988;Liuetal.,1994). Pseudocarcinus gigas larvaein thistrialwereconsiderablymoreactiveduringdarkphases,asare Callinectes sapidus,dueto negativegeotaxis(Sulkinetal.,1979);thisincreasedenergyexpendituremayhaveresulted inthesmallerlarvaeinthe0Ltreatment.Althoughtherewasnotrendofincreasedsize withlongerphotoperiod,therateofdevelopmentdidtendtoproceedfasterwithincreased photoperiodwhichmaybeattributabletotheexpenditureoflessenergyduringthedark phase.

Passivesinkinginresponsetolightwillcauselarvaetoaccumulateatthebaseofculture vesselsinrelativelyhighdensity,whichtendstocausehighercannibalism(Hechtand Pienaar,1993).Larvaeof P. gigas havebeenshowntoexhibitdifferentswimmingpatterns withchangesbetweenlightoflow(615lux)andhigh(550900lux)intensity(Gardner, 1996)whichmayhavecontributedtotheobservedeffectofintensityoncannibalism. Likewise,increasedswimmingduringdarkphasesshouldresultinlesscannibalismin treatmentswithshorterphotoperiods.

Effects of photoperiod due to feeding

Analternativehypothesisfortheobservedeffectsoflightingisthatintensityand photoperiodinfluencedfeedingactivity.Whiletotalrelianceonvisualcuesforfeedingis commoninteleosts(MinerandStein,1993;Hartetal.,1996),ithasseldombeenreported indecapodcrustaceans.Inoneofthefirststudiesofdecapodrearing,SandozandRogers (1944)foundzoealstagesof C. sapidus starvewhenrearedin0L.Inmostotherdecapod species,larvaearelessseverelyaffectedby0Landareabletocapturepreyatareduced rate(forexample: (RadhakrishnanandVijayakumaran,1986),and Ranina

135 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner ranina (Minagawa,1994)),ortheymayactuallyfeedatarateequaltoorgreaterthaninlight (forexample: Homarus americanus (Templeman,1936;Eaglesetal.,1986), Pandalus borealis (Wienberg,1982),and Paralithodes camtschaticus (Nakanishi,1987)).

Pseudocarcinus gigas zoeasappeartobeabletofeedintheabsenceoflightaslarvaeinthe0L treatmentdevelopedthroughtomegalopa,albeitataslowerratethanlarvaeexposedto light.Thisimpliesadegreeoffeedingbyeitherchemosensorydetectionorbyrandom encounter,asstarvedcontrolsofotherexperimentsdiedatthefirstzoealstage(Gardner andNortham,1997).Apatternoffeedingbyrandomencounterinbrachyuranlarvae,akin tofilterfeeding,hasbeenreportedinotherbrachyurans(McConaughaetal.,1991; MinagawaandTakashima,1994).

While P. gigas arenotobligatevisualfeeders,feedingappearstobeenhancedbylight;larvae culturedwithlightperiodswerelargerthanthoseculturedin0Landdurationof intermoulttendedtodecreasewithlongerphotoperiods.Thisissimilartopatternsin P. homarus and R. ranina whereconsumptionofartemiaandgrowthwasenhancedbylighting (RadhakrishnanandVijayakumaran,1986;Minagawa,1994).

Effect of light intensity on growth

Lightintensityaffecteddurationof P. gigas larvalintermoultwithshorterintermoultperiods atbrighterintensity,possiblycausedbyincreasedfeeding.However,thedimmerlight intensityusedinthisstudy(2lux)isattheextremelowerlimitofthevisualcapacityof P. gigas (Gardner,1996)sobrightlight(e.g.500luxormore)isnotnecessarilyoptimalfor feeding.Theeffectoflightintensityonlarvalfeedinganddevelopmenthasseldombeen examinedindecapodcrustaceans.Survivaloflarval Paralithodes camtschaticus isenhancedat intensitiesashighas2000lux(Nakanishi,1987),whichwouldbeexpectedgiventhat P. camtschaticus areknowntomigratetowardsthesurfaceduringtheday(ShirleyandShirley, 1987).In P. gigas ,thedielmigrationpatternandassociatednaturallightintensitiesisless clearalthoughitislikelythattheymigratefromthesurfaceatday(Gardner,1996).

136 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Cannibalism

Useofvisualcuesforfeedingmaynotonlyaffectfoodconsumptionbutalsoincidenceof cannibalism.Minagawa(1994)foundthatincreasedcannibalismoccurredwithincreased foodconsumptionin R. ranina .Bothphotoperiodandlightintensityareconsidered amongsttheprimaryfactorsaffectingcannibalism(HechtandPienaar,1993)andthey appearedtoinfluencecannibalismof P. gigas .Theobservedeffectofincreased photoperiodonincreasedcannibalismin P. gigas isreadilyrelatedtofeeding:iflarvaeutilise visualcuestofeed,longerphotoperiodswillprovidegreateropportunitytoconsume,or cannibalise,preyitems.Twofeedingrelatedhypothesesaresuggestedtoexplainthe observedhighercannibalismatlowerlightintensity.

First,feedingratemaybeenhancedbydimlighting(2lux)resultinginincreasedcaptureof artemiaandalsoincreasedcannibalism.Runningcontrarytothishypothesisisthe observedlongerintermoultdurationofzoeasrearedindimlightthaninbrightlight. However,slowergrowthmaybeexpectedasdorsalspinedamagewasgreaterandthisis knowntoincreaseincidenceofdisease(Armstrongetal.,1976).Underthishypothesis, optimallightingfor P. gigas culturewouldbelongphotoperiodsatdimintensity(e.g.2lux) tooptimisefoodconsumptionwithsomeformofmixing,suchasaeration,toreduce cannibalism.

Asecondhypothesistoexplainthehighercannibalisminthe2luxtreatmentisthatashift tolargerpreymayoccuratdimmerlightintensity.Asthe2luxtreatmentwasatthe extremelowerlimitofthevisualcapacityof P. gigas (Gardner,1996),visualdetectionof smallpreyitemsmayhavebeenimpaired.MinerandStein(1993)reportedashiftofthis natureinpredationbylarvalfinfish( Lepomis macrochirus )wherelargerpreywereconsumed atdimmerlightintensities.Also,avoidanceofpredatingzoeasmayhavebeenimpaired. Underthishypothesis,optimallightingfor P. gigas culturewouldbelongphotoperiodsat brightintensity(e.g.500lux)tooptimisepredationonartemia,ratherthanonzoeas.

Performance of larvae in continuous light or dark regimes

Developmentof P. gigas larvaein24Lwasrelativelyrapidbutotherwisesimilartolarvae rearedinlightdarkregimes.Thisissimilarto Paralithodes camtschaticus (Nakanishi,1987)but contraststomostotherplanktonicdecapodswherecontinuouslightingretardsgrowth 137 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

(Starkweather,1976;Dalley,1980;RadhakrishnanandVijayakumaran,1986;Minagawa, 1994).

Thehormonalpathwaysunderlyingmetamorphosistomegalopaarenotfullyunderstood althoughalowtitreofjuvenilehormoneisthoughttobenecessary(Christiansen,1988). Lowratesofmetamorphosishavebeenobservedinlarval H. americanus and R. ranina rearedincontinuousdarkness,despiterelativelyhighgrowth,whichsuggestsa neuroendocrineeffectofcontinuousdarkness(Eaglesetal.,1986;Minagawa,1994). Metamorphosisof P. gigas larvaedidnotappeartobeaffectedby24or0Ltreatments, howeverthisshouldbeacceptedcautiouslyasdatawerevariableandlackedstatistical power(Fig.7).Giventhatmeanmetamorphosiswaslowestinthetwo24Ltreatments,a cautiousapproachofavoidingcontinuouslightingissuggested.

Conclusion

Althoughlightingdidnotappeartoinfluencesurvivalof P. gigas inthistrial,theredoes appeartobepotentialtoinfluencegrowthandcannibalism.Larvaewereabletofeedin continuousdarknessandhadlowincidenceofcannibalism,however,growthwasslowand larvaeweresmallerthanintreatmentswithlightperiods.Longerphotoperiodsresultedin morerapidgrowthandarerecommended,although24Lshouldbeavoidedasviabilityof megalopamaybeaffected.Larvaegrewmorerapidlyandsufferedlesscannibalismat brighterintensity(500lux).Consequently,brighterlightappearspreferableforculture althoughresearchisneededtoclarifytheeffectoflightintensityonfeedingandfeeding relatedcannibalism.

References

Aiken,D.E.,Martin,D.J.,Meisner,J.D.,Sochasky,J.B.1981.Influenceofphotoperiodonsurvivalandgrowthoflarval Americanlobsters( Homarus americanus ).JournaloftheWorldMaricultureSociety12.225230.

Armstrong,D.A.,Buchanan,D.V.,Caldwell,R.S.1976.Amycosiscausedby Langenidium sp.inlaboratoryrearedlarvaeofthe Dungenesscrab, Cancer magister ,andpossiblechemicaltreatments.JournalofInvertebratePathology28.329336.

Bolla,S.,Holmefjord,I.1988.EffectoftemperatureandlightondevelopmentofAtlantichalibutlarvae.Aquaculture 74.355358.

138 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

CharmantierDaures,M.,Charmantier,G.1991.Masscultureof Cancer irroratus larvae(Crustacea,Decapoda):Adaptation ofaflowthroughseawatersystem.Aquaculture97.2539.

Christiansen,M.E.1988.Hormonalprocessesindecapodcrustaceanlarvae.In:Fincham,A.A.,Rainbow,P.S.(Eds.), AspectsofDecapodCrustaceanBiology.ClarendonPress,Oxford,pp.4768.

Dalley,R.1980.Thesurvivalanddevelopmentofthe (L.),rearedinthelaboratoryundernon circadianlightdarkcycles.JournalofExperimentalMarineBiologyandEcology47.101112.

Eagles,M.D.,Aiken,D.E.,Waddy,S.L.1986.InfluenceoflightandfoodonlarvalAmericanLobsters, Homarus americanus .CanadianJournalofFisheriesandAquaticSciences43.23032310.

Gardner,N.C.1996.Behaviouralbasisofdepthregulationinthefirstzoealstageofthegiantcrab( Pseudocarcinus gigas , Brachyura,Xanthoidea,Oziidae).HighLatitudeCrabs:Biology,Management,andEconomics.AlaskaSeaGrantCollege ProgramReportNo.9602,UniversityofAlaska,Fairbanks,pp.229253.

Gardner,C.,Gardner,D.1996.Animprovedmethodforongrowingartemiainbatchculture.I.Systemdesign.Austasia Aquaculture10(4).6263.

Gardner,C.,Northam,M.1997.Prophylacticchemicaltreatmentsformycosisofgiantcrab Pseudocarcinus gigas larvaein intensiveculture.Aquaculture158.203214.

Hart,P.R.,Hutchinson,W.G.,Purser,G.J.1996.Effectsofphotoperiod,temperatureandsalinityonhatcheryreared larvaeofthegreenbackflounder( Rhombosolea tapirina Gunther,1862).Aquaculture144.303311.

Hecht,T.,Pienaar,A.G.1993.Areviewofcannibalismanditsimplicationsinfishlarviculture.JournaloftheWorld AquacultureSociety24.246261.

Liu,H.W.,Stickney,R.R.,Dickhoff,W.W.,McCaughran,D.A.1994.Effectsofenvironmentalfactorsoneggdevelopmentand hatchingofPacificHalibut Hippoglossus stenolepis .JournaloftheWorldAquacultureSociety25.317321.

Mardia,K.V.,Kent,J.T.,Bibby,J.M.1979.MultivariateAnalysis.AcademicPress,NewYork.

McConaugha,J.R.,Tester,P.A.,McConaugha,C.S.1991.Feedingandgrowthinmeroplanktoniclarvaeof Callinectes sapidus (Crustacea:Portunidae).In:Davie,P.,Quinn,R.H.(Eds.),Proceedingsofthe1990InternationalCrustaceanConference, September,1991,MemoirsoftheQueenslandMuseum31.320.

Miller,R.G.Jr.1981.SurvivalAnalysis.JohnWileyandSons,NewYork.

Minagawa,M.1994.Effectsofphotoperiodonsurvival,feedinganddevelopmentoflarvaeoftheredfrogcrab, Ranina ranina .Aquaculture120.105114.

Minagawa,M.,Murano,M.1993.Larvalfeedingrhythmsandfoodconsumptionbytheredfrogcrab Ranina ranina (Decapoda,Raninidae)underlaboratoryconditions.Aquaculture113.251260.

Minagawa,M.,Takashima,F.1994.Developmentalchangesinlarvalmouthpartsandforegutintheredfrogcrab, Ranina ranina (Decapoda:Raninidae).Aquaculture126.6171.

Miner,J.G.,Stein,R.A.1993.Interactiveinfluenceofturbidityandlightonlarvalbluegill( Lepomis macrochirus )foraging. CanadianJournalofFisheriesandAquaticSciences50.781788.

Nakanishi,T.1987.Rearingconditionsofeggs,larvaeandpostlarvaeofkingcrab.BulletinJapanSeaRegionalFisheries ResearchLaboratory37.57161(inJapanese).

Radhakrishnan,E.V.,Vijayakumaran,M.1986.Observationsonthefeedingandmoultingoflaboratoryreared phyllosomalarvaeofthespinyLobster Panulirus homarus (Linnaeus)underdifferentlightregimes.Proceedingsofthe SymposiumonCoastalAquaculture,Cochin(4)12611266.

Sandoz,M.,Rogers,R.1944.Theeffectofenvironmentalfactorsonhatching,moulting,andsurvivalofzoealarvaeof thebluecrab Callinectes sapidus Rathbun.Ecology25(2).216228.

Shirley,T.C.,Shirley,S.M.1987.DielverticalmovementsofAlaskanredkingcrabzoeae.AmericanZoologist27(4). 103A.

139 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Sokal,R.R.,Rohlf,F.J.1995.Biometry,thePrinciplesandPracticeofStatisticsinBiologicalResearch.W.H.Freeman,New York.

Starkweather,P.L.1976.Influencesoflightregimeonpostembryonicdevelopmentintwostrainsof Daphnia pulex .Limnology andOceanography21(6).830837.

Sulkin,S.D.1984.Behaviouralbasisofdepthregulationinthelarvaeofbrachyurancrabs.MarineEcologyProgressSeries15. 181205.

Sulkin,S.D.Phillips,I.,VanHeuklem,W.,1979.Onthelocomotoryrhythmofbrachyurancrablarvaeanditssignificancein verticalmigration.MarineEcologyProgressSeries1.331335.

Templeman,W.1936.Theinfluenceoftemperature,salinity,lightandfoodconditionsonthesurvivalandgrowthofthelarvae ofthelobster( Homarus americanus ).JournaloftheBiologyBoardofCanada2(5).485497.

Waddy,S.L.,Aiken,D.E.1991.ScotophaseregulationofthedieltimingofthemetamorphicmoultinlarvalAmericanlobsters, Homarus americanus .JournalofShellfishResearch10.287.

Wienberg,R.1982.Studiesontheinfluenceoftemperature,salinity,light,andfeedingrateonlaboratoryrearedlarvaeof deepseashrimp, Pandalus borealis Kroyer1838.Meeresforschung29.136153.

140 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Z5-M =3) n Z4-Z5 Z3-Z4 30 40 50 60 Mean Days ± s.e. ( s.e. MeanDays ± Z2-Z3 Z1-Z2 0 10 20

0 6

12 18 24 Photoperiod (h) Photoperiod

141 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Use of Prophylactic Treatments for Larval Rearing

8

Researchforthischapterhasbeenpreviouslypublishedas: Gardner,C.andNortham,M.,1997.UseofProphylacticTreatmentsfor LarvalRearingofGiantCrabs Pseudocarcinus gigas (Lamarck).Aquaculture, 158:203214.

142 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Abstract

Chemicalswerescreenedforprophylactictreatmentofepibioticfoulingandfungal mycosisinlarvaeofgiantcrabsPseudocarcinus gigas .Thefollowingtreatmentswereapplied asindefinitebaths:oxytetracycline,trifluralin,carbendazim,copperoxychloride,malachite green,andformalin.Mosteffectivetreatmentsforimprovingsurvivalwereoxytetracycline (25mgl 1,despiteincreaseddeformity),trifluralin(0.01mgl 1),carbendazim(0.001mgl 1), andcopperoxychloride(0.05mgl 1).Threeofthesetreatmentsaffectedsizeandshapeof themegalopacarapacewithrelativelysmallermegalopasdevelopingincarbendazimand trifluralin,andrelativelybroadermegalopasincopperoxychloride.Toxiceffects,measured byincreasedmortality,deformity,deathduringecdysis,ordelayedecdysis,wererecorded withoxytetracycline( ≥25mgl 1),trifluralin( ≥0.03mgl 1),malachitegreen( ≥0.1mgl 1), andformalin(forallconcentrationstested: ≥2.5mgl 1).

Introduction

Optimisingsurvivalduringlarvalrearingofcrustaceansisimportantinaquacultureandis alsoofbenefitinresearchofcrustaceantaxonomy,physiology,andfisheriesbiology. Laboratoryculturesofcrablarvaeoftensufferseveremortalityfromdisease,particularly fromepibioticbacteriaandlarvalmycosis(Armstrongetal.,1976;Ebertetal.,1983; HamasakiandHatai,1993).Larvalmycosisoccurswhenfungalhyphae,commonly Lagenidium and Sirolpidium species(BrockandLeaMaster,1992),invadebodytissues, developingzoosporedischargetubeswhichprotrudethroughthecrustacean’scuticleinthe laterstages(Fig.1;Paynter,1989).Infectedlarvaebecomeimmobilisedandtheirsurface developsafouledappearancefromtheexternalprocessesofthefungi.

142 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 1. Fouling diseases on giant crab zoeas. A stalked fungal sporangium is present in the center and filamentous bacterial fouling is visible as fine threads.

Inresearchinvolvingcultureofgiantcrablarvae,larvalmycosishasconsistentlycaused highmortalitywhichpromptedassessmentofthevariouschemicalcontrolsavailable.The pelagiczoealphaseof P. gigas isrelativelylong,around60days,andlarvalmycosisoccurs throughoutthisperiod,ratherthanjustinearlystagesasismoretypicalincrustaceans (BrockandLeaMaster,1992;Lightner,1993).Consequently,prophylactictreatmentsmust beadministeredforprolongedperiodswhichcanproducetoxiceffects,notevidentin shorttermtrials,suchasdelayinmoulting(Caldwelletal.,1978)anddeformityat megalopa(Ebertetal.,1983).

Prophylactictreatmentsareoftenassessedbyseparatelyestablishingtoxiclevelsofagiven chemicalforfungalzoosporesandforthelarvaetobetreated(Armstrongetal.,1976;Lio Poetal.,1982;LioPoandSanvictores,1986).Whilethisisaninvaluabletechniquefor evaluatingtreatmentsrapidly,itcanfailtoassessthevalueofatreatmentinculture situations.Adverseeffectsofthetreatmentmaybeunderestimatedbecausechronic toxicitycanbecomeapparentlateindevelopmentandtheremaybeinteractionwith bacterialspecies(GilTurnesandFenical,1992).

Inthischapterresultsarepresentedfromprolongedclinicaltrialswithgiantcrablarvae comparingseveralchemicalsreportedtoimmobilisefungalzoospores:malachitegreen (Armstrongetal.,1976);trifluralin(Armstrongetal.,1976);andformalin(Hamasakiand Hatai,1993).Inaddition,trialswereconductedwithtwohorticulturalfungicideswithlow toxicitytoinsects:carbendazimandcopperoxychloride.Larvaewerealsotreatedwiththe antibiotic,oxytetracycline,tocontrolpathogenicbacteria.

143 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Materialsandmethods

Source of larvae

Ovigerousfemaleswerecollectedfromdepthsintherangeof300to380mofftheeast coastofTasmania(41°17'S;148°40'E)inJune1995.Femalesrangedinsizefrom2.2to 3.5kgandwereheldcommunallyin4m 3tankswithflowthrough,unfilteredwatersupply. Toensurethatonlyfreshlyhatchedlarvaewereused,thetankswerethoroughlyflushed priortocollectinglarvaeforthetrial.Althoughattemptsweremadetocollectlarvaefrom severalfemales,mostofthelarvaeusedforthistrialappearedtobefromonefemale weighing2.6kg.

Culture methods and experimental design

Newlyhatchedlarvaewererinsedin0.2mfilteredseawater(34‰salinity)then transferredto1.8lvessels.Fedcontrols,starvedcontrols,andchemicaltreatmentswere randomlyallocatedtovessels.Fiftylarvaewereplacedineachvesselandweremaintained inatemperaturecontrolroomat16°Cwith700lux,8l:16dphotoperiod.Zoeaswerefed ProteinSelco™enrichedartemianaupliibutmegalopasrequiredlarger,10dayoldartemia. Larvaewerepipettedintofresh,0.2mfilteredseawaterevery2days.Theconcentrations foreachchemicaltestedtocontrolfoulingwere:carbendazim(HoechstandSchering™), malachitegreen,andtrifluralin(DowElanco™)at0.001,0.003,0.01,0.03,and0.1mgkg 1; copperoxychloride(ChemSpray™)at0.025,0.05,0.1,0.2,and0.4mgkg 1;formalinat2.5, 5,10,20,and40mgkg 1;andoxytetracycline(Norbrook™)at10,25,50,100,and200mg kg 1.Fourreplicateswereusedforeachconcentration.Treatmentswererunasindefinite bathsfor115daysafterwhichallliveanimalswerecensoredinsurvivalanalyses.

Response data collected

Theeffectofdifferentconcentrationswasmonitoredbyrecordingthenumberandinstar ofexuviaandmortalitieswhichallowedcalculationofsurvivalandtimetoeachmoult.All

144 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner mortalitieswerealsoclassedintopossiblecausesofdeath:fouled(severefoulingof exoskeleton),moulting(diedduringecdysis),deformed,andnormal(wherenocausewas apparent).Larvaewereclassedasfouledwhenatleast50%oftheexternalsurfacewas covered.Epibioticbacterialfoulingincreasedrapidlyafterdeath,sothefoulingindexonly givesageneralindicationofdisease.Whendeadlarvaecouldbeascribedtomorethanone possiblecauseofmortality,suchasmoultingandfouled,eachcausewascountedand treatedasindependent.Althoughwetpreparationsandmicrobiologywereperformed,the causeoffoulingwasnotdeterminedinallcases;animalsclassedasfouledmayhavehad fungalorbacterialinfections.MicrobiologicalculturesweremadeonTCBS,blood,and Ordal’smedium.

Innormaldevelopment,giantcrablarvaepassthrough5zoealstages(Gardnerand Quintana,1998;Chapter3).Inthisstudy,manylarvaedevelopedtoasixthzoealstage, whichwasintermediatebetweenzoea5andmegalopa(termed5alopaebyEbertetal., 1983;Fig.2).Chelaewerepresentandthepleopodsboresetae,whilethecarapaceretained theformofthezoea.Noneoftheselarvaesurvivedandtheywereclassedasdeformed.

Theeffectoftreatmentsonsizeofdeadmegalopasormegalopaexuviawasassessedby measuringcarapacelength,carapacewidth,androstrumwidth(Fig.3).Theshapeofthe rostrumvariedbetweenindividualssocarapacelengthmeasurementsweremadeslightly offcentre.AllmeasurementsofmegalopasweremadebyimageanalysisusingNIH Image™1.6software.

145 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 2. Giant crab larva intermediate between zoea 5 and megalopa. As with a megalopa, the chelae are differentiated and the pleopods are setose, however zoeal characters such as the dorsal carapace spine and bifurcated telson have been retained. These larvae were classed as deformed.

Figure 3. Morphological measurements taken to assess the effect of treatment on megalopa size. RW = rostrum width, CW = carapace width, CL = carapace length. Note that there was considerable variation in the form of the rostrum so CL was measured slightly to the left of center.

146 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Statistical analysis

StatisticalanalysiswasperformedwithJMP3.0™software(SASInstitute).Where comparisonsbetweentreatmentsandcontrolsarepresented,thecontrolsarethefed group.Theeffectofconcentrationonmoulttimingwastestedwithrepeatedmeasures analysis.Assurvivalwaspoorinsometreatmentreplicates,analysiswasrestrictedtodata collectedfromthestartofthetrialtothemoultfromzoea3tozoea4.Datawerearranged formultivariateanalysisandsignificancedeterminedforbetweeneffects(concentration) withWilk’slambda(Mardiaetal.,1979).Whereasignificanteffectofconcentrationwas found,comparisonsweremadebetweenconcentrationsbyanalysisofthecanonicals (Mardiaetal.,1979).

SurvivaldatawereanalysedbytheKaplanMeiermethodwithsignificancebetweengroups determinedbyWilcoxon’stest(Miller,1981).Topreventanincreaseintype1errors,a Bonferroniadjustmentwasmadetoalphaforcomparisonsbetweenconcentrations,sothat comparisonswereonlytreatedassignificantwhereP<0.003(SokalandRohlf,1995).The effectoftreatmentsonsizeofmegalopasandcauseofmortalitywasassessedbyoneway ANOVA.Causeofmortalitydatawerearcsinesquareroottransformedtoproduce normalityandremoveheteroscedasticity.Whereatreatmenteffectwasobserved,means werecomparedbyTukeyKramerHSD(SokalandRohlf,1995).Percentagesurvivalto crab1dataarepresentedalthoughlowsurvivalpreventedmeaningfulstatisticalanalysis.

Results

Larvaeclassedasfouledappearedtobeafflictedwithseveraltypesofinfection.Peritrich ciliateswerepresentinlownumbersandwerenotregardedaspathogenic.Apartfrom larvaeculturedinoxytetracycline,mixedbacterialfloraconsistingpredominantlyof Vibrio sppwereisolatedfromallcasesoffouling.Foulingappearedtobepredominantlyfrom twocauses:theterminalvesiclesoffungalinfections(tentativelyidentifiedas Lagenidium sppbasedonmethodofsporogenesis;Lightner,1993)andfilamentousbacterialinfection (colourless,gramnegativeandshortcylindricalbacteriaformingunbranchedfilaments, tentativelyidentifiedasfamilyLeucothricheae;Lightner,1993).Inallchemicaltreatments andcontrols,someofthemortalitiesclassedasfouledhadlarvalmycosis.

147 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Larvaeinstarvedcontrolsremainedaliveforameantimeof18.8daysalthoughallwere deadbyday20(survivaldatafromstarvedandothertreatmentsarepresentedinAppendix 8).Asmallnumberofthesesuccessfullymoultedtozoea2(1.5%).Larvaefromboth starvedandfedcontrolshadlowlevelsurfaceinfectionsofmixed Vibrio spp.The proportionoflarvaewhichdiedwithhighlevelsoffoulingweresignificantlyhigher (P<0.001)infedcontrolsthaninstarvedcontrols:45.5%comparedwith10.5%.

Detrimental effects

Sometreatmentconcentrationshadsignificantlylowersurvivalthanfedcontrolswhichis attributedtotoxicity:100and200mgl 1oxytetracycline,and20and40mgl 1formalin (P<0.003;Figs.4and5).Chronictoxicitywasevidentin25and50mgl 1oxytetracycline treatmentswithsignificantlyincreasedincidenceofdeformity(P<0.001).Bothofthese oxytetracyclinetreatmentshadsignificantlyhighermoultingmortality(P<0.001)asdid treatments0.03and0.1mgl 1trifluralin(P<0.01),and10mgl 1formalin(P<0.05).

Survivalwasalsoreducedinthe10mgl 1oxytetracyclinetreatmentwhichwasassociated withsignificantlyhigherfoulingrelativetocontrols(P<0.0001;Figs.4and5).Thisfouling wasgelatinous,ratherthanfilamentousasinothertreatments,andwascausedbyasingle Vibrio specieswhichproducedpaleyellowcoloniesinTCBSmedia.

Sublethaltoxiceffectswereobservedinthe100mgl 1oxytetracyclineand0.1mgl 1 malachitegreentreatmentsasmoultingwassignificantlydelayed(Fig.6;P<0.001). Consequently,themeantimetoreachmegalopawasdelayedby51daysand13days respectively.

Enhanced survival

Althoughtoxiceffectswereobservedatsomeconcentrations,survivalwasenhancedby thebestconcentrationsofalltreatmentsrelativetocontrols(P<0.003).Thisimproved survivalwasassociatedwithsignificantlylowerfoulingonlyinoxytetracycline,for concentrations ≥25mgl 1(Fig.4;P<0.0001).Innoothertreatmentwasthereasignificant reductioninfoulingtoaccountfortheimprovedsurvivalalthoughtrendswereapparent, suchasincopperoxychlorideandmalachitegreentreatments.Becausetherewaslarge

148 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner variationintheincidenceoffoulingincontrols,theexperimenthadlowpowertodiscern differences;aspercentages,themeanincidenceoffoulingincontrolswas45%while standarderrorwas20.1%.

Rankingofthe“best”concentrationsofeachtreatmentinincreasingsurvival(quantified bytheKaplanMeiermethod)was:oxytetracycline(50mgl 1)>carbendazim(0.001mgl 1)>trifluralin(0.1mgl 1)>malachitegreen(0.03mgl 1)>formalin(10mgl 1)>copper oxychloride(0.05mgl 1).Therewasnosignificantdifferencebetweentreatmentsexcept betweenoxytetracyclineandallothertreatments(P<0.0001).

Larvaesurvivedtocrab1inseveraltreatments.Rankingoftreatmentsforsurvivaltocrab 1was:25mgl 1oxytetracycline(7%)>50mgl 1oxytetracycline(3.5%)>0.4mgl 1 copperoxychloride(1.5%)>0.05mgl 1copperoxychloride(1.0%)>0.025mgl 1copper oxychloride,0.001and0.003mgl 1carbendazim(all0.5%).Nolarvaesurvivedtocrab1 incontrolsortrifluralin,malachitegreen,andformalintreatments.

149 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 4. Effect of treatment concentration (mg l -1) on larval survival and cause of mortality. Mean survival for each concentration is the mean number of instars to which larvae survived, eg. mean survival of 2.9 implies that the mean survival was almost to Z3, while a mean of 1.1 implies that most larvae died at Z1 before moulting. Letters denote significantly different pairs of means (P<0.003). Symbols indicate major causes of mortality (accounting for >20% of total during moulting, >30% other causes) for each concentration: ♣ - moulting; ∇ - fouling; ♠ - deformity; ♦- normal.

Oxytetracycline Carbendazim 5 5 ♠ ♦ 4 4 ∇ ♠ ♣ ♦ ♦ ♦ 3 ♦ 3 ∇ ∇ ∇ ♣ ♦ ♦ ♦ ♦ 2 2 ♣ ∇ ♦ ∇ Mean SurvivalMean S.E. + 1 c a d d b a 1 a b a a a a

0 10 25 50 100 200 0 0.001 0.003 0.01 0.03 0.1 Trifluralin Malachite Green 5 5

4 4

♦ ♣ ♦ 3 ♦ ♦ ♣ 3 ♦ ♦ ∇ ∇ ♦ ♦ ∇ ∇ ♦ ♦ 2 2 ∇ ∇ ♦ ♦ Mean SurvivalMean +S.E. 1 a ab b b b b 1 a b a a b b

0 0.001 0.003 0.01 0.03 0.1 0 0.001 0.003 0.01 0.03 0.1 Formalin Copper Oxychloride 5 5

4 4 ♦ ♦ ♦ 3 3 ∇ ♦ ♦ ♦ ∇ ♦ ∇ ♦ ∇ ∇ ♦ ♦ 2 ♣ 2 ♣ ♦ ♦ Mean Survival+Mean S.E. 1 c d c d b a 1 a c c ab abc bc

0 2.5 5 10 20 40 0 0.025 0.05 0.1 0.2 0.4

150 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 5. Survival of larvae in oxytetracycline treatments to each larval stage. Z1...Z5 = zoea 1...zoea 5, M = megalopa, and C = crab 1. Mean survival is the mean number of instars that larvae survived to, eg. mean survival of 2.9 implies that the mean survival was almost to Z3. Superscripts denote significantly different pairs of means (P<0.003).

Conc. 10 a 200 a 100 b 0 c 25 d 50 d 100 xΘ•∇♦ • Mean• Surv. 1 .0 1.0 1.5 2.1 4.1 4.9 • • 80 Θ Θ Θ Θ 60

40 Survival (% ± SurvivalSE) (% ± ∇

20 ∇ Θ• ∇ ∇ Θ• 0 x ♦ ∇ ∇ Z1 Z2 Z3 Z4 Z5 M C

x 10 mg/l • 50 mg/l ♦ 200 mg/l

Θ 25 mg/l ∇ 100 mg/l

151 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 6, a & b. Effect of treatments on the timing of moults. Shift towards the right suggests that the treatment has delayed the development of the larvae. Points plotted for moult stages more advanced than the moult to Z4 should be interpreted with caution, as replication was frequently reduced in these later samples to less than 4. Treatment concentrations given on the X axes are in mg l -1. Missing points are due to complete mortality.

∇ × × - Z4 to Z5 to Z4 - ∇ ∗ ∗

∇ ∇ ∇ 60 70 80 90 100 ∇ - Z3 to Z4 Z4 to Z3 - ♦ ∗ ∇ 1 crab to megalopa - ∇ ♦ × ∗ ∗ ∗ ∇

∗ ∗ S.E.) (± Days ♦ ∗ ∗ a. Malachite Green a. Malachite ♦ ♦ ∗ b. b. Oxytetracycline ♦ Z3 to Z2 - ⊕ ⊕ ♦ ♦ ♦ ♦ ⊕ ♦ ⊕ ⊕ megalopa to Z5 - ⊕ ⊕ ⊕ ⊕ ⊕ ∇ ⊕ 20 40 60 80 100

• Z2 to Z1 -

• • ••• • • • • • 0 0 10 20 30 40 50 10 25 50 0 0.001 0.003 0.01 0.03 0.1 100 200 0

Effects on megalopas

Megalopasizeandmorphologywasaffectedbytreatment(Fig.7;P<0.05).Megalopas fromcopperoxychloride,malachitegreen,andoxytetracyclinetreatmentswerelargerthan thosefromcarbendazimandtrifluralintreatmentsasmeasuredbycarapacearea,carapace width,andcarapacelength.Oppositetrendsbetweenthecarapacewidth/carapacelength androstrumwidth/carapacewidthratioswereobserved.Thissuggeststhattreatmenttype influencestheshapeofthecarapacebyincreasingcurvatureorflexionofthelateral marginsofthecarapace.Megalopasfromcopperoxychlorideandmalachitegreen treatmentswererelativelybroader.

152 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 7. Effect of treatments on size of megalopas. C = copper oxychloride, M = malachite green, Ca = carbendazim, O = oxytetracycline, T = trifluralin. Treatment had a significant effect (P<0.05) on size for all measures tested: "carapace area" (C Area = CW x CL); carapace width (CW); carapace length (CL); and the ratios between carapace width/carapace length (CW/CL) and rostrum width/carapace width (RW/CW). Higher mean values for CW/CL implies a relatively broader carapace and higher values for RW/CW implies a relatively broader rostrum. Labels next to means indicate significance of means comparisons. Formalin and control measurements were not included due to poor survival. Mean values are from all concentrations of each treatments. Larvae did not develop to megalopa in most replicates so the number of replicates contributing to the mean varied: C, n= 6; M, n=5; Ca, n=6; O, n=7; T, n=8.

8.5 c •c 8 • •bc

7.5 •ab 7 •a

"C Area" (mm2) ± SE (mm2)Area" ± "C 6.5 C M Ca O T

3350 2650 c 3250 b • •c • 2550 •bc 3150 •ab •ab 2450 3050 •ab •a• a 2350 (µm) CL SE ± 2950 CW (µm)CW SE ± •a 2250 2850 C M Ca O T C M Ca O T

0.86 0.61 0.84 0.59 •c c • •bc 0.57 •bc 0.82 0.55 •ab 0.8 •ab 0.53 •a CW/CL ± SE ± CW/CL 0.78 •a SE ± RW/CW •a •a 0.51 0.76 0.49 C M Ca O T C M Ca O T

153 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Discussion

General observations on prophylactic treatments

Larval P. gigas weresuccessfullyrearedtojuvenilecrabswithprophylactictreatment.This hasnotbeenachievedinnumerousothertrials,evenwithhighstandardsofhatchery hygieneandwaterquality.

Bothlarvalmycosisandfilamentousbacteriadiseasewereassociatedwithmortalityof larvaeinthistrial.Possiblesourcesoffungalinfectionweresplitintothreeoptionsby Ebertetal.(1983):parents;foodsource(artemia);andincomingwater.Nosporesor bacteriashouldhaveenteredthistrialviatheincomingwaterasfiltrationwasabsoluteto 0.2mand Lagenidium spp.sporesare7by5minsize(Armstrongetal.,1976).The higherincidenceoffoulinginfedcontrolsthaninstarvedcontrolssuggeststhatartemia contributedtodisease,byactingasasourceofinfectionorbycontributingtowaterquality deterioration.Infectionriskfromartemiacouldbeloweredbyavoidingoverfeedingand byprophylacticchemicaltreatmentofartemia.

Oxytetracycline

Thegoodperformanceoflarvaeculturedwithoxytetracyclineindicatestheimportanceof bacterialdiseaseonlarvalmortality.Thereareindicationsthatoxytetracyclinealsoreduced fungalinfectionbecausenocasesoflarvalmycosiswerefoundin50,100,and200mgl 1 oxytetracyclinetreatments.Possibleexplanationsforthisare:diseaseresistanceimproved asaresultofgeneralimprovementinlarvalhealth(Anderson,1989);possibledeactivation offungalzoospores;preventionofbacterialsepticaemiafollowingdorsalspinedamage, whichisknowntoincreaseriskoffungalinfection(Ebertetal.,1983;Anderson,1989); andaninteractionbetweenbacteriaandfungalpopulationssothatreductionofbacterial faunaresultedinareductionintheincidenceoffungalinfection.Inregardstothelast hypothesis,theoppositetrendisusuallyobservedwithbacterialcompetitionpreventing fungalinfections(GilTurnesandFenical,1992)sothatantibiotics,suchasoxytetracycline, increasetheriskoflarvalmycosis(NogamiandMaeda,1992).

154 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Lightner(1993)suggestedoxytetracyclineinconcentrationsof10to90mgl 1foruseas indefinitebathstocontrol Leucothrix mucor .Forrearinggiantcrablarvae,thisrangeistoo broad.Bacteriaproliferatedat10mgl 1andchronictoxicityresultedinhighlevelsof deformity,similartothosereportedbyEbertetal.(1983)withstreptomycinsulphate,atall concentrationswherelarvaesurvivedbetterthancontrols( ≥25mgl 1).Ofthe oxytetracyclineconcentrationstested,25mgl 1wouldbemostsuitableduetolower chronictoxicity.Theprophylacticuseofoxytetracyclineisclearlyeffectiveinculturing giantcrablarvaealthoughthewidespreaduseofantibioticsisdiscouragedtoprevent developmentofresistantstrains(Anderson,1989).

Carbendazim and trifluralin

Highestsurvivalinprolongedfungicidetreatments,withoutchronictoxiceffects,was observedincarbendazim(0.001mgl 1)andtrifluralin(0.003mgl 1).Bothofthese chemicalswouldbeexpectedtodegradebetweenwaterchanges.Williamsetal.(1986) reportedthehalflifeoftrifluralininwatercouldbeasshortas30minutesalthoughthe manufacturers,DowElanco,listthehalflifeas6daysinaquaticsystems.Survivaloflarvae mayhavebeenimprovedfurtherbymorefrequentapplicationofchemicals.Despitethe apparentlackoftoxiceffectsathigherconcentrations,highestsurvivalincarbendazim treatmentswasatonly0.001mgl 1.Theapparentabsenceoftoxiceffectsatall concentrationstested(upto0.1mgl 1)forcarbendazimsuggeststhatfurthertrialsare warranted.Althoughtheimplicationsonsurvivalandgrowthareunclear,itisworth notingthatmegalopasfrombothcarbendazimandtrifluralintreatmentsweresmallerthan inothertreatments.

Toxiceffectsoftrifluralinonlarvaewereobservedatonly0.03mgl 1whichiswithinthe rangesuggestedforprophylactictreatmentofcrustaceanlarvaebyLioPoandSanvictores (1986)andLightner(1993).Thisdiscrepancyislikelytobeduetotheprolongedperiodof treatmentneededwithgiantcrablarvae.Themaximumacceptabletrifluralinconcentration determinedinthisstudywas0.01mgl 1asnotoxiceffectswereobserved.This concentrationleavessomemarginfortoxicitytofungalzoosporesastherewasasignificant improvementinsurvivalat0.003mgl 1.Also,Armstrongetal.(1976)reportedeffective controlofmycosiswithtrifluralinat0.0015mgl 1.

155 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Copper oxychloride, malachite green and formalin

Copperoxychloride,malachitegreenandformalintreatmentshadlowersurvivalthan optimalconcentrationsofcarbendazimandtrifluralinalthoughallsignificantlyimproved survivalrelativetocontrols.Theactionofcopperoxychloride,malachitegreenand formalinisbroadastheycanalsocontrolepibioticfoulingbacteriaandprotozoa(Lightner, 1993).Consequently,thistrialevaluatedappropriateconcentrationsforprolonged treatmentratherthantheeffectoftreatmentsonspecificpathogens.

Copperoxychlorideappearsusefulasaprophylacticasitimprovedsurvivalandnotoxic effectswereobservedwithintherangetested,upto0.4mgl 1.Althoughsurvivalwasless thaninoptimalconcentrationsoftrifluralinorcarbendazim,thisdifferencewasnot significant(P>0.05).Itisalsoworthnotingthatrelativelylargemegalopaswereproduced inthecopperoxychloridetreatment,severalofwhichdevelopedtocrab1.

Malachitegreenat0.03mgl 1improvedsurvivalofgiantcrablarvaewhilehigher concentrationsdelayedmoulting.Malachitegreenhasbeenusedwithcrabeggs(Fisher, 1976)butwasconsideredtootoxictozoeastobeausefulprophylactictreatmentby Armstrongetal.(1976)andFisherandNelson(1977).Armstrongetal.(1976)founda Lagenidium sp.wasresilienttoconcentrationsofmalachitegreenbelow1mgl 1whichisfar greaterthantheconcentrationwhichproducedchronictoxiceffectsinthisstudy(0.1mgl 1).

Formalinappearedtobeunsuitableforprolongedprophylactictreatmentasmoulting mortalitywassignificantlyhigher(P<0.005)wheresurvivalwasimproved,indicating poorerhealth(Fisher,1983).ShorttermformalinbathsasusedbyHamasakiandHatai (1993)orKajietal.(1991)maybebeneficialwheninfectionoccursforonlyashortperiod.

Conclusion

Theeffectofchemicalsontoxicityandsurvivalwereevaluatedinthistrialasprolonged prophylactictreatments.Bestresultswereobtainedwithoxytetracycline(25mgl 1) althoughuseofantibioticsforcommerciallarvalrearingisgenerallydiscouraged. Trifluralin(0.003mgl 1)andcarbendazim(0.001mgl 1)improvedsurvivalandappearto beusefulalternatives.Furthertrialswithcopperoxychlorideandcarbendazimmaybe

156 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner warrantedassurvivalwasimprovedwithnoapparenttoxiceffects,evenathighdoses. Concentratingprophylactictreatmentaroundcriticalperiods,suchasmoulting,mayallow strongerconcentrationstobeusedwithoutcausingtoxiceffects(Armstrongetal.,1976).

References

Anderson,I.G.1989.Hatcheryhealthproblemsandhygienemanagement.In:InvertebratesinAquaculture. ProceedingsofRefresherCourseforVeterinarians,1921May1989,Brisbane.Postgraduatecommitteein veterinaryscience,UniversityofSydney,117:109120.

Armstrong,D.A.,Buchanan,D.V.andCaldwell,R.S.1976.Amycosiscausedby Lagenidium sp.inlaboratory rearedlarvaeoftheDungenesscrab, Cancer magister ,andpossiblechemicaltreatments.J.Invertebr.Pathol.,28: 329336.

Brock,J.A.andLeaMaster,B.1992.Alookattheprincipalbacterial,fungalandparasiticdiseasesoffarmed shrimp.In:J.Wyban(Editor),ProceedingsoftheSpecialSessiononShrimpFarming,AQ92.WorldAquaculture Society,BatonRouge,LAUSA,212226.

Caldwell,R.S.,Armstrong,D.A.,Buchanan,D.V.,Mallon,M.H.andMillemann,R.E.1978.Toxicityofthe fungicideCaptantotheDungenesscrab Cancer magister .Mar.Biol.,48:1117.

Ebert,E.E.,Haseltine,A.W.,Houk,J.L.andKelly,R.O.1983.LaboratorycultivationoftheDungenesscrab, Cancer magister .In:P.W.WildandR.N.Tasto(Editors),Lifehistory,environment,andmariculturestudiesofthe Dungenesscrab, Cancer magister ,withemphasisonthecentralCaliforniafisheryresource.StateofCaliforniaDept. ofFishandGame,FishBulletin,172:259309.

Fisher,W.S.1976.RelationshipsofepibioticfoulingandmortalitiesoftheeggsoftheDungenesscrab( Cancer magister ).Can.J.Fish.Aquat.Sci.,33:28492853.

Fisher,W.S.1983.Epibioticmicrobialinfestationsofculturedcrustaceans.In:C.J.Bergjr.(Editor),Cultureof marineinvertebrates,selectedreadings.HutchisonRossPublishingCompany,Pennsylvania,pp.257265.

Fisher,W.S.andNelson,R.T.1977.TherapeutictreatmentforepibioticfoulingonDungenesscrablarvae( Cancer magister )rearedinthelaboratory.Can.J.Fish.Aquat.Sci.,34:432436.

Gardner,C.andQuintana,R.1998.LarvaldevelopmentoftheAustraliangiantcrab Pseudocarcinus gigas (Lamarck 1818)(Decapoda:Oziidae)rearedinthelaboratory.J.Plank.Res .,20:11691188.

GilTurnes,M.S.andFenical,W.1992.EmbryosofHomarus americanus areprotectedbyepibioticbacteria.Biol. Bull.,182:105108.

Hamasaki,K.andHatai,K.1993.Preventionoffungalinfectionintheeggsandlarvaeoftheswimmingcrab andthemudcrab Scylla serrata bybathtreatmentwithformalin.NipponSuisanGakkaishi,59: 10671072.

Kaji,S.,Kanematsu,M.,Tezuka,N.,Fushimi,H.andHatai,K.1991.Effectsofformalinbathof Haliphthoros infectiononovaandlarvaeofthemangrovecrab Scylla serrata .NipponSuisanGakkaishi,57:5155.

Lightner,D.V.1993.DiseasesofculturedPenaeidshrimp.In:J.McVey(Editor),CRCHandbookofMariculture, CrustaceanAquaculture.CRCPress,Tokyo,pp.393486.

LioPo,G.D.andSanvictores,E.G.1986.Toleranceof eggsandlarvaetofungicidesagainst Lagenidium sp.and Haliphthoros philippinensis .Aquaculture,51:161168.

157 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

LioPo,G.D.,Sanvictores,M.E.G.,Baticados,M.C.L.andLavilla,C.R.1982.Invitroeffectoffungicideson hyphalgrowthandsporogenesisof Lagenidium spp.isolatedfrom Penaeus monodon larvaeand Scylla serrata eggs.J. Fish.Dis.,5:97112.

Mardia,K.V.,Kent,J.T.andBibby,J.M.1979.MultivariateAnalysis.AcademicPress,N.Y.,521pp.

Miller,R.G.Jr.1981.SurvivalAnalysis.JohnWileyandSons,N.Y.,238pp.

Nogami,K.andMaeda,M.1992.Bacteriaasbiocontrolagentsforrearinglarvaeofthecrab Portunus trituberculatus . Can.J.Fish.Aquat.Sci.,49:23732376.

Paynter,J.L.1989.Penaeidprawndiseases.In:InvertebratesinAquaculture.ProceedingsofRefresherCoursefor Veterinarians,1921May1989,Brisbane.Postgraduatecommitteeinveterinaryscience,UniversityofSydney,117: 145190.

Sokal,R.R.andRohlf,F.J.1995.Biometry,thePrinciplesandPracticeofStatisticsinBiologicalResearch.W.H. Freeman,N.Y.,887pp.

Williams,R.R.,Bell,T.A.andLightner,D.V.1986.Degradationoftrifluralininseawaterwhenusedtocontrol larvalmycosisinPenaeidshrimpculture.J.WorldAquacult.Soc.,17:812.

158 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

General Discussion: Larval Biology of the Giant Crab Pseudocarcinusgigas

9

159 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Taxonomy

Theanatomyofthelarvalstagesof Pseudocarcinus gigas wasconsistentwithothermembers ofthefamilyEriphiidae.Someunusualcharactersindicatedaffinitywithcrabsofthe genus Ozius ,suchasaspineonthedorsalsurfaceofthefirstabdominalsomiteofzoeas, andaspineonthechelipedischiumofthemegalopa. Ozius truncatus and O. deplanatus are foundacrosssouthernAustraliainthesameregionas P. gigas whichstrengthensthe proposedaffinity(Edgar,1997).Manylifehistorytraitsofcrabspecies,suchasmating behaviour,areconsistentwithinfamilytaxasocomparisonwithsimilarspeciescanbe useful(Hartnoll,1969).McLay(1988)reviewedpublishedinformationon O. truncatus whichislimitedtoobservationsonfeedinganddefencebehaviourofadults,dietstudies (ChiltonandBull,1984;SkilleterandAnderson,1986),anddescriptionofthelarvae(Wear, 1968;WearandFielder,1985).Unfortunately,noinformationhasbeenpublishedonthe reproductivebiologyofthisspeciesalthoughitwouldbeusefulforpredictingstrategiesin P. gigas duetothesimilaritybetweenthegeneraevidentfromlarvalmorphology. Taxonomicallyconservativeaspectsofthereproductivebiologydiscussedinthenext sectionofthisthesis,suchassoft/hardshelledmatingoffemales,couldbestudiedmore easilywithasmall intertidalspecieslike O. truncatus .

Themegalopasof Menippe speciesaresimilarto P. gigas basedonthecharactersusedby Martin(1988),althoughthiswasconsideredtobemainlyanartefactofthepresenceof5 zoealstages,ratherthan4asinothermembersofEriphiidae.Nonetheless,thezoeasof Menippe and P. gigas weregroupedtogetherusingarangeofcharactersdescribedbyMartin (1984)forxanthoidcrabsandthisprovidesmorelegitimateevidenceoftaxonomicaffinity. Menippe speciesareharvestedcommerciallyintheWestAtlanticandtheCaribbeanand therehavebeenseveralpublicationsonthereproductivebiology.Thesestudiesprovidea guidetoaspectsofthereproductivestrategiesofP. gigas andarediscussedinthenext section.

155 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Larvaldispersal

Modern,threedimensionalhydrodynamicmodelspermitthelarvaldispersalofspeciesto bepredictedprovidedaccuratebiologicalandoceanographicinformationisavailable (KeoughandBlack,1996).Theseauthorslistedcategoriesofbiologicaldatathatthey consideredcriticalformodellingandthesewerethedurationoftheplanktonicperiod, buoyancy,andlarvaltaxesandswimmingspeeds.

Anaimoftheresearchonlarvalbehaviourpresentedinthisthesiswastocollectthis informationsothatdispersalmodellingcouldbeconductedinthefuture.The constructionofthreedimensionalhydrodynamicmodelsofsouthernAustraliaisunderway toinvestigatedispersalofsouthernrocklobstersJasus edwardsii (CSIROAustralia)anditis anticipatedthatthesemodelswillbesuitableforP. gigas .Modeloutputsofdispersalof P. gigas larvaeshouldhavehigherprecisionthanfor J. edwardsii asrocklobstershavean extremelyprotractedplanktonicstageofupto24months(Cobbetal.,1997)andareable todelaymetamorphosisbymarktimemoultinguntilconditionsaresuitable(Pollockand MelvilleSmith,1993;Baisre,1994).

Planktonic period

Theplanktonicperiodof P. gigas isrelativelylongcomparedwithothereriphiids,dueto developmentthrough5,ratherthan4zoealstages(ineriphiidsotherthan Menippe species), andthemoretemperateenvironment. Ozius truncatus and O. verreauxii take2428and15 daystoreachmegaloparespectively,while M. mercenaria takes1222days(Wear,1968;Ong andCostlow,1970;DittelandEpifanio,1985;McConnaugheyandKrantz,1992).Larval durationof P. gigas wasvariableandbecamelongeratlowertemperature,lowerlight intensity,shorterphotoperiod,andinresponsetotoxicityathighconcentrationsof prophylacticchemicaltreatments.Feedingandnutritionwasnotresearchedbutthiscan alsoinfluencelarvalduration,althoughlarvaetendtogrowlarger,ratherthanfaster,with improvednutrition(MinagawaandMurano,1993;Tong,etal.,1997).

Temperaturehadaprofoundeffectonplanktonicperiodandthedurationfromhatchto megaloparangedfrom41daysat21 °Cto73daysat13 °C.Asisoftendemonstratedin

156 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner crustaceanaquaculturetrials,rapidgrowthisnotnecessarilyoptimalgrowth,aslarvaemay failtoaccumulatesufficientreservestometamorphosesuccessfully(Minagawa;1990; ChaoshuandShaojing,1992;Okamoto,1993).Thesizeof P. gigas larvaedecreasedwith increasingtemperaturewhichappearedtoaffectmetamorphosisinlarvaeculturedat temperaturesgreaterthan16.8 °C.Resultsfromlarvalbehaviourtrialsindicatedthatlarvae wouldsinktoavoidthesetemperaturessothatthetypicaltemperaturerangeof P. gigas larvaeislikelytoliebetween14 °Cand16 °C(establishedforstage1and2zoeasonly). Thisissimilartowatertemperatureintheupper50malongsouthernAustraliaduringlate SpringandearlySummer(Fig.1).Themeandurationofzoealstagesatthesetemperatures rangedfrom48to62days.

Themegalopastageofbrachyuransisalsoaplanktonicdispersalstagealthoughthey regularlydescendtothesubstrate(Lochmannetal.,1995).Thedurationofthemegalopa stageinP.gigaswasonlydeterminedintrialswithprophylactictreatmentsfordiseaseat 16 °Cwherethemeandurationwas38days.KeoughandBlack(1996)consideredthat estimatesoflarvaldurationfromlaboratorystudieswereupperlimitsasmostplanktonic marinelarvaerequirespecificcuestosettle,whicharenotusuallypresentinthelaboratory. Thisisunlikelytoapplytobrachyuranzoeas(whichdonotmoulttoasettlingstage), althoughthedurationofthemegalopastageinlaboratorystudiesmaybelongerthanin nature.TherewassomeevidenceofthisinrearingofP.gigasasthemegalopasceased swimmingaround10daysbeforemetamorphosingtojuvenilesandmovedentirelyby walking.Theabdomenwasflexedunderthecephalothoraxwhichsuggestedthatthe musculatureoftheabdomenhadaltered,andthatlocomotionbyswimmingwiththe pleopodswasnolongerpossible.Thenaturallocationofsettlementofthisspeciesislikely tobeatconsiderabledepthsoitisquiteprobablethatappropriatesettlementcueswerenot presentandthatmetamorphosiswasdelayed.

157 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 1. Temperature maps of the upper 50 m of oceanic water across southern Australia in November, December and January (averaged for 7 years preceding 1996; maps supplied by CSIRO).

158 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Buoyancy

All P. gigas larvalstageswerenegativelybuoyantandstage1zoeassankat0.61cm s1. However,themeanupwardswimmingspeedofstage1zoeaswas1.61cm s1solarvae werereadilyabletomaintainverticalpositionandsomelarvaemaintainedpositionin horizontalcurrentsofupto1.87cm s1.Exceptinconditionsofupwellingor downwelling,theirabilitytomaintainpositionandverticaldistributionwouldbe determinedbytheirresponsetoenvironmentalstimuli.

Larval taxes

Behaviouralresponsesofzoea1, P. gigas larvaetoarangeofenvironmentalstimulisuggests thattheymigratetowardsthesurfaceafterhatching,thenliveinrelativelylowlight environments(<230lux).Theconclusionofupwardswimmingtothesurface immediatelyafterhatchisbasedonthestrong,negativegeotacticswimmingbehaviourof larvaeduringthefirst24hafterhatch.Althoughonlythreespecimenswerecaptured,this issupportedbythedepthof P. gigas larvaeobtainedfromplanktonsampleswhichwereall intheupper100mofwater.

Anindicationthatlarvaeareadaptedforlowlightenvironmentsisthatthenegative phototacticresponseoflarvaetochangeinlightintensityonlyoccurredatlowintensity below230lux(roughlysimilartothelightlevelinaforestonanovercastday).Thiswasan unusualresponseasitinvolvedactivenegativephototaxis,ratherthanmerelyslow swimmingspeedresultinginsinking.Thesensitivityoflarvaetochangesinlightatlow intensity,butnotatbrightintensity,suggeststhatthismaybethenaturallightenvironment of P. gigas larvae.Althoughpositivephototaxiswasobservedathigherintensities,thismay bealaboratoryartefactwhichisdifficulttoavoid,evenwiththeapparatusdesigndescribed inChapter5whichwasintendedtosimulatenaturalunderwaterlightdistribution(Stearns andForward,1984;Forward,1985;Forward,1988).Larvaewereabletofeedandgrow throughtomegalopainlowintensitylighting(2lux)orcompletedarknesswhich demonstratesthattheywouldnotneedtobepresentinsurfacewatersduringthedayto captureprey.Theproposeddielmigrationpatternof P. gigas larvaeisdeeperdistribution duringthedayandshallowerdistributionduringthenight.

159 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Resultsoftrialsontheeffectoftemperatureonlarvalbehaviourindicatethattemperature regulatesdepthdistributionintheabsenceoflight.Asnotedearlier,thetypical temperaturerangeof P. gigas larvaeislikelytoliebetween14 °Cand16 °C.Thisindicates thatatnight,larvaewillaccumulateatthesurfaceinwateroflessthan14 °Candatdeeper depthsinwaterofmorethan16 °C.Larvaereadilypenetratedthermoclinesbuttheir distributionmaystillbeinfluencedbytheabsolutetemperaturesoneithersideofthe boundarylayer.Forinstance,itispredictedthatlarvaewouldaccumulateatathermocline withanuppertemperatureof17 °Candalowertemperatureof13 °C.

Resultsfrombehaviouralexperimentswerelimitedforseveralreasonsanditisunrealistic toexpectprecisepredictionofthenaturaldistributionoflarvae.Rather,thesetrials provideexperimentalevidenceofmechanismstoexplainlarvaldistribution.Most experimentationwasbasedonfirststagezoeasandthereispotentialforontogenetic changeintheresponseoflarvaetoenvironmentalstimuli(Forward,1990).Also,larval behaviourisextremelycomplexandanattemptwasmadetoisolatespecificstimuliinmost oftheexperimentsreportedhere.Naturalbehaviouralresponsesofbrachyuranlarvae involvecomplexinteractionsbetweenseparatestimuli,suchaslightandtemperature (Anger,1983;Sulkin,1984).Accurateinformationonnaturaldistributioncouldbe obtainedbyplanktonsampling,asdescribedinChapter4,atdifferentdepthsandin regionswithhigherdensityofadultcrabs,suchasinthenorthwestandnortheastof TasmaniaduringOctober,NovemberandDecember.Thisinformationwouldallow testingofthehypothesesonlarvalverticalmigrationpresentedinthisthesis.

Aquaculturepotential

Demandforsmallgiantcrabsoflessthan3kghascontinuedtogrowsincetheinception ofthisprojectwithanassociatedincreaseinbeachprice.Thefisheryappearstohave peakedandbeindeclineafteraninitialfishdownofvirginstock,sothecurrenthigh beachpricesof$(Aust)50/kgshouldbesustainedandmayincrease.Mostproductis exportedtoAsianmarketsandpriceshavenotbeenaffectedbyrecenteconomicproblems inthisregion,whichalsoindicatesthatcurrentpricesarerobust.Thereisclearlymarket opportunityforsmall,aquacultureproduct.

160 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Hatchery production

Researchconductedonprophylactictreatmentsforlarvaldiseasedemonstratedthathatchery productionofjuvenilegiantcrabsispossible(Fig.2).Bestperformancewasintreatmentswith oxytetracyclinewithsurvivalinsometanksof10%throughtocrab1.Althoughoxytetracycline enhancedsurvivalof P. gigas larvae,theprophylacticuseofantibioticsincrustaceanhatcheries isinappropriateasitpromotesthedevelopmentofresistantstrainsofbacteria(Anderson, 1989).Twootherchemicalsenhancedsurvivalof P. gigas larvaeandappeartobepromising alternativestoantibiotics:copperoxychlorideandcarbendazim.

Figure 2. Hatchery-reared, first instar giant crab on an Australian 5 cent coin (around the size of a US 1 cent coin).

Survivalthroughtothelastzoealstagewasgenerallyabove50%withmostmortalityatthe moulttomegalopa.Thismayindicatethatconditionswereinappropriateforthelastzoeal stage,ormoreprobably,thatthelarvaewerelackingsufficientreservesfromthezoealstagesto successfullymetamorphose.Thisisacommonprobleminlarvalrearingofdecapodsand furtherresearchisrequiredwith P. gigas toimprovesurvivaltomegalopa.

Twoareasaresuggestedforfurthertrialsinhatcheryproductionof P. gigas .First,cannibalism ofspinesandappendagesappearedtocausemortality,primarilythroughweakeningthelarvae andexposingthelarvaetobacterialsepticaemia.Althoughthiswasreducedbyculturinglarvae incompletedarkness,thesizeandgrowthrateoflarvaewasaffectedandcontinuousdarkness 161 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner isnotrecommended.Amoreeffectiveoptionmaybeimprovedtankdesignwithgreater mixingoflarvae.Highsurvivalofover70%tomegalopahasbeenachievedwith Menippe mercenaria culturedinKreiseltankswhichproducethoroughmixingtominimisecontact betweenlarvae(Hughesetal.,1974;McConnaugheyandKranz,1992).Asecondareafor furtherresearchonhatcheryproductionistoadjustenvironmentalconditionsthrough developmenttosuitontogeneticchangesinenvironmentalpreferences.Temperatureislikely tobeespeciallyimportantasbehaviouraltoleranceoffirstandsecondstagezoeaswasrestricted toanarrowtemperaturewindow.Ontogeneticchangesintemperaturetolerancecouldbe assessedbyvaryingtemperaturethroughdevelopmentexperimentally,orbyassessing instantaneousmortalityratesofdifferentstagesmaintainedinstatictemperaturesystems.This wasnotpossibleinthetrialpresentedinChapter6duetolowsamplesize.

Larvaldurationof P. gigas wasextremelyprotractedrelativetootherspecieswhichhavebeen consideredasaquaculturecandidates.Forinstance,both Scylla serrata and M. mercenaria take around12daystoreachmegalopacomparedwith48to62daysin P. gigas (Chaoshuand Shaojing,1992;McConnaugheyandKranz,1992).Thisextendedlarvaldurationmayprohibit productionof P. gigas juvenilesatarealisticcostandaneconomicassessmentwouldbewise priortoanyadditionalresearch.Estimatesofsurvivalanddensitycouldbebasedonthose obtainedwith M. mercenaria inpilotscalehatcheryproduction(72.2%and30.7megalopas/l respectively;McConnaugheyandKranz,1992).

Grow-out of juvenile crabs

Notrialsonthegrowoutof P. gigas juvenilesaredescribedinthisthesisalthoughsome observationsarerelevant.Cannibalismhasbeenaproblemwiththegrowoutphasein cultureofportunids , especiallyduringecdysis(Bardachetal.,1972),butwasnotobserved with P. gigas juvenilesoradults.

Growthofjuvenile P gigas wasveryslowforanaquaculturespecieswithjuvenilesreaching ameanof27mmcarapacewidthin12monthsinambientflowthroughwaterinHobart (Fig.3;Gardner,1998).Thisissimilarto M. mercenaria whichtake12monthstoreach10 mmcarapacewidthundernormalconditionsforFlorida(Tweedaleetal.,1993)and2.5 162 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner yearstoreachmarketablesizeof100mmcarapacewidth(Bardachetal.,1972).An increaseintemperaturetypicallyleadstoshorterintermoultuptoanoptimaltemperature forfastestgrowth(KondzelaandShirley,1993).Watertemperatureinthegrowoutof P. gigas juvenilesrangedfrom7 °to17 °Candfastergrowthofjuvenilesmaybepossibleat warmertemperatures.However,growthisunlikelytocomparewiththatofother aquaculturecandidatespeciessuchas Scylla serrata whichcanreachmarketablesizewithin9 months(C.Keenan,Pers.Comm.,QueenslandDPIF,1997)or Callinectes sapidus whichcan reachmarketablesizein4months(Bardachetal.,1972).Although S. serrata and C. sapidus areworthfarlessthan P. gigas ,theslowgrowthof P. gigas juvenilesremainsaproblemfor aquaculture.Growoutof P. gigas juvenilesmaynotbeviableexceptincombinationwith existingoperations,suchasabaloneculture,orforstockenhancement.

Figure 3. Hatchery-reared juvenile giant crab, 12 months after hatching.

References

Anderson,I.G.1989.Hatcheryhealthproblemsandhygienemanagement.In:InvertebratesinAquaculture. ProceedingsofRefresherCourseforVeterinarians,1921May1989,Brisbane.Postgraduatecommitteein veterinaryscience,UniversityofSydney,117:109120.

Anger,K.1983.Temperatureandthelarvaldevelopmentof Hyas araneus L.(Decapoda:Majidae); extrapolationoflaboratorydatatofieldconditions.JournalofExperimentalMarineBiologyandEcology,69: 203215.

Baisre,J.A.1994.PhyllosomalarvaeandthephylogenyofPalinuroidea(Crustacea:Decapoda):areview. AustralianJournalofMarineandFreshwaterResearch,45:925944. 163 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Bardach,J.E.,Ryther,J.H.andMcLarney,W.O.1972.Aquaculture,theFarmingandHusbandryof FreshwaterandMarineOrganisms.JohnWileyandSons,Brisbane.868pp.

Chaoshu,Z.andShaojing,L.1992.Effectsoftemperatureonsurvivalanddevelopmentofthelarvaeof Scylla serrata .JournalofFisheriesChina,16:5866.

Chilton,N.B.andBull,C.M.1986.Sizerelatedselectionoftwointertidalgastropodsbythereefcrab Ozius truncatus .MarineBiology,93:475480.

Cobb,J.S.,Booth,J.D.andClancy,M.1997.Recruitmentstrategiesinlobstersandcrabs:acomparison. MarineandFreshwaterResearch,48:797806.

Dittel,A.andEpifanio,C.E.1985.Desarrollolarvalde Ozius verreauxii Saussure(Brachyura:Xanthidae)en ellaboratorio.RevistadeBiologiaTropical,32:171172.

Edgar,G.1997.AustralianMarineLife:thePlantsandAnimalsofTemperateWaters.ReedBooks,Kew, Victoria.544pp.

Forward,R.B.Jr.1985.Behaviouralresponsesoflarvaeofthecrab Rhithropanopeus harrisii (Brachyura: Xanthidae)duringdielverticalmigration.MarineBiology,90:918.

Forward,R.B.Jr.1986.Areconsiderationoftheshadowresponseofalarvalcrustacean.MarineBehaviour andPhysiology,12:99113.

Forward,R.B.Jr.1988.Dielverticalmigration:zooplanktonphotobiologyandbehaviour.Oceanographyand MarineBiologyAnnualReview,26:361393.

Forward,R.B.Jr.1990.Behaviouralresponsesofcrustaceanlarvaetoratesoftemperaturechange.Biological Bulletin,178:195204.

Gardner,C.1998.TheTasmaniangiantcrabfishery:asynopsisofbiologicalandfisheriesinformation. TasmanianDepartmentofPrimaryIndustryandFisheries,InternalReport43,40pp.

Hartnoll,R.G.1969.MatingintheBrachyura.Crustaceana ,16:161181.

Hughes,J.T.,Shleser,R.A.andTchobanoglous,G.1974.Arearingtankforlobsterlarvaeandotherspecies. ProgressiveFishCulturist,36:129132.

Keough,M.J.andBlack,K.P.1996.Predictingthescaleofmarineimpacts:understandingplanktoniclinks betweenpopulations.In:DetectingEcologicalImpacts,ConceptsandApplicationsinCoastalHabitats(Eds. R.J.SchmittandC.W.Osenberg).AcademicPress,Sydney.Pp.199234.

Kondzela,C.M.andShirley,T.C.1993.Survival,feeding,andgrowthofjuvenileDungenesscrabsfrom southeasternAlaskarearedatdifferenttemperatures.JournalofCrustaceanBiology,13:2535.

Lochmann,S.E.,Darnell,R.M.andMcEachran,J.D.1995.Temporalandverticaldistributionofcrablarvae inatidalpass.Estuaries,18:255263.

McConnaughey,R.A.andKrantz,G.E.1992.Hatcheryproductionofstonecrab, Menippe mercenaria (Say), megalopae.ProceedingsofaSymposiumonStoneCrab(Genus Menippe )BiologyandFisheries,Florida MarineResearchPublications,50:6066.

McLay,C.L.1988.BrachyuraandcrablikeAnomuraofNewZealand.LeighLaboratoryBulletin,22:iiv,1 463.

Martin,J.W.1984.Notesandbibliographyonthelarvaeofxanthidcrabs,withakeytotheknownxanthid zoeasofthewesternAtlanticandGulfofMexico.BulletinofMarineScience,34:220239.

164 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Martin,J.W.1988.Phylogeneticsignificanceofthebrachyuranmegalopa:evidencefromtheXanthidae. SymposiumoftheZoologicalSocietyofLondon,59:69102.

Minagawa,M.1990.Influenceoftemperatureonsurvival,feedinganddevelopmentoflarvaeoftheredfrog crab, Ranina ranina (Crustacea,Decapoda,Raninidae).NipponSuisanGakkaishi,56:755760.

Minagawa,M.andMurano,M.1993.Larvalfeedingrhythmsandfoodconsumptionbytheredfrogcrab Ranina ranina (Decapoda,Raninidae)underlaboratoryconditions.Aquaculture,113:251260.

Okamoto,K.1993.Influenceoftemperatureonsurvivalandgrowthoflarvaeofthegiantspidercrab, Macrocheira kaempferi (Crustacea,Decapoda,Majidae).NipponSuisanGakkaishi,59:419424.

Ong,K.S.andCostlow,J.D.Jr.1970.Theeffectofsalinityandtemperatureonthelarvaldevelopmentofthe stonecrab, Menippe mercenaria (Say),rearedinthelaboratory.ChesapeakeScience,11:1629.

Pollock,D.E.andMelvilleSmith,R.1993.Decapodlifehistoriesandreproductivedynamicsinrelationto oceanographyoffsouthernAfrica.SouthAfricanJournalofMarineScience,13:205212.

Shirley,S.M.andShirley,T.C.1988.Behaviourofredkingcrablarvae:phototaxis,geotaxisandrheotaxis. MarineBehaviourandPhysiology,13:369388.

Skilleter,G.A.andAnderson,D.T.1986.Functionalmorphologyofthechelipeds,mouthpartsandgastric millof Ozius truncatus (MilneEdwards)(Xanthidae)and Leptograpsus variegatus (Fabricius)(Grapsidae)(Brachyura).AustralianJournalofMarineandFreshwaterResearch,37:6779.

Stearns,D.E.andForward,R.B.Jr.1984.Photosensitivityofthecalanoidcopepod Acartia tonsa .Marine Biology,82:8589.

Sulkin,S.D.1984.Behaviouralbasisofdepthregulationinthelarvaeofbrachyurancrabs.MarineEcology ProgressSeries,15:181205.

Tong,L.J.,Moss,G.A.Paewai,M.M.andPickering,T.D.1997.Effectofbrineshrimpnumbersongrowth andsurvivalofearlystagephyllosomalarvaeoftherocklobster Jasus edwardsii .MarineandFreshwater Research,48:935940.

Tweedale,W.A.,Bert,T.M.andBrown,S.D.1993.GrowthofpostsettlementjuvenilesoftheFloridastone crab, Menippe mercenaria (Say)(Decapoda:Xanthidae),inthelaboratory.BulletinofMarineScience,52: 873885.

Wear,R.G.1968.LifehistorystudiesonNewZealandBrachyura.2.FamilyXanthidae.Larvaeof Heterozius rotundifrons A.MilneEdwards,1867, Ozius truncatus H.MilneEdwards,1834,and Heteropanope ( Pilumnopeus ) serratifrons (Kinahan,1856).NewZealandJournalofMarineandFreshwater Research,2:293332.

Wear,R.G.andFielder,D.R.1985.ThemarinefaunaofNewZealand:larvaeoftheBrachyura(Crustacea, Decapoda).NewZealandOceanographyInstituteMemoirs,Wellington,92pp.

165 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

General Introduction: Reproductive Biology of the Giant Crab Pseudocarcinusgigas

10

166 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Theneedforresearch

Thegiantcrabfisherygrewrapidlyafter1991andfisheriesmanagersinitiallyhadno biologicalinformationtoassistinformulatingmanagementstrategies.Duringthis developmentperiod,thefisherywasmanagedbyafederalauthority(AustralianFisheries ManagementAuthority)andlicenceswereissuedwithlittleattempttorestrainincreasein effort.ThelackofcautionexercisedbythisauthoritywasananathematomostState fisheriesmanagementauthoritiesanditwascriticisedinthewidercommunity.Atthis time,theorangeroughy Hoplostethus atlanticus fisheryhadjustcollapsedasinformationon growthandbiomasshadbeencollectedonlyafterintensefishingpressurewasappliedto stocks,ratherthanbefore.ScientistssuchasTimFlannery(1994)consideredthatthe orangeroughycollapsecouldberepeatedwithgiantcrabsastheywerealsofromdeep water,wereprobablyslowgrowing,andweresubjectedtohighfishingpressurebefore researchwasconducted.TsaamenyiandMcIlgorm(1995)discussedthedraft"FAOCode ofConductforResponsibleFishing"andillustratedproblemswithcurrentpracticein AustraliausingtheTasmaniangiantcrabfisheryasanexample.Thiscodeofconduct suggeststhatexploitationofapreviouslyunfishedstockshouldnotincreaseuntilaplanfor rationalexploitationhasbeenagreed.

Thisillustratestheneedforinformationonthebiologyofthegiantcrabwhichprompted researchincludingthatpresentedinthisthesis.Informationonlarvalbiologywasinitially requiredtoaddressconcernsthatdispersalmaybelimited.Afterhavingestablishedthat developmentwasnotabbreviated,researchonthelarvalbiologywasdirectedtowards providinginputdatafordispersalmodelling.Whilethisresearchcancontributetothelong termviabilityofagiantcrabfisheryacrosssouthernAustralia,informationonthe reproductivebiologywasrequiredmoreimmediatelyforestablishingbasicmanagement rules,suchassizelimitsandclosedseasons.

161 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Commercialmanagement arrangements

CurrentmanagementarrangementsfortheTasmaniancommercialfisheryarelistedin Table1.Therearealsorestrictionsoftherecreationalharvestofgiantcrabswitha maximumdailycatchlimitoftwocrabs.Thisrecreationallimitislargelyunnecessaryasno recreationalcatchofgiantcrabswasrecordedinarecentsurveyofrecreationalfishingin Tasmania(LyleandSmith,1998).Notethatthecommercialmanagementarrangements arebasedoninputcontrolstoconstraineffortandmostofthesearebasedontherock lobsterfisheryforeaseofenforcement(e.g.escapegapsandclosedseasons).Ofthe existingcontrols,onlytheminimumsizelimitislinkedtobiologicalinformationandthis wasintroducedasaninterimmeasureuntilmoreextensivedatabecameavailable.

Themanagementsystemiscurrentlyunderreviewandvariousalternativeshavebeen proposedincludingtheintroductionofatotalallowablecatch,reductionoflicenses,and theintroductionofamaximumsizelimit.Informationonthereproductivebiologyis clearlyusefulinthisprocess.

Table 1. Current management arrangements for the fishery

Managementzone: onemanagementzonefortheState(sinceJanuary1997). Limitedentry: 106licences(approximately1/3ofthe321rocklobster licencesintheState). Limitedseasons: 18 th November21 st December;3 rd January14 th February; 1st March31 st August. Limitsofpotsonvessels: minimumof15pots,maximumof50pots. Restrictionsonsettingpots: potscannotbeset,orpulled,betweentwohoursaftersunset andtwohoursbeforesunrise.Potsmustbehaulednolonger than5daysafterbeingset.Potsmaybedeployedinlong linesofupto10pots. Restrictionsonpotsize: maximumsizeof1250mmx1250mmx750mm. Escapegaps: oneescapegapatleast57mmhighand400mmwideandnot morethan150mmfromtheinsideloweredgeofthepot,or twoescapegapsatleast57mmhighand200mmwideand notmorethan150mmfromtheinsideloweredgeofthepot (asdesignedforrocklobster). Minimumsizelimits: 150mmcarapacelengthforbothsexes(since1993). Ovigerousfemales: takingofovigerousfemalesprohibited(since1993).

162 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Developmentoftechniquesfor research

Twochaptersinthissectiondescribetechniquesdevelopedforuseinsubsequentresearch onreproductivebiology.Thefirstreportstheeffectofvarioustreatmentstestedfor humanelykillingorimmobilisinggiantcrabs.Crabsweredifficulttosubdueorkillusing conventionalmethodssuchaschillingandtheywouldoftendamagethemselvesstruggling againstclawties.Asidefromethicalconsiderations,theabilitytoimmobilisecrabsduring proceduressuchasremovingeggswasbeneficialascrabswereeasiertoworkwith.Giant crabsareextremelystrong,andsometimesfast,sotechniquestoimmobilisethemreduced theriskofhumaninjury.

Thesecondchapterontechniquedescribesoptionsforthenonlethalimagingof spermathecae.Thiswasinvestigatedforresearchonspermstorageinfemalesheldfor severalyearsintanks(Chapter14).Itwasintendedthatscanningspermathecaewould allowimagestobecollectedofthespermathecaewithoutkillingthecrabs,shouldinfertile clutchesbeproduced.Thisnevereventuateddespiteholdingthefemalecrabsisolated frommalesforthedurationoftheproject,sothetechniquesdescribedwerenever employed.However,theimagingtechniquesareusefulascrabresearchmethodsandhave beenappliedinresearchthatisongoingfromthatdescribedinthisthesis.Thisongoing researchutilisescomputerisedtomographyscanning(CT)toassessgonaddevelopmentand thusonsetofsexualmaturity.Importantbenefitsfromnonlethalimagingarethatcrabs canbesoldaftertheimagesarecollected(themarketforgiantcrabisbasedonliveanimals withbeachpricerangingfrom$50to$200each),andcrabscanbeprocessedmorerapidly thanwouldbepossiblebydissection.

Objectivesofresearchongiantcrab reproductivebiology

Researchwasconductedonthereproductivebiologyofbothmaleandfemalegiantcrabs asbothareavailableforharvest.Althoughbothsexesareharvested,malesmaybesubject tohigherexploitationastheyappeartogrowfasterandthesameminimumlegalsizelimit

163 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner isappliedtobothsexes(Pers.Comm.,R.McGarvey,SouthAustralianResearchand DevelopmentInstitute).Also,theopenseasoniseffectivelyreducedforfemalesasthey cannotberetainedwhileovigerousandeggextrusionoccursinMayorJune,whilethe seasonclosesattheendofAugust.

Initialresearchonthereproductivebiologyofmalecrabsidentifiedmorphologicalstages indevelopmentwhichhavebeenobservedinnumerousotherspecies(Paul,1992).Three morphologicalstagesofdevelopmentinmalegiantcrabsweredefinedbydevelopmentof themolariformchelaerelativetocarapacesize(Figure1).Thereproductivematurityof thesestageswasthesubjectofadditionalresearchwhichinvolvedapreliminaryhistological studyontheformationofspermatophores.Resultsfromthisresearcharediscussedin relationtocurrentmanagementoftheresource.

Severalaspectsofthereproductivebiologyoffemalecrabswasstudiedincludingthe matingsystem,spermstorage,andcyclesofovariandevelopmentandinteractionswiththe hepatopancreas.Eggproductionwasstudiedindetailtoassesstheeffectoffemalesizeon fecundity,individualeggsizeandeggcomposition.Thisinformationisrequiredfor modellingtheimpactoffishingoneggproductionofthepopulation.Although informationontheonsetofsexualmaturityinfemalesiscriticalformanagementofthe resource,thiswasnotinvestigatedinthecurrentstudyasitwasbeyondthescopeof availableresources.However,wherepossible,datawerecollectedfromdifferentregions ofthefisherytoprovidesomeinformationontheextentofspatialeffects.Taxonomic affinitybetween Pseudocarcinus and Menippe wasdemonstratedinChapter3andthiswas usefulforevaluatingresultsofresearchonreproductivebiology.

164 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 1. Male (upper) and female (lower) giant crabs Pseudocarcinus gigas showing sexual dimorphism in the development of the chelae. The male is large (11 kg) and is in the final morphological stage identified in Chapter 14, termed morphological maturity (photos by Karen Gowlett-Holmes).

References

Flannery,T.1994.TheFutureEaters.ReedBooks,Sydney.423pp.

Lyle,J.M.andSmith,J.T.1998.PilotsurveyoflicensedrecreationalseafishinginTasmania1995/96. DepartmentofPrimaryIndustryandFisheriesTasmania,TechnicalReport,51.

Paul,A.J.1992.Areviewofsizeatmaturityinmaletanner( Chionoecetes bairdi )andKing( Paralithodes camtschaticus )crabsandthemethodsusedtodeterminematurity.AmericanZoologist,32:534540.

165 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Tsaamenyi,M.andMcIlgorm,A.1995.InternationalEnvironmentalInstrumentsTheirEffectonthe FishingIndustry.AustralianFisheriesandResearchDevelopmentCorporationFinalReport.

166 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Reproductive Biology of the Giant Crab Pseudocarcinusgigas

11

Gardner,C.1997.Optionsforhumanelyimmobilisingandkillingcrabs. JournalofShellfishResearch.16(1):219224;andas

167 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Abstract

TrialswereconductedontheAustraliangiantcrab Pseudocarcinus gigas (Lamarck)toevaluate methodsto:paralysebyinjection(sothatnomuscularresponseisobserved);paralyseby bath;humanelykillforscientificpurposes;andhumanelykillforhumanconsumption. Treatmentstestedwere:freshwaterbath,chilling,heating,prolongedexposuretoair, hypercapnicseawaterbath(carbondioxideaddition),2phenoxyethanolbath,magnesium sulphatebath,benzocainebath,MS222bath,chloroformbath,cloveoilbath,AQUIS™ bath,xylazineHClbyinjection,andketamineHClbyinjection.XylazineHCl(16or22 mg/kg)andketamineHCl(0.0250.1mg/kg),administeredbyinjection,appeartobethe besttechniquesforparalysingcrabsforshortperiods.Whereinjectionisimpractical,crabs maybesuccessfullyparalysedwithin30minbyabathtreatmentofcloveoil( ≥0.125ml/l) orAQUIS™( ≥0.5ml/l).Chloroform(1.25ml/l;1.5h)andcloveoil( ≥0.125ml/l; ≤60 min)bathsappearedtokillcrabshumanelyandareusefuloptionsforscientificuse, however,cloveoilispreferredaschloroformposesahumanhealthrisk.Ofthemethods tested,onlycloveoilandAQUIS™appearpromisingastreatmentsforthehumanekilling ofcrabsforhumanconsumption.

Introduction

Methodsofparalysingcrabscanbenefitmanyresearchsituationsinvolvinglivecrabs; proceduresmaybeconductedmoreefficientlyandtraumatothecrabisreduced(Oswald, 1977).Wheretheapplicationisprolongedorthedosageincreased,humanekillingmay resultwhichisdesirableforresearchandcommercialusesofcrabs.Incommercial situations,itisimportantthatqualityisnotharmedbyeffectssuchasautotomy,andtoxic chemicalscannotbeused.RecentchangestoAustraliananimalcrueltylegislationhave addedanotherconsiderationtothecommercialkillingofcrabs:thatthecrabbekilled humanely.

Humanekillinginvolvesattemptingtoinflictaslittlepainaspossiblewhilekillingthecrab. Painisadifficult,orperhapsimpossible,aspecttomeasureinanimalsotherthanhumans, 175 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner soitisusuallyinferredfromchangesinbehaviourwhichseemtoindicatedistress (Chapman,1992;Cook,1996).Thesebehaviouralchangesarenotapparentwhenthe muscularresponseisblockedbyinducedparalysis,soanaesthesia(blockageofpain)isnot assured,despiteanapparentlackofdistress.Likewise,theabsenceofbehavioural indicationsofdistressdoesnotnecessarilyindicatethatkillingispainless.Nonetheless,in theabsenceofmethodstoquantitativelymeasurepain,techniquesforkillingor immobilisinganimalswheredistressisapparentlyreducedarepreferredtotechniques whichproduceobviousdistress.Thisstudyreportstheresultsoftrialsintemporarily paralysingandkillingtheAustraliangiantcrab Pseudocarcinus gigas (Lamarck)whichislarge andpotentiallydangerous,aslargemalesarecapableoffracturingahumanwrist.Thus, techniquesforimmobilisinggiantcrabsarealsobeneficialastheyimprovehandling.

Althoughnumerousmethodsoftemporarilyparalysingandkillingcrustaceanshavebeen documented,manyareslow,inconsistent,andappeartocausetrauma(Brownetal.,1996). Arangeofphysicalandchemicaltreatmentswastestedongiantcrabstoestablishwhich treatmentswereeffectiveandeconomicalforthislargespecies,andalsotonoteapparent traumafromtreatments.Treatmentswereevaluatedforthefollowingapplications: paralysingbyinjection(appropriateforlargecrabs);paralysingbybath(appropriatefor smallcrabs);killingforresearch(toxicchemicalsacceptable);andkillingforcommercial use(safeforconsumption).

Materialsandmethods

Adultgiantcrabs( Pseudocarcinus gigas )werecollectedfromwesternTasmaniabycommercial fishersandrangedfrom1to7kgwithmostbetween2.5and3.5kg.Crabswereheldin4 m3tankswithflowthroughseawaterandwereonlyusediftheyexhibitednormal avoidanceofcapture.Treatmentswerefirsttestedinproducingparalysis;crabswerethen allowedtorecoverintankswithflowthroughseawaterandweremonitoredfortwodays toassessanyilleffects.Wherethetreatmentwaseffectiveanddidnotappeartocause pain(seebelow),furthertrialswereundertakentoestablishappropriatedosagesfor producingtemporaryparalysisandtoassessthetreatmentforhumanekilling.Insome treatments,thecrabsappearedtobeseverelyharmedbytheparalysistrialandrecoverywas notassessed.

176 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Criteria for assessing pain, paralysis, and death

Althoughpainisimpossibletoquantify,changesinbehavioursofexperimentalanimals havebeenusedtoinferperceptionofpain(Chapman,1992;Cook,1996).Inthesetrials, thetreatmentwasconsideredtohavecausedpainwherecrabsdroppedlimbs(autotomy), toreattheirappendagesorabdomens,becametensedandrigid,orappearedtohave musclespasms.

Paralysiswasconsideredcompletewhentheabdomencouldbeeasilyliftedandchelae (claws)couldnotbeuseddefensively.Whererecoverywastobeassessed,crabswere removedfrombathtreatmentsbeforecirculationofwateroverthegillsceased(externally observedbyflowofwater).Nervoussystemsofcrabshavetwocentres,thecerebraland theposteriorganglia.Baker(1955)devisedasimplesystemoftestingifthesecentreswere functioning,andthusifthecrabwasalive,byobservingtheresponsetostimuliappliedto differentappendages.Wherenoresponsewasobservedthecrabwasclasseddead.Baker’s (1955)systemwasmodifiedinthisstudytoavoidtheuseofopticalstimuliasgiantcrabs aredeepseaanimalsandtheirspectralsensitivitymayhavebeenimpairedbysurfacelevel sunlightaftercapture(CroninandForward,1988).Consequently,thefollowingtestswere usedtoassessifcrabsweredead:

Antennalreaction:Thecrabdoesnotretractthefirstantennaewhenthedistalendis touched(cerebralganglion).

Maxillipedreaction:Thethirdmaxilliped(mouthframe)canbemovedoutwardsfromthe bodyandisnotdrawnback(posteriorganglion).

Treatment srategy

Bathtreatmentswereconductedinindividualtanksof20lwithcontinuousaeration (excepthypercapnicseawatertreatment).Thesetankswerefilledwithwaterfromthe largerholdingtankssothatsalinity(35ppt)andtemperature(range913°C)werenot altered.Injectionsweremadeintravascularlythroughthecoxalarthropodialmembraneof acheliped(Fig.1).Dosesbyinjectionweremadeuptoamaximumof2mlasvolumes greaterthanthiswereconsidereddifficulttoadminister.

177 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 1. Ventral surface of a giant crab showing the site of intravascular injections (i). Treatments were introduced with the needle tip only slightly below the joint membrane to avoid penetrating muscle tissue.

Physicalmethodstestedforparalysingwere:freshwaterbath;chilling(5°,2°,and1.5°C); heating(17°,18°,20°,and24°C);andprolongedexposuretoair.

Chemicalmethodstestedasbathswere:hypercapnicseawater(CO 2bubbledintobath throughagraphiteairstone);2phenoxyethanol(maximum1ml/l);magnesiumsulphate (35g/l);benzocaine(0.08and0.24g/l,stocksolutionof40g/lbenzocaineinacetone); MS222(tricainemethanesulphonate;0.5g/l);chloroform(1.25and2.5ml/linwaterand agitated);cloveoil(0.0151.0ml/l,dissolvedinethanol);andAQUIS™(FishTransport Systems™NewZealand)(0.0151.0ml/l).

Chemicalmethodstestedbyintravascularinjectionwere:xylazineHCl(0.622.0mg/kg;as 2%solution,RompunBayer™);andketamineHCl(0.010.05mg/kg;as10%solution, IliumTroy™).

Ofthesetreatments,fourweretriedforhumanekilling:freshwaterbath;chilling; chloroform;andcloveoil.Chillingwasachievedbytheadditionoficeslurryto100ltanks heldinarefrigeratedroom.Heatingwasachievedbyplacingimmersionheatersin100l tanks.

Thenumberofcrabsusedforexperimentsvaried(Table1)astheresponseofindividual crabstosometreatmentswassopooratveryhighdosesthatfurthertrialswerenot warranted.Othertrialswereconductedopportunisticallywithindustrysolargenumbers

178 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner wereused,suchaswithprolongedexposuretoairwhere55animalsweremonitored.The opportunisticnatureofthetrialspreventedconcurrentexperimentation.

Results

Noneofthephysicalmethodsappearedtobesuitableforproducingtemporaryparalysisas theywereeitherineffectiveortheyappearedtodistressthecrab(Table1).Therewerealso practicalproblemswiththephysicalmethodsthatrenderedthemunsuitable.Crabswere onlyaffectedbycoldwatertemperaturesclosetofreezing.Consequently,regular monitoringwasrequiredfortheentire2hperiodneededtopartiallyparalysecrabs,to ensurethewaterdidnotfreeze.Also,crabsrevivedwhenthetemperaturerosesothey recoveredrapidlyduringexperimentalprocedures.

Table 1. Results of trials to assess the use of treatments for paralysing.

Method Timetoparalyse Indicationofstress/revival Freshwaterbath Immediatelybecame Motionlessandrigidfor10minthenbecame (n=10) rigidandeasily veryactive.Autotomyoccurredandcrabstoreat handled theirabdomensandwalkinglegs. Norevivalwasattempted. Chilling:5°,2°,and Unaffectedafter14h Activeat5°and2°C.Iceformedat1.5°Cso 1.5°C(n=10,10, at5°and2°C.Mild thelastsegments(propodusanddactylus)ofthe and60respectively) paralysisin2hat limbstobecamefrozen. 1.5°C(retained Allrecoveredwithin45minonreturnto10°C antennal,maxilliped, andappearedhealthyafter48h.Noeffectsof andlimbmovement). freezingwereseenalthoughtissuedamageis likely. Heating:17°,18°, Appearedunaffected Appeareduncomfortableandattemptedtoclimb 20°,and24°C(n=3 atalltemperatures fromthecontainerastemperaturerose. foralltreatments) testedexcept24°C. Althoughapparentlyparalysedat24°C,limbs Mildparalysisat24°C constantlytwitched. in2h. Recoverywasrapidandcrabsappearedhealthy after48h. Prolongedexposure Noeffectat4or8 Crabswerevigorousafter14h. toair(n=55). hours.Lessactive Appearedhealthyafter48hinseawater. after14h(812°C). Hypercapnic Mean=44min(range Thrashedandcrushedlimbs.Although seawater(n=3) 3360min). immobile,theyweretensedandbecamerigid whenreturnedtofreshseawatertorecover. Someautotomy. Slowrecovery,incompleteafter48h.

179 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Method Timetoparalyse Indicationofstress/revival 2phenoxyethanol:1 Noeffectafter14hin Noapparenteffect. ml/l(n=1) saturatedsolution. Healthy48hafterreturntoseawater.

MgSO 4:35g/lin Noeffectat4h Active48hafterreturntoseawater.Costof freshwater;35g/lin chemicalsmadetrialswithhigherdosesunviable. seawater(n=6) Benzocaine:0.08g/l 2hat0.08g/l,Mean Apparentdistress,tensedandrigidwhen (n=1),and0.24g/l =45min,range2055 immobilised.Autotomyoccurred. (n=3). minat0.24g/l Rapidrecovery,crabsmobilewithin10minand healthyafter48h. MS222:0.5g/l Noeffectafter4h. Onetenththisdose(20min)isusedforkilling (n=1) finfish(Clark,1990).Trialsathigherdoseswere unviableduetochemicalcosts. Chloroform: 60minforallcrabs Noapparentdistress. 1.25ml/l(n=3),and Slowrecovery,crabsstillsedatedafter24h 2.5ml/l(n=3) althoughapparentlynormalafter48h. Cloveoil:0.015ml/l Ineffectiveat0.015 Noapparentdistress. 1.0ml/l(Fig.2; ml/l.Timeathigher Rapidrecovery(at0.125ml/l)andactive2.5h n=18). ≥ doses( 0.03ml/l) afterreturntoseawater.Appearedhealthyafter rangedfrom8516 48h. min. AQUIS™: Ineffectiveat ≤ Noapparentdistress. 0.015ml/l1.0ml/l 0.06ml/l.Effectiveat Rapidrecoveryandactive2.5hafterreturnto (Fig.2;n=14). ≥ 0.125ml/lin7020 seawater.Appearedhealthyafter48h. min. XylazineHCl:0.6, Ineffective ≤11.2 Noapparentdistress. 1.2,5.6,11.2,16,and mg/kg.Effectivein Rapidrecovery:25minat16mg/kg,and45min 22mg/kg.(n=6) 35minat16and22 at22mg/kg.Appearedhealthyat48h. mg/kg. KetamineHCl:0.01, Ineffectiveat0.01 Chelipedbecamerigidimmediatelyafter 0.025,0.05,and mg/kg;effectiveat injection,theotherchelipedwasthrashed,then 0.1mg/kg.(n=8) 0.025,0.05,and0.1 relaxed. mg/kgin1545satall Recoverytook8,15,25,and40minat0.01, concentrations. 0.025,0.05,and0.1mg/kgrespectively. Apparentlyhealthyafter48h.

Noneofthephysicalmethodsappearedsuitableforhumanekilling(Table2).Asidefrom ethicalproblems,prolongedexposuretoairwouldtakelongerthan48handwasnot attempted.Heatingappearedtocausedistresstothecrabsandkillingbyagradualincrease intemperaturewasnotattempted.Whileafreshwaterbathkilledcrabs,itdidnotappear tobeahumanemethod.Chillingwasineffective.

180 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Table 2. Results of trials to assess the use of treatments for humane killing.

Method Timetodeath Comments Freshwaterbath Mean=4.6h(range Apparentdistress(seeTable1). (n=10) =35h) Chilling:2°and 2°Cgroupaliveat24 Appendagereactionsoccurredat1.5°Cand 1.5°C(n=10and60 h.1.5°Caliveat6h. limbmovementwasretained.Activityincreased respectively). rapidlyonwarming. Chloroform: 1.5hinallcrabs. Noapparentdistress. 2.5ml/l(n=3) Cloveoil:0.06ml/l 18028min,varying Noapparentdistress. 1.0ml/l(Fig.2; withconcentration. n=17).

Ofthechemicalbathtreatmentstested,onlychloroform,cloveoilandAQUIS™ producedwhatappearedtoberelaxedtemporaryparalysis.Crabstreatedwithchloroform hadpoorrecoveryafterparalysisandtooklongertodiecomparedwithcloveoil treatments.Chloroformsolutionsbecomesaturatedatapproximately6.17ml/lat10°C whichisconsiderablyhigherthantheconcentrationsusedinthisstudy(1.25and2.5ml/l). Consequently,thesimilartimesforcrabstobecomeparalysedinthetwoconcentrationsof chloroformcannotbeattributedtosaturationofsolution.Theoptimalconcentrationof cloveoilforbothparalysingandkillingwas0.125ml/lasstrongerdosesdidnotproduce fastereffects(Fig.2;Tables1and2).OptimalconcentrationofAQUIS™forparalysing was0.5ml/l(Fig.2).

Bothofthetemporaryparalysistreatmentsadministeredbyinjectionwereeffectiveand actedrapidly.UnlikexylazineHCl,whereparalysisappearedtobepainless,ketamineHCl appearedtoproducedistressinthecrabsalthoughthiswasonlymomentaryasparalysis occurredwithin45seconds.

181 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 2. Effect of concentration of clove oil (circles) and AQUI-S™ (diamonds) on time taken to paralyse (upper) and to kill (lower) giant crabs Pseudocarcinus gigas . Solid symbols represent trials terminated before paralysis or death occurred. Value labels next to means are numbers of crabs used. Tests with AQUI-S™ used only two crabs at each concentration so no error values are presented.

250 1 a. Anaesthetised

200

150

100 2

50 2 Mean time ± SD Mean(min) time ± 3 3 3 4 0 0.015 0.03 0.06 0.125 0.25 0.5 1.0 Concentration (ml/l) 350 b. Dead 300 2

250

200 2 150

100

Mean time ± SD Mean(min) time ± 50 3 3 3 4 0 0.015 0.03 0.06 0.125 0.25 0.5 1.0 Concentration (ml/l)

Discussion

Severalofthetreatmentstestedinproducingparalysiswererejectedastheywere ineffectiveorbecausethedoserequiredwastoolargeforpracticalpurposes:prolonged exposuretoair,2phenoxyethanol,magnesiumsulphate,andMS222.MS222isused widelyinparalysingfinfish(Clark,1990)andwasrecommendedbyAhmad(1969)for amphipodsalthoughseveralotherstudieshaveconfirmedthatitisineffectiveindecapods (Foleyetal.,1966;Oswald,1977;Brownetal.,1996).MS222isbelievedtoactatthe nervemembraneaffectingsodiumconductanceinfinfish(Ryan,1992)andthe ineffectivenessofMS222indecapodsmayberelatedtotheabsenceofacetylcholineat theseterminals(Oswald,1977).Thelargeamountofmagnesiumsulphaterequiredto

182 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner paralyselargedecapodswasconsideredimpracticalinthisstudyandthesameconclusion wasdrawnbyFoleyetal.(1966).Forsmalleranimals,andthussmallerbathvolumes,the techniquemaystillhavevalue(Gohar,1937).

Temporary paralysis

Althoughmanyofthemethodstestedinthistrialproducedparalysis,somewereonly partiallyeffectiveandothersappearedtobeunsuitableduetoevidenceofpainordistress duringrelaxation.Hypercapnicseawaterhasbeenrecommendedforparalysingreptantian decapods(SmaldonandLee,1979)andwasalsoeffectivewith Pseudocarcinus gigas . However,thetechniqueresultedinautotomyandthrashingoflimbsin P. gigas which indicatesparalysiswasnotpainless.SmaldonandLee(1979)reportthat Crangon spp.and Palaemon spp.alsoexhibitdistresswhenplacedinhypercapnicseawater.Oswald(1977) assessedtheuseofbenzocainetotemporarilyparalyse L.and Carcinus maenas (L.)byinjectionandobservednoeffect.Benzocaineiswidelyusedtoproduceparalysisin finfishandabaloneresearchwhereitisadministeredasabath,aswasdoneinthisstudy with P. gigas .Thebathsolutionof0.24g/lbenzocaineproducedparalysisin P. gigas althoughtherewassomeindicationofpain,aswithhypercapnicseawater.

Noneofthephysicalmethodstestedproducedrelaxedparalysisin Pseudocarcinus gigas .A gradualincreaseintemperaturewasdescribedasaneffectiveandhumanemethodof anaesthetisingandkillinglargecrustaceansbyGunter(1961)andwassubsequently recommendedbySmaldonandLee(1979).Thismethodwaseffectiveatparalysing P. gigas althoughanimalsshowedsignsofdistress,contrarytotheobservationsofGunter(1961). Baker(1955)alsotestedtheresponseofcrabstogradualincreaseintemperatureand concludedthatthemethodwasunacceptableonhumanitariangroundsasindicationsof distress,suchasautotomy,occurredunlessthecrabwasalreadyinpoorhealth.Following publicationofGunter’s(1961)conclusionontheuseofgradualheating,objectionswere raisedtothemethodonthebasisthattherewasnoevidenceofananaestheticeffect (Baker,1962;SchmidtNielsen,1962).

CurrentAustralianguidelinesforthekillingofcrabsforscientificpurposesrecommend chillingasahumanemethodforparalysingcrabs,whichcanthenbekilledbysectioningto destroyganglia(Reilly,1993).Whilechillingmaybeusefulforreducingactivityintropical orwarmerwaterspecies,itwasineffectiveasaparalysingtechniqueforthetemperate 183 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Pseudocarcinus gigas .Freezinginevitablyresultsindeathin P. gigas butisoflimitedusein researchastissuesarenolongersuitedformanyapplications,suchashistology.Chilling hasdrawbackswhichaffectitsuseinallspecies,itisgenerallyaslowandinconsistent technique(Brownetal.1996)anditisethicallydubiousasitinvolvessubjectingthecrabto conditionswhichitwouldnormallyavoid(SchmidtNielsen,1962).

KillingcrabsbyfreshwaterbathisoneofthemostwidelyusedmethodsinAustralia;itis termed“drowning”andispopularlyconsideredahumanetechnique.Ofallthetreatments testedforproducingparalysis,“drowning”inafreshwaterbathappearedtocausegreatest traumaascrabsdroppedmostlimbs.SimilarconclusionsweredrawnbyBaker(1955)for Cancer pagurus .

BothxylazineHClandketamineHClwereparticularlyeffectiveandproducedparalysisin lessthan5minin Pseudocarcinus gigas .XylazineHClproducesrelaxationbycentralblockade ofinterneuronesinthemammal(Oswald,1977)butthemodeofactionincrustaceansis unknown.AlthoughinjectionofketamineHClappearedtocauselocalisedexcitation,the apparentdistresswasonlymomentaryasmostcrabsbecameparalysedwithin45s. KetamineHCliseffectiveinparalysingcrayfish Orconectes virilis (Hagen)althoughthe reporteddoseratebyintramuscularinjection(90mg/kgbodyweight;Brownetal.,1996) wasconsiderablyhigherthanthatrequiredby P. gigas byintravascularinjection(0.025 mg/kg).Thedurationofparalysisin P. gigas treatedwithketamineHCl(840min)also differedfrom O. virilis (>1h;Brownetal.,1996).DoseratesofxylazineHClrequiredto temporarilyparalyse P. gigas (22mg/kg)werelessthanreportedvaluesfor Cancer pagurus and Carcinus maenas (70mg/kg;Oswald,1977),althoughdurationofparalysiswassimilar (around45minforallspecies).Twootherchemicals,reportedlyeffectiveinother decapods,werenottestedon P. gigas butwarrantmention:procaineHClisreportedto produceprolongedparalysisof60minin C. pagurus and C. maenas (Oswald,1977);and lidocaineHClisreportedtoproduceshorterdurationparalysisof2025minin O. virilis (Brownetal.,1996).

Wheretheexperimentalanimalsareverysmall,injectionislesspracticalthanbath treatments;chloroform(>1.25ml/l),cloveoil(>0.125ml/l),andAQUIS™(>0.5ml/l) producedrelaxedparalysisbythismethod.Chloroformhasbeenusedformanydecadesto killdecapodsthatsubsequentlyremainrelaxedformuseumstorage(Gohar,1937; Mahoney,1966),buttheuseofchloroformtoproducetemporaryparalysishasbeenless welldocumented.Foleyetal.,(1966)attemptedtoparalyse Homarus americanus Milne 184 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Edwards,bychloroformbathbutconcludedthattoolargeadosewasrequiredforpractical purposes.Thechloroformbathtreatmentwaseffectiveandinexpensivewith P. gigas althoughthereareimportantlimitations:thetimetoonsetofparalysis(60min)and recoveryfromparalysis(>24h)wasprotracted;andchloroformposesaserioushealthrisk tohumansduetoitshepatotoxicity.Cloveoilwasthesuperiorbathtreatmentinrespect ofbothtimetoonsetofparalysis(asrapidas16min)andrecovery(2.5h).Cloveoilis inexpensiveandislikelytobeeffectiveoverawiderangeofspeciesgiventhatitalso producesparalysisinrabbitfish Siganus lineatus (CuvierandValenciennes)(Sotoand Burhanuddin,1995).AQUIS™producedsimilarresultstocloveoilbutmayhavelimited applicationinparalysingcrabsforscientificpurposesashigherdoseswererequired.A potentiallyusefulobservationfromthecloveoiltrialsisthatembryosofovigerousgiant crabfemalesdidnotappeartobeharmedbythetreatmentandcontinuedthrough developmenttohatch.

BathtreatmentsofcloveoilandAQUIS™mayhavecommercialapplicationtoimprove seafoodqualityandtoreducemortalityduringlivetransport.Reductionofstressduring transportandpriortoharvestisknowntoincreasequalityof(Loweetal.1993) andtodecreasetransportmortality(Patersonetal.,1994).

Humane killing

TwoofthetreatmentswidelyusedinAustraliaforkillingcrabswereeitherineffectiveor appearedtocausesuffering:chilling;andfreshwaterbath.Bothchloroformandcloveoil wereeffectiveandcrabsdidnotappeardistressedbythetreatments.Asdiscussedearlier, chloroformhaslongbeenusedtokillcrustaceansformuseumcollections(Gohar,1937; Mahoney,1966),whereitisimportantthattheanimaldoesnotautotomiselimbs. Chloroformishazardoustohumansduetoitshepatotoxicitysoitshouldonlybeused whereallfumescanberemoved.

Unlikechloroform,cloveoilhaspotentialtobeusedforkillinganimalsdestinedforhuman consumptionalthoughthelongtermchroniceffectsonhumansarenotyetknown(Soto andBurhanuddin,1995).Cloveshavebeenshowntodelayrancidityofseafood(Josephet al.,1989)althoughtheoilhasastrongsmellwhichcanalterthetasteofthemeat.AQUI S™isapprovedforusewithfoodfishinNewZealandwithzerowithholdingtime;it producedparalysisingiantcrabsalthoughhigherdoseswererequiredthanwithcloveoil. 185 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Unlikecloveoil,AQUIS™doesnothaveastrongodoursoislesslikelytoaffectthetaste ofthemeat.FurthertrialsarewarrantedtoassesstheuseofAQUIS™inthekillingof crabsandtoassesstheeffectonmeatqualityutilisinghumansensoryevaluation.

Conclusions

Severalmethodsofparalysingandkillingcrabsareclearlysuitableforresearchsituations. Thetwoinjectabletreatments,xylazineHCl(16or22mg/kg)andketamineHCl(0.025 0.1mg/kg),havemuchpotentialinresearchtoreducetraumatothecrab,increasework efficiency,andreducerisktohumansfromthechelae.XylazineHClandketamineHCl actrapidlysotheycanbereadilyappliedinmostresearchsituations.Whereinjectionis impractical,cloveoil( ≥0.125ml/l)orAQUIS™( ≥0.5ml/l)bathswereeffectivein paralysingcrabsalthoughtheybothrequiredaround20mintoactatoptimaldoses.A cloveoil( ≥0.125ml/l)bathappearedtokillcrabshumanelyandisausefuloptionfor research;crabsdidnotappeartoexperiencetraumabythismethodandtherewasnolimb lossorotherdamage.Ofthemethodstested,onlycloveoilandAQUIS™appear promisingastreatmentsforthehumanekillingofcrabsforhumanconsumption,however bothrequiredlongperiods( ≥28min)toactwhichmaylimittheircommercialapplication. Baker(1955)describedamethodforkillingcrabsforhumanconsumptionbysticking, whichinvolvespiercingthenervegangliawithanawl.Thiswasnotattemptedwith P. gigas asthesternumisexceptionallythickanddifficulttopierce.However,inotherspecies stickingislikelytobeauseful,andrapid,technique.

References

Ahmad,M.F.1969.Anaestheticeffectsoftricainemethanesulphonate(MS222Sandoz)on Gammarus pulex (L.)(Amphipoda).Crustaceana16:197201.

Baker,J.R.1955.Experimentsonthehumanekillingofcrabs.J.Mar.Biol.Ass.U.K.34:1524.

Baker,J.R.1962.Humanekillingofcrustaceans.Science135:589593.

Brown,P.B.,White,M.R.,Chaille,J.,Russell,M.andOseto,C.1996.Evaluationofthreeanaestheticagents forcrayfish( Orconectes virilis ).J.ShellfishRes.15:433435.

186 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Chapman,C.R.1992.Sufferinginanimals:towardscomprehensivedefinitionandmeasurementforanimal care.pp.1925.In:T.R.Kuchel,M.RoseandJ.Burrell(eds.).AnimalPain:EthicalandScientific Perspectives.ANZCCART,Adelaide,SouthAustralia.

Clark,A.1990.Grossexaminationinfishhealthwork.pp.945.In:B.Munday(ed.).FinFishDiseases. Proceedings128,PostGraduateCommitteeinVeterinaryScience,UniversityofSydney,Australia.

Cook,C.1996.Paininfarmedanimals,awareness,recognitionandtreatment.pp.7581.In:R.Baker,R. EinsteinandD.Mellor(eds.).FarmAnimalsinBiomedicalandAgriculturalResearch.ANZCCART, Adelaide,SouthAustralia.

Cronin,T.W.andForward,R.B.Jr.1988.Thevisualpigmentsofcrabs.II.Environmentaladaptations.J. Comp.Physiol.A.162:479490.

Foley,D.M.,Stewart,J.E.andHolley,R.A.1966.Isobutylalcoholandmethylpentynolasgeneral anaestheticsforthelobster, Homarus americanus MilneEdwards.Can.J.Zool .44:141143.

Gohar,H.A.F.1937.Thepreservationofcontractilemarineanimalsinanexpandedcondition.J.Mar.Biol. Ass. U.K.22:295299.

Gunter,G.1961.Painlesskillingofcrabsandothercrustaceans.Science133:327.

Joseph,J.,George,C.andPerigreen,P.A.1989.Studiesonmincedfishstorageandqualityimprovement.J. Mar.Biol.Ass.India31:247251.

Lowe,T.E.,Ryder,J.M.,Carragher,J.F.andWells,R.M.G.1993.Fleshqualityinsnapper, Pagrus auratus , affectedbycapturestress.J.FoodSci .58:770773.

Mahoney,R.1966.LaboratoryTechniquesinZoology.Butterworths,London.404pp.

Oswald,R.L.1977.Immobilisationofdecapodcrustaceansforexperimentalpurposes.J.Mar.Biol.Ass. U.K.57:715721.

Paterson,B.D.,Exley,P.S.andSmith,R.A.1994.LiveTransportofCrustaceansinAirProlongingthe SurvivalofCrabs.FisheriesResearchandDevelopmentCorporation,andQueenslandDepartmentof PrimaryIndustries(QDPI)ReportQ094035,QDPI,Brisbane.55pp.

Reilly,J.S.1993.Euthanasiaofanimalsusedforscientificpurposes.ANZCCART,Adelaide,SouthAustralia. 73pp.

Ryan,S.1992.ThedynamicsofMS222anaesthesiainamarineteleost( Pagrus auratus :Sparidae).Comp. Biochem.Physiol.101C:593600.

SchmidtNeilsen,K.1962.Humanekillingofcrustaceans.Science135:587588.

Smaldon,G.andLee,E.W.1979.ASynopsisofMethodsfortheNarcotisationofMarineInvertebrates. RoyalScottishMuseumInformationSeries,NaturalHistory6.Edinburgh,Scotland.96pp.

Soto,C.G.andBurhanuddin.1995.Cloveoilasafishanaestheticformeasuringlengthandweightof rabbitfish( Siganus lineatus ).Aquaculture136:149152.

187 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Non-lethal Imaging Techniques For Crab Spermathecae

12

Researchforthischapterhasbeenpublishedpreviouslyas: Gardner,C.,Rush,M.andBevilacqua,T.1998.Nonlethalimaging techniquesforcrabspermathecae.JournalofCrustaceanBiology,18:6469.

188 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Abstract

Techniquesforcollectinginformationonspermathecaewithoutdissectionwereevaluated onthegiantcrab Pseudocarcinus gigas .Techniquestestedwere:biopsy,ultrasound, conventionalxradiography,computerisedtomography(CT)scans,andmagnetic resonanceimaging(MRI).Attemptsatbiopsyandultrasoundimagingwereunsuccessful. Spermathecaewereimagedbyxradiography,althoughresolutionwaspoor,suggestingthat itcanbeappliedonlytogaingeneralinformation,suchasdeterminingwhethermatinghas occurred.HighresolutionimageswereproducedwithCTandMRI.ResolutionbyMRIis ofsuchdetailthatinternalstructureofspermathecaeisimaged.Nonlethaltechniques allowanimalstobeusedrepeatedly,whichpermitsmonitoringofchangesduringmating, spermstorage,andextrusion.

Introduction

Themoreadvancedbrachyurancrabspossesspairedspermathecaewhichstoresperm betweenmatingandfertilisation.Thefunctionoftheseorgansisofbiologicalinterestas layeredstorageofseparateejaculatescanaffectpaternityofoffspring(Kogaetal.,1993; SévignyandSainteMarie,1996).Spermathecaehavealsobeenthesubjectoffisheries orientedresearchwheretheyprovideameansofmeasuringtheoccurrenceofcopulation, whichmaybeaffectedwhenmalesareharvested.Theabilityoffemalestoutilisestored spermtofertiliseseparatebroodsmaybuffertheimpactofmaleonlyfisheries(Pauland Paul,1992).Examinationofspermathecaeforthisrangeofresearchhastraditionally involveddissectionandanalysis(e.g.histology)ofthespermathecae,orassessmentofthe fertilisationrateaftereggsareextruded.

Thispaperreportsresultsoftrialsonarangeofnonlethaltechniquestestedonthe Australiangiantcrab Pseudocarcinus gigas (Lamarck).Theobjectivewastodevelop techniquestoexaminespermathecaebeforeovulation,soinfertilitycouldbelinkedto eitherunviablespermifspermathecaewerefull,ordepletedreservesifspermathecae wereempty.Nonlethaltechniquesallowfortherepeated“sampling”ofthe

184 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner spermathecaefromthesameindividuals.Inthisway,changescanbetrackedfrom mating,throughstorage,toextrusion.Nonlethaltechniquestestedwere:biopsy, ultrasound,conventionalxradiography,computerisedtomographyscan(CTS),and magneticresonanceimaging(MRI).

Materialsandmethods

Femalegiantcrabs Pseudocarcinus gigas ,greaterthan3.0kg,werecollectedbycommercial fishersfromdepthsintherangeof300–380mofftheeastcoastofTasmania (41°,15'S;148°40'E)inMay1994.Crabsusedfortrialswithconventionalxradiography werealiveandrestrainedbyclawties;inallothertrials,crabswerekilledinbathsofclove oilinseawater(0.125ml/l;Gardner,1997).Followingimaging,crabsweredissectedto relateimagedstructureswithactualtissues.InthecaseofCTandMRI,crabswere frozenandslicedbybandsaw(5mmsections)toduplicatetheorientationoftheimages whichwerecollectedastransverseslices.

AttemptsweremadetobiopsycontentsofspermathecaeusingPipelledeCornier™ humanendometrialbiopsycathetersondissectedfemaleswiththegonoductexposed. Thisallowedthebiopsytubetobeobservedasitwaspassedthroughthegonoporeand alongthegonoduct.Conventionalxradiographyimagesweretakenwithstandard veterinaryequipment(AtomScope™100P).Ultrasoundimagingwasattemptedwithan ATL8™ultrasoundusing7,5,and3.5Mhztransducers.Computerisedtomography scanningwasperformedwithaGE™scannerandMRIwasperformedwitha1.5Tesla, Picker™magneticresonanceimager.

Results

Thecollectionofstoredspermbybiopsywasnotpossiblewithoutinjuringthecrab. Althoughthegonoporeofgiantcrabsislarge,itiscalcifiedduringintermoultandforce wasrequiredtointroduceabiopsytube.Oncewithinthelumenofthegonoduct,thetube torethroughthedelicatewallsratherthanbendingwiththecurvatureoftheduct.

185 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Ultrasoundpenetratedtheexoskeleton,buttherewasinsufficientdefinitiontodiscernthe spermathecae.Factorscontributingtothepoorresultswithultrasoundappearedtobe theechoingfrominternalcalcifiedplatesandthelackofsufficientacousticdifference betweenthespermathecaeandsurroundingtissue.

Spermathecaeweresuccessfullyimagedusingconventionalxradiography,although imageswereveryunclear(Fig.1).Optimalexposurewasrelativelyhighinorderto penetratethecarapace(3LV,0.1SIC).Consequently,mosttissuedefinitionwaslostand theboundarylayerbetweenthespermathecaeandsurroundingtissuebecameblurred.

Figure 1. Image of female Pseudocarcinusgigas produced by conventional x-radiography showing spermathecae (S) as a pale region.

HighqualityimagesofthespermathecaeweremadeusingbothMRIandCTscanssothat detailsofsubstructurecouldbedetected,especiallywithMRI(Fig.2).Spermathecaewere dissectedafterimaging.Thedarkbandsdetectedbyimagingrelatedtoseparateareasof seminalplasmawhichboundedareasofspermatophoredeposit,possiblyfromseparate ejaculates.TheoptimalMRIsettingforgiantcrabswasconsideredtobescanprotocol14. ImagesproducedbyCTSwerenotasdefinedasthosebyMRI,butadditionalinformation canbegainedbythistechnique,sinceinternalcalcifiedplatesaredetected(Fig.3).Both MRIandCTSscannedimagesarecollectedasaseriesof“slices”throughthespecimen. Thus,3dimensionalsurfaceprofilescanbecomposedandtheresulting3dimensional imagescanbereconstructed,andcoredorslicedalonganyplane(Fig.4).

186 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 2. Dorsal (upper) and longitudinal (mid) images of a female Pseudocarcinusgigas produced by magnetic resonance imaging (MRI) showing high resolution of spermathecae (S). Schematic (lower) is of the longitudinal image produced by MRI. Separate regions (EJ1, EJ2, and EJ3) can be seen within the spermatheca which may relate to different ejaculates.

187 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 3. Dorsal (upper) and longitudinal (lower) images of a female Pseudocarcinus gigas produced by computerised tomography (CT) showing high resolution of spermathecae (S). Unlike MRI, CT is sensitive to calcified structures and the carapace is seen as a white band.

188 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 4. Three dimensional surface image of female Pseudocarcinusgigas reconstructed from CT scans. Both MRI and CT scans can be processed into three dimensional images and “sliced” along any plane.

Discussion

Thethickexoskeletonof P. gigas impairedtheuseofbothbiopsysamplingandultrasound. Noentrylocationforthebiopsycouldbefoundotherthanviathegonopore,whichwas unsuitable,sincethegonoducttorewhenabiopsytubewasintroduced.Ultrasoundhas beenusedinresearchoforganismswithsoftbodies,suchasmarinemammalsandfish (GalesandBurton,1987;Bonaretal.,1989),butitappearstobeunsuitedtocrustaceans.

Conventionalxradiographyproducedrelativelypoorimages,sincetheboundariesbetween thespermathecaeandsurroundingtissuewereblurred.Consequently,theexactsizeand formofthespermathecaecouldnotbedetermined.Pseudocarcinus gigas haveparticularly thickcarapaces,around3.0mminrelativelyxrayopaquelargerfemales.Thedefinitionof spermathecaebyconventionalxradiographymaybegreaterinspecieswithathinner carapace.Ifhigherresolutioncanbeachieved,xradiographymayhaveapplicationwhere theobjectiveissimplytodeterminewhetherinseminationhasoccurred.Thiscanbe importantinexperimentssuchasthosereportedbyKogaetal.(1993)andSainteMarie andLovrich(1994),wherefemalecrabsweredissectedtoconfirmmating.Thetechnique mayalsohaveapplicationinstudiesassessingrepeatedspawning,usingstoredspermwhere itisnecessarytodeterminewhetherspermreserveshavebeendepleted.Conventionalx 189 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner radiographyisrelativelyinexpensive(around$US10perexposureandseveralcrabscanbe xrayedoneachplate),andmorereadilyavailablethantheotherfeasibletechniques,CT andMRIscans.

Ofthemethodstested,onlyCTandMRIproducedclearimagesofthespermathecaeso thatsizecouldbemeasuredandsomeinternalstructureviewed.Thecalcifiedexoskeleton didnotinterferewithimagingineithermethod.Theshellwaseffectivelytransparentto MRI,sincethistechniquereliesonresonanceofhydrogennuclei(protons)whichtendto beinlowconcentrationwithincalcifiedtissues(Young,1984).Resolutionofinternal structurewasgreaterwithMRIthanwithCT,andseparateregionscouldbediscerned whichmayrelatetoseparatespermdeposits.Severalauthorshavemadeobservations basedonseparatespermdepositsinworkinvestigatingspermstorageandcompetitionin brachyurans(e.g.,Paul,1984;Diesel,1989;SévignyandSainteMarie,1996).The techniqueofMRIprovidestheoptionofmeasuringorviewingcontentsofthe spermathecaebefore,orperhapsevenduring,mating.Althoughlogisticallydifficult,MRI mayalsohaveapplicationinobservingchangestospermathecaeduringtheprocessof extrusionandfertilisation.Anadditionalbenefitfromcomputerisedscanningmethodsis that3dimensionalplotsmaybegenerated,eitheroftheexternalsurfacestructure(CT),or oftheinternalboundarybetweenshellandsofttissues(MRI).

AlthoughCTscanswereoflowerresolutionthanMRI,additionalinformationisgainedas calcifiedstructuresaredetected.Wherecalcifiedstructuresarethesubjectofresearch, suchasintheexaminationofskeletalgrowthofcorals,CTscansarevaluable(Loganand Anderson,1991).Incrustaceans,abenefitofimaginginternalcalcifiedstructuresisinthe locationoftissues,ascalcifiedplatesinthestomachandbetweenlimbmusclescanserveas landmarks.

PracticalconsiderationsintheuseofMRIandCTimageryincludethecostsofthe proceduresandtherestraintofthecrabstopreventmovementduringimaging.Both proceduresareusuallyavailablefrommedicalimagingfacilitiesandfeesforresearchuse varywidely. Pseudocarcinus gigas isahighlyvaluedcrustacean,withindividualswholesalingat around$US100.With P. gigas, andotherhighlyvaluedcrustaceans,costsofimagingare offsetbythereducedpurchaseofspecimens,sincesamplingisnonlethalandthesame individualsmaybeusedrepeatedly.Whilecrabsweredissectedafterimaginginthisstudy, thiswouldnotusuallybenecessary.Furtherreductionincostscanbemadebyscanning morethanoneindividualsimultaneouslyandthisalsoincreasestherateofspecimen 190 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner processing.InCTscanningundertakensubsequentlytothisproject,groupsof3giant crabswerescannedsimultaneouslytoexamineovariandevelopment,anditwaspossibleto processover50crabsperhour.Crabsmustbemotionlessduringscanningsoparalysing agentssuchasxylazineHCl,ketamineHCL,procaineHCl,orcloveoilshouldbeused (Oswald,1977;Gardner,1997).

References

Bonar,S.A.,Thomas,G.L.,Pauley,G.B.andMartin,R.W.1989.Useofultrasonicimagesforrapid nonlethaldeterminationofsexandmaturityofPacificherring.NorthAmericanJournalofFisheries Management9:364366.

Diesel,R.1989.Structureandfunctionofthereproductivesystemofthesymbioticspidercrab Inachus phalangium (Decapoda:Majidae):observationsonspermtransfer,spermstorage,andspawning.Journalof CrustaceanBiology9:266277.

Gales,N.J.andBurtonH.R.1987.Ultrasonicmeasurementofblubberthicknessofthesouthernelephant seal, Mirounga leonina (Linn.).AustralianJournalofZoology35:207217.

Gardner,C.1997.Optionsforhumanelyimmobilisingandkillingcrabs.JournalofShellfishResearch.16: 219224.

Koga,T.,Henmi,Y.andMurai,M.1993.Spermcompetitionandtheassuranceofundergroundcopulation inthesandbubblercrab Scopimera globosa (Brachyura:Ocypodidae).JournalofCrustaceanBiology13:134 137.

Logan,A.andAnderson,I.H.1991.Skeletalextensiongrowthrateassessmentincorals,usingCTscan imagery.BulletinofMarineScience49:847850.

Oswald,R.L.1977.Immobilisationofdecapodcrustaceansforexperimentalpurposes.Journalofthe MarineBiologicalAssociationoftheUnitedKingdom57:715721.

Paul,A.J.1984.Matingfrequencyandviabilityofstoredsperminthetannercrab Chionoecetes bairdi (Decapoda,Majidae.JournalofCrustaceanBiology4:375381.

Paul,A.J.andPaul,J.M.1992.Secondclutchviabilityof Chionoecetes bairdi Rathbun(Decapoda:Majidae) inseminatedonlyatthematuritymoult.JournalofCrustaceanBiology12:438441.

SainteMarie,B.andLovrich,G.A.1994.Deliveryandstorageofspermatfirstmatingoffemale Chionoecetes opilio (Brachyura:Majidae)inrelationtosizeandmorphometricmaturityofmaleparent.Journal ofCrustaceanBiology14:508521.

Sévigny,J.andSainteMarie,B.1996.Electrophoreticdatasupportthelastmalespermprecedence hypothesisinthesnowcrab, Chionoecetes opilio (Brachyura:Majidae).JournalofShellfishResearch15:437 440.

Young,S.W.1984.MagneticResonanceImaging:BasicPrinciples.RavenPress,NewYork,NewYork. Pp.1282.

191 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Spermatogenesis and the Reproductive Tract of the Male Giant Crab Pseudocarcinusgigas

13

192 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Abstract

Thereproductivetractofthemalegiantcrabconsistsofpairedelongatetestes,located immediatelybelowthehypodermisofthecarapace,andconvolutedvasdeferens.Thevas deferensconsistsoftheanteriorvasdeferens(AVD;white),themidvasdeferens(MVD; white),theposteriorvasdeferens(PVD;transparent),andtheejaculatoryduct(ED).The ejaculatoryductexitsattheventralbaseofthefifthpereiopod.Spermcellsareproduced inthetestisandarecarriedbytheseminiferoustubuletotheAVD.Luminalsecretions producedintheanteriorportionoftheAVDcondensearoundclumpsofspermcellsto produceasingle,thin,envelopelayeraroundthespermatophore.Spermatophoresare ovoid,nonpedunculate,andcontainnumerous,closelypackedspermcells.Agranular luminalsubstanceissecretedinposteriorportionsoftheAVDandthissecretion,plus spermatophores,arestoredintheMVD.ThePVDandEDcontainanagranularsecretion whichcontainsfew,orno,spermatophores.ThisluminalsubstanceinthePVDislikelyto serveasthespermpluginthespermathecaeoffemales.Investigationofphysiological maturityofgiantcrabsshouldfocusonthepresenceofspermatophoresintheMVDas thisisthemainsiteofspermatophorestorage.

Introduction

Currentmanagementarrangementsforthegiantcrabfisheryincludeaminimumsizelimit, whichisthesameforbothsexes,andrestrictionsonthetakingofovigerousfemales.Both thesepracticespromotetheharvestofmalesratherthanfemalessothereisconcernthat spermlimitationmayoccurintheresidualpopulation.Inresponsetothisconcern, researchhasbeenundertakenonthesexualmaturationofmalegiantcrabs.Thischapter contributestothatresearchanddescribestheanatomicalandhistologicalstructureofthe reproductivesystem.

Numerousotherpapershavedescribedthehistologyofthemalereproductivetractof variouscrabspecies.However,thereisspeciesspecificvariationinthegrossanatomyof thetract,formofthespermatophore,luminalsecretions,andstoragelocationof

197 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner spermatophoreswithinthevasdeferens(UmaandSubramoniam,1984).Thisinformation isrequiredtoassessaccuratelytheonsetofphysiologicalmaturity,asdeterminedbythe productionofspermatophores(Paul,1992).

Materialsandmethods

Malegiantcrabs Pseudocarcinus gigas wereobtainedinMarchandJuly1996fromcommercial fisherswhohadcapturedthecrabsatapproximately350mdepthoffeasternTasmania. Fiftyeightspecimenswereexaminedandtheserangedinsizefrom81to208mmcarapace length.Crabswerekilledinabathofcloveoilinseawaterat0.125ml/l(Gardner,1997). Thereproductivetractswerecarefullyremovedandexaminedfortheirgrossanatomyand morphology.Tissuewaspreservedin10%neutralbufferedformalinforatleastaweek beforeprocessingandsectioningbystandardparaffinhistology.Sectionswerecutat5m andstainedwithhaematoxylinandeosin.Asluminalsecretionsinthevasdeferenstended towashoffduringstaining,slideswerecoatedwithalbumin.

Results

General morphology

Themalereproductivetractconsistsofpairedtestesandelongate,convolutedvasdeferens (Figure1).Thepairedtestesarewhiteandareinterconnectedmediallybyacommissure. Theyliedorsaltothehepatopancreasandimmediatelybelowthehypodermisofthe carapace,extendingforwardsfromthemiddleoftheanterolateralborderofthecarapace, lateraltothestomach,andendingmediallytotheanteriorvasdeferens.Thevasdeferens isdividedinto4regions:theanteriorvasdeferens(AVD);midvasdeferens(MVD); posteriorvasdeferens(PVD);andejaculatoryduct(ED).

TheAVDishighlycoiledintoaroughlysphericalmassandisanopaquedullwhite.Itis approximately1.52mmindiameter.TheMVDismorelooselycoiledandofgreater

198 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner diameter(approximately5mm)thantheAVD.Thispartiswhiteandisthelargestportion ofthesystem,beingmarginallylargerthanthePVD.ThePVDistransparentratherthan white,clearlydifferentiatingitfromtheMVD.Itisswollen,highlyconvoluted,andaround 3mmindiameter.Itiseasilyrupturedandextendsdirectlytotheejaculatoryductthrough acrescentshapedapertureintheinternalcalcifiedplatesofthefifthpereiopod.The ejaculatoryductpassesthroughthemusculatureofthecoxatothepeniswhichislocated ontheventromedialborderofthecoxopoditeofthefifthpereiopod.Theejaculatoryduct isasimpleuncoiledtubeandthediametervariesfrom2mmintheproximalregionto1 mmdistally.

Figure 1. Gross anatomy of the Pseudocarcinus gigas male reproductive tract, viewed dorsally. T - testis; AVD - anterior vas deferens; MVD - mid vas deferens; PVD - posterior vas deferens; ED - ejaculatory duct. The testis is dorsal to the hepatopancreas and stomach which have been removed to expose the vas deferens.

199 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Histology of the reproductive tract

Testis

Thetestisconsistsofblindlobes,whichmaybedividedintolobules,convergingona seminiferoustubule.Lobuleshaveanouterlayerofthinconnectivetissuetunicaandan innerlayerofsquamousepithelium.Thelumenoflobulescontaincellsin spermatogenesis;sectionsthroughdistalregionsoflobulesarefilledwithspermatogonia whilesectionsthroughmoreproximalregionsarepartiallyfilledwithspermcells(Figure2, upper).Spermcellsarenotgenerallylocatedwithinthecentreofthelumen,rather,they tendtocollectalongonewallformingalensshapedareaintransversecrosssection.The seminiferousducthasacuboidalepitheliumandthelumenisentirelyfilledwithspermcells (Figure2,lower).

Anterior vas deferens

ThehistologicalstructureoftheAVDchangesalongitslengthalthoughitiscomposedof threebasiclayers:anoutercoveringofconnectivetissue,amiddlemuscularlayer,andan innerepitheliallining.TheselayersarealsopresentintheMVDandthePVD.Inthe mostanteriorsegmentoftheAVD,theepithelialliningiscuboidalwithsecretoryglobules inthecytoplasm.Thelumenisfilledwithspermmass,whichisnotalwaysfullydivided intospermatophorepackets,andaluminalsubstance.Theluminalsubstanceappearsto encapsulatethespermmassesbycondensation(Figure3,upper).

InthemidAVD,theepitheliumbecomesmultinucleatecolumnar(2530mhigh)with considerableglandularactivityandspermmassesaremoredispersedduetogreater proportionofluminalsubstance.Allspermcellsaremassedintoovoidspermatophores withadistinctiveenvelopelayer(110230monlongestaxis)(Figure3,lower).The posteriorAVDissimilarwithacolumnarepitheliumalthoughthisismoreelongated(30 40m),alsowithglandularactivity.LuminalsecretionsinthemidandposteriorAVDare granularandmoreeosinophilicthansecretionsintheanteriorAVD.

200 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 2. Histology of the testis. Upper figure shows meiotic spermatogonia and spermatids (bar=35 µm). Lower figure shows a lobule with a seminiferous duct along one margin (bar=80 µm).

201 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 3. Histology of the anterior vas deferens (AVD). Upper - anterior segment of AVD with lumen filled with spermatids which are not yet formed into spermatophores. Luminal secretions have begun to encapsulate sperm masses (bar=80 µm). Lower - Mid section of the AVD. Sperm cells are massed into spermatophores although these remain closely packed (bar=80 µm).

202 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Mid-vas deferens

TheanteriorregionoftheMVDisinitiallysimilartotheAVDalthoughtheepithelium graduallybecomeslesselongated(from3040mto25mhigh)sothatitapproachesa cuboidaltypeepithelium(Figure4,upper).Thereappearstobelittleglandularactivityin themidregionoftheMVD.Themuscularlayerisalsothinnerwhilethelumenislarger thanintheAVD.Thelumenisfilledwithagranularluminalsubstanceandscattered spermatophores.Granulesrangeinsizefrom2to100malthoughmostare10m (Figure4,lower).

Posterior vas deferens

TheconnectivetissuelayeristhickerthanintheMVD(20m).Intheanteriorthird,the epitheliallayerislowcolumnarwithroundedinfoldingsintothelumenandappearstobe secretory(Figure5,upper).Theepitheliumgraduallychangestoacuboidalepithelium withnosecretoryactivity.Basophilic,simplebranchedacinarglandsopenintothelumen oftheductandareparticularlynumerousintheanteriorthirdofthePVD.Luminal contentschangealongthelengthofthePVDwithanteriorportionsfilledwith:agranular substanceapparentlythesameasthatintheMVD;anagranularlesseosinophilic substance;andoccasionalspermatophores.Theagranularluminalsubstanceappearstobe secretedinthePVDandthisdisplacesotherluminalcontents.Afterthefirstthirdofthe PVD,spermatophoresarenolongerpresentwithinthelumenwhichisfilledwiththe agranularsubstance(Figure5,middle).

Ejaculatory duct

Theejaculatoryduct(ED)islinedbyasimplecolumnarepithelium(3040m)whichis producedintofolds,morepronounceddistally(Figure5,lower).Theconnectivetissue layerandmusclelayerarethickerthaninthePVD.Thelumencontainsasubstancewhich ispredominantlyagranularandsimilartothatinthePVD.

203 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 4. Histology of the mid vas deferens (MVD). Upper- Spermatophores in the anterior MVD are well formed with a distinct envelope layer and are surrounded by luminal secretions (bar=80 µm). Lower - the lumen of the MVD is filled with granular secretions and spermatophores are now more widely separated than in the posterior region of the AVD (bar=80 µm).

204 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 5. Histology of the posterior vas deferens (PVD) and ejaculatory duct (ED). Upper - section through the anteriour PVD. Note that spermatophores are seldom seen in the lumen and that the epithelial cells are rounded with infoldings protruding into the lumen. The lumen is mainly filled with an agranular substance although there are occasional granules, similar to those in the MVD (bar=35 µm). Middle - mid PVD showing change in the epithelium to a low cuboidal epithelium (bar=35 µm). Lower - ED with the lumen produced into folds and surrounded by a thick muscular layer (bar=450 µm).

205 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Discussion

Thespermatophoresof Pseudocarcinus gigas aretypicalofbrachyurancrabsastheyarenon pedunculateandvesicular,unlikeanomuranspermatophores(UmaandSubramoniam, 1979;Subramoniam,1993).Adistinctive,single,envelopelayerwaspresentaroundthe spermatophorewhichappearedtobedepositedintheinitialsectionoftheanteriorvas deferens.Thisenvelopelayerhasbeenreportedin Portunus sanguinolentus (Ryan,1967), Geryon fenneri (Hinsch,1988), Scylla serrata (Subramoniam,1993),and Chionoecetes opilio (Beningeretal.,1988).Anaggregationofspermcellswithoutanenvelopelayerhasbeen reportedinseveralspeciesincludingthespannercrab, Ranina ranina (Ryan,1984).Thereis alsovariationwithintheBrachyurainthenumberanddensityofspermheldinthe spermatophore; P. gigas hasaspermatophoresimilarto Ovalipes ocellatus ,wherenumerous spermcellsarecloselypackedwithlittlefluidbetweensperm(Hinsch,1986).

Luminalsecretionsof P. gigas appeartobesimilartothoseof Scylla serrata ,inbothfunction andsiteofproduction.UmaandSubramoniam(1984)classifiedluminalsecretionsof S. serrata intofourgroups:A,B,CandD.Thesewereproducedinthemostanteriorportion oftheAVD,theposteriorportionoftheAVDandtheMVD,thePVD,andtheED respectively.Thespermatophoreenvelopeof P. gigas wassecretedintheanteriorportion oftheAVDandappearstocorrespondtoluminalsubstanceA.Thegranularsubstance secretedintheposteriorportionoftheAVDappearstobeluminalsubstanceB,andthisis consideredtohaveanutritivefunction(JeyalectumieandSubramoniam,1991).ThePVD of P. gigas isfilledwithanagranularsubstance,whichappearstobetheluminalsubstanceC describedbyUmaandSubramoniam(1984).Giventheabsenceofspermatophoresin luminalsubstanceC,andtheproximitytotheED,itisprobablethatthissubstanceforms thespermpluginthespermathecaofthefemale(Diesel,1989).UmaandSubramoniam (1984)identifiedafourthluminalsecretionintheED,whichtheylabelled"D".In P. gigas, theluminalsubstanceintheEDappearedtobethesameasthatinPVD("C")andthere appearedtobenojustificationtoclassifythemseparatelybasedonhistologyalone.

Observationsonthepresenceorabsenceofspermatophoresinthemalereproductivetract areusefulforfisheriesmanagementinestablishingtheonsetofphysiologicalmaturity.For instance,ComeauandConan(1986and1992)examinedthevasdeferensoftannercrabs

206 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Chionoecetes opilio todetermineifspermatophoreswereproduced,althoughtheyalso proposedthatthepresenceofspermatophoresmaynotnecessarilymeanthatthecrabis functionallyabletomate.Paul(1992)assertedthatitwasimprobablethatacrabwould expendenergyproducingspermunlesstherewassomechanceofusingit.Thisdiscussion overtheuseofgonadmaturitytodeterminethepotentialofmalestomateisfuelledby observeddifferencesinphysiologicalandmorphologicalmaturity.Thatis,malecrabstend toproducespermatophoresbeforetheyfullydevelopmorphologicalsecondarysexual characteristicssuchasenlargedchelae.

Thereispotentialforthisdebatetobeobscuredbythefalseclassificationofacrabas physiologicallymaturewhenonlylownumbersofspermatophoresareproduced,especially iftheanteriorvasdeferensisexaminedratherthanthemainstorageregion.Forinstance, VanEngel(1990)determinedphysiologicalmaturityof Callinectes sapidus bythepresenceof spermatophoresintheAVDalthoughseminalproductsarestoredintheMVDinthis species(Johnson,1980).AlthoughmostbrachyuransstorespermatophoresintheMVD, thereisinterspecificvariationwithsomespeciesstoringspermatophoresinthePVD(e.g. Libinia emarginata HinschandWalker,1974;and Uca lacteus Uma,1978).Thus,itisclearly importanttoestablishthesiteofspermatophorestorage,beforeconductingsamplingto determinephysiologicalmaturity.In P. gigas ,spermatophoresareformedintheAVDand storedintheMVDasevidencedbythehighdensityofnumerous,wellformed spermatophoresinthislargeregionofthetract.

References

Beninger,P.G.,Elner,R.W.,Foyle,T.P.andOdense,H.P.1988.Functionalanatomyofsnowcrab (Chionoecetes opilio )reproductivesystems,andahypothesisforfertilisation.JournalofShellfishResearch7, 196.

Conan,G.Y.,andComeau,M.1986.Functionalmaturityandterminalmoultofmalesnowcrab, Chionoecetes opilio .CanadianJournalofFisheriesandAquaticScience43,17101719.

Comeau,M.,andConan,G.Y.1992.Morphometryandgonadmaturityofmalesnowcrab, Chionoecetes opilio . CanadianJournalofFisheriesandAquaticScience49,24602468.

Diesel,R.1989.Structureandfunctionofthereproductivesystemofthesymbioticspidercrab Inachus phalangium (Decapoda:Majidae):observationsonspermtransfer,spermstorage,andspawning.Journalof CrustaceanBiology9,266277.

Gardner,C.1997.Optionsforhumanelyimmobilisingandkillingcrabs.JournalofShellfishResearch16, 219224. 207 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Hinsch,G.W.1986.Acomparisonofspermmorphologies,transferandspermmassstoragebetweentwo speciesofcrabs, Ovalipes occelatus and Libinia emarginata .InternationalJournalofInvertebrateReproduction andDevelopment10,7987.

Hinsch,G.W.1988.Morphologyofthereproductivetractandseasonalityofreproductioninthegoldencrab Geryon fenneri fromtheeasternGulfofMexico.JournalofCrustaceanBiology8,254268.

Hinsch,G.W.andWalker,M.H.1974.Thevasdeferensofthespidercrab Libinia emarginata .Journalof Morphology143:120.

Jeyalectumie,C.,andSubramoniam,T.1991.Biochemistryofseminalsecretionsofthecrab Scylla serrata with referencetospermmetabolismandstorageinthefemale.MolecularReproductionandDevelopment30,44 55.

Johnson,P.T.1980.‘HistologyoftheBlueCrab, Callinectes sapidus :AModelfortheDecapoda’.pp.440. (Praeger,NewYork.)

Paul,A.J.1992.Areviewofsizeatmaturityinmaletanner( Chionoecetes bairdi )andking( Paralithodes camtschaticus )crabsandthemethodsusedtodeterminematurity.AmericanZoologist32,534540.

Ryan,E.P.1967.Structureandfunctionofthereproductivesystemofthecrab Portunus sanguinolentus (Herbst).(Brachyura,Portunidae).I.Themalereproductivesystem.MarineBiologicalAssociationofIndia, SymposiumSeries2,506521.

Ryan,E.P.1984.SpermatogenesisandmalereproductivesystemintheHawaiianCrab Ranina ranina (L.).In ‘AdvancesinInvertebrateReproduction’(EdW.Engels.)pp629.(Elsevier,NewYork.)

Subramoniam,T.1993.Spermatophoresandspermtransferinmarinecrustaceans.AdvancesinMarine Biology29,129214.

Uma,K.,1978.Studiesoncomparativespermmorphologyandspermatophoresofcrustaceans.Masterof PhilosophyThesis,MadrasUniversity(unseen,citedbyUmaandSubramoniam,1984).

Uma,K.,andSubramoniam,T.1979.Histochemicalcharacteristicsofspermatophorelayersof Scylla serrata (Forskal)(Decapoda:Portunidae).InternationalJournalofInvertebrateReproduction 1,3140.

Uma,K.,andSubramoniam,T.1984.Acomparativestudyonthespermatophorein Scylla serrata (Forskal) (Decapoda:Brachyura)and Clibanarius longitarsus (DeHaan)(Decapoda:Anomura).JournaloftheMarine BiologicalAssociationofIndia26,103108.

VanEngel,W.A.1990.Developmentofthereproductivelyfunctionalforminthemalebluecrab, Callinectes sapidus .BulletinofMarineScience46,1322.

208 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Maturation of Male Giant Crab Pseudocarcinusgigas and the Potential for Sperm Limitation in the Tasmanian Fishery

14

209 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Abstract

Onsetofsexualmaturityofthemalegiantcrab (Pseudocarcinus gigas)fromTasmaniawas assessedtodeterminewhetherprotectionisprovidedbythecurrentminimumlegalsizeof 150mmcarapacelength(CL).Maturitywasassessedbymorphometricanalysisofchela development,changeinvasosomaticindex(VSI)withsize,andproductionof spermatophores.Maleswereobservedtodevelopthroughthreemorphologicalgroups basedondevelopmentofthemolariformchelarelativetoCL:morphologicallyimmature, morphologicallyadolescent,andmorphologicallyadult.Onsetofmorphological adolescenceoccursat134mmCLandthiswasnotinfluencedbysamplesite(eastand westTasmania).Malesproducespermatophoreswhiletheyaremorphologicallyimmature andthemidvasdeferensofallanimalssampledgreaterthan90mmCLcontained numerouswellformedspermatophores.VSIincreaseswithCLformorphologically immatureandadolescentcrabs.Malecrabsappeartosufferhigherincidenceofcheliped lossthanfemales,whichmaybeduetocompetitionformates.Tanktrialsdemonstrated thatfemalegiantcrabscarrybroodsinsuccessiveyearswithoutmoultingandareableto fertiliseeggsusingspermstoredforatleastfouryears.Informationonfunctionalmaturity ofmales,fromobservationsofmatingpairs,isrequiredtofullyassessthepotentialfor spermlimitationinthefishery.Nonetheless,therearefactorsthatreducetheriskofsperm limitation:bothfemalesandmalesareharvested;femalesdonotmoulteveryyearthereby raisingtheoperationalsexratio;andfemalescanstorespermforextendedperiods.

Introduction

Crabfisheriesarefrequentlymanagedbyrestrictingcatchtomalesasthiswastraditionally consideredtohaverelativelylittleimpactonthereproductiveoutputoftheremaining stock.Morerecently,concernfortheeffectsofreductionofmaleshaspromptedresearch onmalematurityinseveralestablishedfisheriesincludingthoseforChionoecetes bairdi (BrownandPowell,1972), C. opilio (ConanandComeau,1986;SainteMarie etal.,1995), Scylla serrata (Knuckey,1996), Callinectes sapidus (Wenner,1989;VanEngel,1990),and

216 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Paralithodes camtschaticus (PaulandPaul,1990).Indicationsofhighexploitationofmale giantcrab Pseudocarcinus gigas (Lamarck,1818)haspromptedsimilarresearchforthisfishery.

Acriticalstepinestimatingtheriskofspermdepletionduetofishingistodeterminethe sizeatwhichmalecrabsareabletoreproduce.Severalmethodshavebeenusedandthe mostdirectistheobservationofmatingpairs,eitherinthefield(Ennisetal.,1988; Oransanzetal.,1995),intankbasedtrials(AdamsandPaul,1983;PaulandPaul,1996a), orfromthepresenceofmatingscars(Knuckey,1996).Theseapproachesareimpractical with P. gigas forseveralreasons:theyareseldomfoundinwatershallowerthan100m; commercialfishersdonotcatchmatingpairsintraps;nomatinghasbeenobservedwith malesheldintankswithfemalesforperiodsof12months;andnoevidenceofmatingscars havebeendetectedonmales.

Alternativemethodsforestimatingsizeatwhichmalesareabletoreproduce(i.e. functionallymature)weresummarisedbyPaul(1992).Theyincludeexaminingthevas deferensforthepresenceofspermatophores(physiologicalmaturity)andmorphometric techniquessuchasratiosofreproductivetractweightsandchelasizetobodysize (morphometricmaturity).Duetodifficultyindeterminingfunctionalmaturityof P. gigas males,thesealternativeapproacheswereappliedtoassesstheonsetofmaturity,andalsoto investigateregionaldifferencesbetweenthetwomainareasoftheTasmanianfishery.

Aspectsofthefemalereproductivebiology,suchasspermstorageinthespermatheca,also influencethepotentialforspermlimitation(Wenner,1989;PaulandPaul,1992;Sainte MarieandCarriere,1995).Anadditionalobjectiveofthisstudywastoprovide informationontheviabilityofstoredspermin P. giga sandthecyclesofeggextrusionand moulting.

Materialsandmethods

Allcrabswerecollectedbycommercialfishersfishingforgiantcrabsin200–350mdepth, alongtherimofthecontinentalshelf.Crabswerecapturedintrapsfromtwosites(Fig.1) offeasternandwesternTasmania.Populationsofadult P. gigas fromtheseregionsare relativelyseparateasfewcrabsarefoundinBassStraitoraroundthesouthernregionof Tasmania.

217 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 1. Sampling locations in eastern and western Tasmania, Australia. Relatively few crabs are found in Bass Strait or around southern Tasmania indicating these populations are not continuous.

218 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Morphological maturation

Preliminaryanalyseswereconductedonmeasurementsof296malegiantcrabsto determinesuitableparametersforassessingmorphometricmaturity.Parametersmeasured were:abdomenlength;widthofabdominalsegment1;widthofabdominalsegment5; chelapropoduswidth;chelapropodusheight;chelapropoduslength;andlengthofmerus ofthe5thpereiopod.Themostsuitableparameterforassessingmorphometric developmentappearedtobechelapropoduslength(CPL)asotherparameterseither developedinasimplelinearrelationshipwithcarapacelength(CL),orshowedthesame patternasCPLbutwithgreaterscatter(i.e.,lowercorrelationwithCL).CPLwas measuredonthemolariformchelafromtheproximaledgeofthelowerarticulationknob tothedistaltipoftheimmovablefinger.

SamplingofCPLwasthenextendedtoatotalof533crabsfromeastern(N=186)and western(N=347)Tasmaniaranginginsizefrom46to235mmCL.Allmorphological samplingwasconductedfromMarch1996toJune1997.Inadditiontomorphological measurements,missingpereiopodsorlefthandedmolariformchelaewererecorded. Missinglimbswithoutablackenedplaqueoverthewoundwerenotrecordedasthesehad occurredrecently,probablyduringhandlingaftercapture.Femalecrabswerealsosampled fromthesamelocationforlimblossandincidenceoflefthandedmolariformchelae(N= 114and319respectively).

Physiological maturation

Todeterminetheweightandmaturityofgonads,61malecrabswereobtainedfromeastern TasmaniainMarchandJuly1996ranginginsizefrom81to208mmCL.Basedonthe analysisofmorphologicalgroupsdescribedbelow,thissampleincluded22morphologically immature,29morphologicallyadolescent,and10morphologicallymaturecrabs.Crabs werekilledinabathofcloveoilinseawaterat0.125mll 1(Chapter11;Gardner,1997)and immediatelydissectedtoremovethereproductivetract.Thepairedtestisandvasdeferens weregentlyblottedandweighedseparatelytothenearest0.1g.Vasdeferensweightwas dividedbyCLtoprovideanindexofvasdeferensdevelopment:vasosomaticindex(VSI).

219 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Carapacelength(CL),ratherthanwholeweight,wasusedtoscaletheindexofvasdeferens weightasitisindependentofdevelopmentofthemolariformchela.

Onevasdeferensandonetestiswerepreservedin10%phosphatebufferedsalinefor histologicalprocessingwhilesmearsfromtheothermidvasdeferenswereexamined microscopicallyforthepresenceofspermatophores,afterstainingwith5%neutralred. Specimenspreservedinformalinwereprocessed,sectioned,andstainedbystandard haematoxylinandeosinparaffinhistologythenexaminedforspermatogenesis.Maleswere classedasphysiologicallymaturewhenthemidvasdeferens,thesiteofspermatophore storagein P. gigas ,containednumerouswellformedspermatophores,i.e.ovoid spermatophoreswithacomplete,singleenvelopelayerenclosingdenselypackedsperm cells,110230monthelongestaxis(seeUmaandSubramoniam(1984)forsimilar histology).Thetwomethodsusedtopreparespecimensfordeterminingphysiological maturity(smearsandhistology)providedconfirmationofclassificationandtherewasno disagreementbetweenreadingswiththetwotechniques.

Sperm storage by females

Toexaminetheviabilityofspermstoredforextendedperiods,31ovigerousfemaleswere capturedintrapsfromdepthsintherangeof300380mofftheeastcoastofTasmania (41°15'S;148°40'E)inMay1994.Ovigerousfemaleshadonlyjustbeguntobeobservedby fisherssotheseeggmasseswereregardedasrecentlyextruded.Femalesrangedfrom2.2 3.5kgandweremaintainedintwo4m 3tankswithflowthroughwatersupplyandfed twiceweekly.Substratewasplacedintanksduringovipositioningtoensureadherenceof eggstopleopods(Shields,1991).Femaleswereindividuallytagged(seeLevingsetal., 1996)andmonitoreduntilSeptember1997torecordtheviabilityofbroodsandpatternsin reproductivebiology.Itwasfoundthatbroodswereproducedannuallyandwereheld fromaroundMaytoNovember;consequently,femalesweremonitoredforfour reproductivecycles.Femaleswereheldwithoutmalesforthedurationoftheexperiment.

Toexaminechangesintheweightofspermathecaeinrelationtothesizeofthefemale,90 femaleswereobtainedfromeasternTasmaniabetweenJune1994andAugust1995 (samplesofaroundtenindividualspermonthexceptduringseasonalclosuresinthe fishery:SeptembertoDecember).Thesefemaleswerekilledasdescribedformalesand dissectedtoremovethepairedspermathecaewhichwereblottedandweighedseparately; 220 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner themeanweightofthetwospermathecaewasusedforanalyses.Asmallproportionof femalegiantcrabsdonotproduceeggseachyearsofemaleswereclassedasreproductively activeorinactivebasedonthepresenceofeggsandthedevelopmentofthegonad.This classificationcouldonlybedoneduringmonthswherecrabswereovigerousorin advancedgonadogenesis(i.e.excludingJanuaryandFebruarywhengonadogenesiswas commencing).

Analysis of data

MorphologicalgroupsbasedonchelaallometryweredefinedbyiterativeKmeanscluster analysis(Everitt,1974;MassartandKaufman,1983).Chelaallometryofthesegroupswas thendefinedbylinearregressionofCPLonCL(SokalandRohlf,1981).Theeffectofsite onmorphometricdevelopmentofchelawasassessedbyclassiclinearregression(Myers, 1990).Chelamorphometricdatahavebeenlogtransformedinsimilaranalyseswithother brachyuranspecies(ComeauandConan,1992;SainteMarieetal.,1995).However, analysisofnormalquantileplotsindicatedthatregressionswerebestconductedwith untransformeddatain P. gigas .Slopesofregressionswerecomparedbyanalysisofvariance (ANOVA;SokalandRohlf,1981)andtheabscissavalueforthepointofintersection(I)

1 betweenregressionlineswascalculatedasI=(b 2b1)(a 1a2) ,wherea 1anda 2arethe slopesandb 1andb 2aretheYinterceptvaluesofthetworegressions(SainteMarieetal., 1995).ThisprocedurewasalsoappliedtoVSIdata,whichwerelogtransformed.

Thesignificanceofdifferencesbetweensexesinlimblossandincidenceoflefthanded molariformchelawereassessedbycontingencytableanalysisusingGtests(Sokaland Rohlf,1981).

221

Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 2. Carapace length (mm) 115-119 125-129 135-139 145-149 155-159 165-169 175-179 185-189 195-199 205-209 105-109

45-49 55-59 65-69 75-79 85-89 95-99 0

Number

2

4 150 mm - 6 Results

Maturity in males and chela allometry

Largenumbersofspermatophoreswerepresentinthemidvasdeferensofallmalesgreater than90mmcarapacelength(CL;N=59)andnospermatophoresweredetectedineither animalsampledbelow82mmCL(N=2).ThesamplesizeofcrabsaroundthisCLis insufficienttopinpointthesizeatonsetofgametogenesis.However,onsetof gametogenesisclearlyoccursatasizeconsiderablylessthantheminimumlegalsizeof150 mmCL(Fig.2)andprobablylessthan110mmCLformostmales.

Figure 2. Sampling to determine onset of physiological maturity (spermatophore production) in male giant crabs Pseudocarcinus gigas . Minimum legal size is 150 mm (dashed line) carapace length. Solid columns represent physiologically mature crabs, and shaded columns represent physiologically immature crabs.

Clusteranalysisofpointsinthescattergramofchelapropoduslength(CPL)onCLdefined threeclearclusterswhicharetermedmorphologicallyimmature,morphologically adolescent,andmorphologicallyadult(Fig.3).Siteappearedtohavenosignificanteffect (P>0.70)onsizeofonsetofadolescentchelamorphologysodatawerecombinedfor subsequentanalyses.Slopesofmorphologicallyadolescentandmorphologicallyimmature crabsweresignificantlydifferent(P<0.0001)andintersectedat133.5mmCL.Therewas considerableoverlapofmorphologicallyadolescentandadultmaleswiththelargest morphologicallyadolescentmale207mmCLandthesmallestmorphologicallyadultcrab 174mmCL.MeanCLofmorphologicallyadolescentandadultcrabswere172mmand 204mmrespectively;thatis,CLofmorphologicallyadultcrabswerearound19%larger thanadolescents.

222

Figure 3. Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Carapace Length (mm)

40 60 80 100 120 140 160 180 200 220 240

0

I=133.5 mm CL

X

Chela Propodus Length (mm) X

50 XX X

X

X

XX

X

100

X

X

X

X

X X

X

X X

X X 150

X

X

X X

X X X X

1

1

1

1

1 1

1

1

1 1

1 1

1 1 1 1

1 1

1 1 1

1

200

1 1

1 1

1

1

11 1 1

1

1 1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1

1 1

1 1 1 1

1

1 1

1 1 1 1 1 11

1 1 1

1 1

1

1 1 1

1 1 1 1 1

1 1 1

1 1 1 1

1

1

1 1 1 1

1 1 1 1

1 1 1 1 1

1 1 1 1 1

1 1 1

1 1 1 1

1 1 1 1

1 1

1 1 1 1 1 1 1

1 1 1

1

1 1 1

1 1 1 1

1 1 1

1 1

1

1 1 1 1

1

1 1 1 1

1

1 1 1

250

1 1

1

1 1 1 1 1 1

1 1

1 1 1 1

1

1

1 1 1

1 1 1 1

1 1

1

1 1

1 1 1

1 1 1 1

1 1

1 1

1 1 1 1

1

1

1 1 1 1

1 1 1

1 1

1 1

1 1 1 1

1 1

1 1 1 1

1

1 1

1 1 1

1

1 1

1 1 1

1

1

1

1 1 1

1

1

1 1 11

1

300

1

1 1

1

1

1

1

1 1

1 1 1

1

X 1

X X X

X

X

X X

X

X X

X

X X

X

X X X X X

X X

X

X XX X

X

X

X X X

X X

X X

X X XX XX X

350

X

X

XX X

X

X

X X X

X X X

X

X

X X XX 150 mm CL

X X X X X

X X X

X

X X

X Figure 3. Scattergram of chela propodus length (CPL) on carapace length (CL) for X X

X X X

X X

X X X X

X X X

X X X X X X X X

X X X X

X X

X X

X

X X X X

X

X X X

X X X X

X X X X X

X X X X

X X

X X

XX X X

X X

X X X

X XX X

400

X X

X

X X XXX X

X X

X

legal size:

X

X

X X

X X

X

X X

X X

X X XX

X X X X

X X X X X

X X X

X

X

X

X

X X

X X

X

X

X

X

Minimum X X 450

X X X

X X X X

X X

X X X

X X 500 samples of morphologically immature, adolescent, and adult male Pseudocarcinus gigas taken from May 1995 to June 1997. Data for crabs collected on eastern and western coasts of Tasmania are combined. Males were classified into morphological maturity groups by cluster analysis as described in text. Equations of regressions are: CPL = 1.245CL - 22.895 for immature males (lower scatter points, N = 32, r 2 = 0.97, P < 0.0001); CPL = 2.318CL - 166.026 for adolescent males (middle scatter points, N = 291, r 2 = 0.62, P < 0.0001); and CPL = 2.285CL - 86.762 for adult males (upper scatter points, N = 210, r 2 = 0.544, P<0.0001). "I" represents the abscissa value at which the regressions of morphologically immature and adolescent males intersect.

VSIincreasedwithmalesizeforbothmorphologicallyimmatureandadolescentcrabs (P<0.001;Fig4).NoeffectofcarapacesizeonVSIwasdetectedformorphologically adultcrabsalthoughmostofthesecrabswereofsimilarsizeandsamplesizewassmall. Theslopesofregressionsoflogvasosomaticindex(VSI)againstlogCLweresignificantly differentformorphologicallyimmatureandadolescentcrabs(P<0.01)andtheyintersected at140mmCL(Fig.4).Notethatthisabscissavalueof140mmCLshouldbeinterpreted cautiouslyasitislargelyanartefactofthemorphologicalgroupingvariablewhichhadan abscissavalueof133.5mmCL.

223

Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 4.

Log Carapace Length (mm)

1.9 1.95 2 2.05 2.1 2.15 2.2 2.25 2.3 2.35

-1.8

I=140 mm CL

-1.6

Log Vaso-Somatic Index

-1.4 -1.2

-1 Figure 4. Relationship between log vaso-somatic index (VSI; wet weight of the vas

-0.8

150 mm CL

legal size: -0.6 Minimum

-0.4 deferens / CL) and log carapace length (CL) of morphologically immature (E), adolescent (J), and adult (H) male giant crabs Pseudocarcinus gigas . Note that weight of vas deferens was scaled against CL, rather than body weight, to reduce confounding effects from chela development. Equations of regressions are: log (VSI) = 3.672logCL - 8.858 (N = 20, r 2 = 0.69, P<0.0001) for morphologically immature males; and log (VSI) = 1.213logCL - 3.578 (N = 29, r 2 = 0.23, P<0.01) for morphologically adolescent males. No significant effect of CL on VSI was detected for morphologically mature males (N=10; P>0.50). "I" represents the abscissa value at which the two regressions intersect.

Limb loss and incidence of left handed molariform chelae

Malecrabshadsignificantlyhigherincidenceoflefthandedmolariformchelaethan females(P<0.05;Fig.5).Althoughthereappearedtobeatrendofgreaterlimblossin malecrabs,thiswasnotsignificant(P>0.05).

224

Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 5.

F (n=114) M (n=118) F (n=319) M (n=554)

0 0

0.2 0.2

0.4 0.4

0.6 0.6

0.8 0.8

1 1

1 3

R handed Figure 5. Proportion of male and female giant crabs Pseudocarcinus gigas with missing 0 2 4 L handed pereiopods (left) and with left handed, molariform chela (right).

Sperm storage by females and annual reproductive patterns

Femalesheldintankshadanannualreproductivecyclewithmostfemalesproducing broodsinsuccessiveyears(Fig.6).Aroundonequarteroffemalesdidnotproducebroods inthethreeseasonsaftercaptureandtheseindividualswentontomoultin1995/96. However,thispatterndidnotoccurin1996/97whenfemalesthathadnotproduced broodsin1996wereabletoproducebroodsin1997withoutmoulting.Sixteenofthe seventeencrabsremainingaliveattheendofthetrialinSeptember1997wereableto producefertilebroodsalthoughtherehadbeennocontactwithmalessincecaptureinMay 1994.Noattemptwasmadetomeasurefecundityasnutritionaffectsfecundityin crustaceans(Harrison,1990)andthesupplieddietofmackerel( Trachurus sp.)wasunlike thenaturaldietwhichisprimarilyechinoderms,anomurans,andgastropods(Heerenand Mitchell,1997).Nonetheless,inthefinalseason,manyfemalesproducedlargebroodsthat appearednormal.Nofemalessurvivedmoulting;thespermathecaeofthesefemales remainedfullalthoughitwasclearlynotpossibletoassesstheviabilityofstoredsperm retainedthroughamoult.

225

Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 6

1994 . 1995 . 1996 . 1997

0

survived 5

individual crab number

moult (mortality) 10

15

mortality 20

non-ovigerous Figure 6. Reproductive history of 31 female giant crabs Pseudocarcinus gigas held in 25 ovigerous 30 tanks without males from May 1994 to September 1997. Females were captured with eggs. Moulting occurred in January and February and all moulting individuals died. Embryogenesis was observed in all egg masses from females classed as ovigerous.

Severalofthedissectedfemalesappearedtobeskippingareproductiveseasonastheydid nothavedevelopingovariesorbroodsduringthebroodingseason(12.8%offemaleswith spermdeposits;Fig.7).Levingsetal.(1996)statedthatthesizeofonsetofmaturityof femalecrabsinTasmaniaisaround115mmCLandmostofthesereproductivelyinactive femaleswereconsiderablylarger.Allfemalesgreaterthan124mmCLhaddepositsin theirspermathecae.Weightofspermathecaeincreasedwithfemalesize(P<0.0001) indicatingthatlargerfemaleshavematedmoreoftenthansmallerfemalesandthatthey continuetoaccruespermreserves(Fig.7).

226 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 7. Scattergram of average wet weight of spermathecae (SW) on carapace length (CL) of female giant crabs Pseudocarcinus gigas . Females with eggs or developing ovaries are represented by open circles (E) and reproductively inactive females are represented by crosses (1). The regression excludes the four females without sperm deposits and the equation is: SW = -5.712 + 0.0624 CL (N = 90, r 2 = 0.41, P<0.0001).

8 ο ο ο 7 ο ο ο ο ο 1 ο 6 1ο ο ο ο ο ο ο ο 5 ο ο ο 1 ο ο 1 ο ο 1 ο ο 4 ο ο 1 ο οο ο ο ο1 οο ο ο οοο 1 ο ο ο 3 1 οο ο ο οο ο οο ο1οο ο ο ο ο ο οο 2 οο1 οοο οο ο οο οο ο 1 0 1 1 1 1 80 100 120 140 160 180 200 220 Carapace length (mm)

Discussion

Maturation of males

Male Pseudocarcinus gigas passthroughthreedistinctmorphologicalstagesbasedonallometry ofthechelawhichhavebeentermedmorphologicallyimmature,morphologically adolescent,andmorphologicallyadult.Whiletheuseofmorphologicalindicesfor assessingmaturityiscontroversial(seePaul,1992;ComeauandConan,1992;SainteMarie etal.,1995),itisausefulmethodfordeterminingwhetherthereareregionaldifferencesin sizeofonsetofmaturity.Also,intheabsenceofinformationonfunctionalmaturity, morphologicalindicescanprovidethebestestimateofsizeofmaturityinsomespecies (SomertonandMacintosh,1983).Theredidnotappeartobeanyregionaleffect(between eastandwestTasmania)onsizeofonsetofmorphologicaladolescencein P. gigas .This suggeststheinformationonphysiologicalmaturityof P. gigas obtainedfromspecimens collectedontheeastcoastmaybeequallyapplicabletowestcoastpopulations.

Tousemorphologicalinformationforfisheriesmanagement,itisnecessarytorelate changestomoultincrementsandtheserelationshipsarenotnecessarilysimple(Pauland 227 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Paul,1995a).ThemeanCLofmorphologicallyadult P. gigas was19%largerthanthemean CLofadolescentcrabs.Thisisaroundthesamesizeasthemoultincrementofmalecrabs reportedbyLevingsetal. (22%;1996)althoughitshouldbenotedtheirestimatewas drawnfromonlyfourindividualsbetween115and140mmCL.Nonetheless,this indicatesthatthedistinctstagesofcheladevelopmentcorrespondtodifferentinstarsand similarpatternshavebeenshowninnumerousbrachyurans,includingotherxanthids (FinneyandAbele,1981).Thedatapresentedindicatethatthemorphologicallyadultstage of P. gigas maybeterminalaswithChionoecetes opilio (SainteMarieetal.,1995)althoughitis possiblethatadditionalmoultsmayoccuraswithChionoecetes bairdi (PaulandPaul,1995b). Thesecouldresultinmorphologicalstagesbeyondtheuppersizelimitsampledwhichis limitedataround225mmCLbythelegalmaximumneckdiameterofpots.

Unlike Chionoecetes spp.,themorphologicalstagesof P. gigas donotcorrespondtodistinct stagesintheonsetofgametogenesisascrabsofallmorphologicalstageshad spermatophoresinthemidvasdeferensandpossessedwelldevelopedgonads(Brownand Powell,1972).Severalauthorshaveregardedthepresenceofspermatophoresasindication offunctionalmaturity(Hartnoll,1969;Paul,1992)althoughthisrelationshipisdebatedin otherspecieswheremorphologicaldevelopmentseemstobeanimportantdeterminantof functionalmaturity(VanEngel,1990;ComeauandConan,1992;SainteMarieetal.,1995; Knuckey,1996).Inregardsto P. gigas ,themorphologicalstagesofcheladevelopment representthreepossibilitiesforfisheriesmanagement.First,physiologicallymaturemales ofimmaturemorphologymaybefunctionallymature.Theseanimalsaregenerally protectedbythecurrentminimumsize(150mm)soimpactsoffishingwillbeslight. Secondly,malesmaynotbecomefunctionallymatureuntilmorphologicaladolescence, despitethepresenceofspermatophoresatmuchsmallersizes.Male P. gigas beginto exhibitmorphologicaladolescenceataround135mmCLwithmostmorphological adolescentsbeinglargerthanlegalsize,solittleprotectionwouldbeprovidedbycurrent legislation.Thethirdalternativeisthatonlymorphologicallyadultcrabsarefunctionally mature.Currentminimumsizelimitswouldbeineffectiveforprotectingbreedingmale crabsinthisalternativeandmostcouldbeharvestedasmorphologicaladolescentswell beforereachingfunctionalmaturity.

Withoutdirectmeasuresofmating,itisnotpossibletoascribedefinitivelythematuration of P. gigas toanyoftheoptionslistedabove,however,therearecluestotheirmating behaviour.Specieswithlargermalesrelativetofemales,asin P. gigas ,tendtohavea

228 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner polygamous,femalecentredcompetitionsystem(MartinandMay,1981;Christy,1987). Thelargemolariformchelaofmorphologicallyadultmale P. gigas isoflimitedusefor feeding(HeerenandMitchell,1997)andisusedaggressivelyintankssothatopposing malesarekilledalthoughfemaleshaveneverbeenobservedtodamageeachother(similarly with C. bairdi ;PaulandPaul,1996b).Regeneratedmolariformchelaoftenregrowas incisiformchelasothegreaterincidenceof"lefthanded"molariformchelainmale P. gigas maybearesultofgreaterlimblossduetointermaleaggression(Cheung,1976;Smith, 1990;SimonsonandHochberg,1992;Abelloetal.,1994).Onthebasisoftheseindirect observationsonbehaviour,itisprobablethatthemorphologicalstagesofdevelopmentof thechelaehavefunctionalsignificanceinmatingandthatonlymorphologicallyadolescent oradultcrabsareimportantforfertilisation.Productionofspermatophoresbeforemales arefunctionallymatureappearstobecommoninbrachyurans(Oransanzetal.,1995; Knuckey,1996)sothisisunlikelytoindicatefunctionalmaturityinmorphologically immature P. gigas .Spermatophoreproductionatthisstagemaysimplyindicatetheonsetof gonadogenesisinpreparationformatingatsubsequentstages,asVSIincreasessharplyin relationtoCLformorphologicallyimmaturecrabs(noteVSIwascalculatedusingCLas thesomaticscalesotherelationshipisnotmerelyvolumetric).

Theimplicationsofremovinglargemalesfromthepopulationhavecausedconcernin somecrabfisheriesastheyaremoresuccessfulinrestrainingfemalesduringthe precopulatoryembrace(ComeauandConan,1992;Hankinetal.,1996).Theincreasein P. gigas spermathecaweightwithCLindicatesthatfemalesmateonseveraloccasionsasthey grow(Fig.7)andspermathecaeoflargefemalescontainseparateregionsofspermdeposit thatappeartocorrespondtoseparateejaculates(Gardneretal.,1998).Consequently,there ispotentialforlargefemalestoavoidmatingiflargemalesareremovedbythefisheryand ifmalesizeinfluencesmatingsuccess(Christy,1987).

Removaloflargemalesbyfishingmayalsoleaddirectlytospermlimitationwheresmall malesreplacelargermalesaftercompetitionforpossessionoffemalesisreduced(Enniset al.,1988).Forinstance,malesinexploitedpopulationsof C. opilio havereducedsperm reserves,presumablyduetomorefrequentmating(SainteMarieetal.,1995).More frequentmatingisoflimitedconcernwheresmallmalesareabletoinseminateseveral females(SainteMarieandLovrich,1994),however,thisisnotthecaseforallspecies.Paul (1992)notedthatlargemale Paralithodes camtschaticus arecapableofinseminatingseveral femaleswhilesmallermalesmaybelimitedtoasinglemating.Theimplicationsofthe

229 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner removaloflargemalesfrombreedingpopulationsof P. gigas areunknownsofuture monitoringofVSIasthefisherydevelopsisadvisable.

Sperm storage

Irregularmoultingoffemalecrabsandassociatedreproductiveasynchronyhavethe potentialtoinflatetheoperationalsexratioandtoincreasecompetitionforfemales (Wenner,1989;Orensanz,etal.,1995).Inflationoftheoperationalsexratiooccursin Cancer gracilis wherespermcanberetainedthroughmoultsandisusedtofertiliseseveral broods(Orensanz,etal.,1995). P. gigas arealsoabletoretainspermthroughmoultsand storedspermremainsviableforextendedperiods,sothatatleastfourannualbroodscan befertilised.Thisprolongedviabilityofstoredspermin P. gigas ,combinedwiththe productionofsuccessivebroodswithoutmoultingsuggeststhattheoperationalsexratiois inflated.Thisactstoreducetheriskofspermlimitation.

Summary

Theonsetofmorphologicaladolescenceoccurredataround135mmCLinmalecrabs frombotheastandwestTasmania,whichisslightlybelowthelegalminimumsizelimit (150mmCL).Althoughspermatophoresareproducedbymorphologicallyimmature P. gigas ,itisunlikelythatthesecrabsarefunctionallymatureasVSIisstillincreasingatthis stage.Also,spermatophoreproductionbyfunctionallyimmaturemalesappearstobe commonamongtheBrachyura.Morphologicaladolescentsandmorphologicaladultsare likelytobedistinctmoultstageswithmostanimalsatthisstagelargerthanthelegal minimumsize.Aspectsofthereproductivebiologyoffemaleswhichreducetheriskof spermlimitationare:1)successiveannualbroodsareproducedwithoutmoulting;and2) spermcanbestoredinthepairedspermathecae,retainedthroughmoults,andremains viableforatleastfouryears.

230 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

References

Abello,P.,Warman,C.G.,Reid,D.G.andNaylor,E.1994.Chelalossintheshorecrab Carcinus maenas (Crustacea:Brachyura)anditseffectonmatingsuccess.MarineBiology,121:247252.

Adams,A.E.andPaul,A.J.1983.Maleparentsize,spermstorageandeggproductioninthecrab Chionoecetes bairdi (Decapoda,Majidae).InternationalJournalofInvertebrateReproduction,6:181187.

Brown,R.B.andPowell,G.C.1972.SizeatmaturityinthemaleAlaskanTannercrab, Chionoecetes bairdi ,as determinedbychelaallometry,reproductivetractweightsandsizeofprecopulatorymales.Journalofthe FisheriesResearchBoardofCanada,29:423427.

Cheung,T.S.1976.Abiostatisticalstudyofthefunctionalconsistencyinthereversedclawsoftheadultmale stonecrab, Menippe mercenaria (Say).Crustaceana,31:137144.

Christy,J.H.1987.Competitivemating,matechoiceandmatingassociationsofbrachyurancrabs.Bulletinof MarineScience,41:177191.

Comeau,M.andConan,G.Y.1992.Morphometryandgonadmaturityofmalesnowcrab, Chionoecetes opilio . CanadianJournalofFisheriesandAquaticSciences,49:24602468.

Conan,G.Y.andComeau,M.1986.Functionalmaturityandterminalmoultofmalesnowcrab, Chionoecetes opilio .CanadianJournalofFisheriesandAquaticSciences,43:17101719.

Ennis,G.P.,Hooper,R.G.andTaylor,D.M.1988.Functionalmaturityinsmallmalesnowcrabs( Chionoecetes opilio ).CanadianJournalofFisheriesandAquaticSciences,45:21062109.

Everitt,B.1974.ClusterAnalysis.HeinemannEducationalBooks,London.122pp.

Finney,W.C.andAbele,L.G.1981.Allometricvariationandsexualmaturityintheobligatecoralcommensal Trapezia ferruginea Latreille(Decapoda,Xanthidae).Crustaceana,41:113130.

Gardner,C.1997.Optionsforhumanelyimmobilisingandkillingcrabs.JournalofShellfishResearch,16: 219224.

Gardner,C.,Rush,M.andBevilacqua,T.1998.Nonlethalimagingtechniquesforcrabspermathecae. JournalofCrustaceanBiology,18:6469.

Hankin,D.G.,Butler,T.H.,Wild,P.W.andXue,Q.L.1996.Doesintensemaleharvestlimiteggproduction ofprotectedfemalestocksofDungenesscrabs?HighLatitudeCrabs:Biology,Management,and Economics.AlaskaSeaGrantCollegeProgramReportNo.9602,UniversityofAlaskaFairbanks,507510.

Harrison,K.E.1990.Theroleofnutritioninmaturation,reproductionandembryonicdevelopmentof decapodcrustaceans:areview.JournalofShellfishResearch,9:128.

Hartnoll,R.G.1969.MatingintheBrachyura.Crustaceana,16:161181.

Heeren,T.andMitchell,B.D.1997.Morphologyofthemouthparts,gastricmillanddigestivetractofthe giantcrab, Pseudocarcinus gigas (MilneEdwards)(Decapoda:Oziidae).MarineandFreshwaterResearch,48:7 18.

Knuckey,I.A.1996.Maturityinmalemudcrabs, Scylla serrata ,andtheuseofmatingscarsasafunctional indicator.JournalofCrustaceanBiology,16:487495.

Levings,A.,Mitchell,B.D.,Heeren,T.,Austin,C.andMatheson,J.1996.Fisheriesbiologyofthegiantcrab (Pseudocarcinus gigas ,Brachyura,Oziidae)insouthernAustralia.HighLatitudeCrabs:Biology,Management,

231 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner andEconomics.AlaskaSeaGrantCollegeProgramReportNo.9602,UniversityofAlaskaFairbanks,125 151.

Martin,R.D.andMay,R.M.1981.Outwardsignsofbreeding.Nature,293:78.

Massart,D.L.andKaufman,L.,1983.TheInterpretationofAnalyticalChemicalDatabytheUseofCluster Analysis.JohnWileyandSons,NewYork.237pp.

Myers,R.H.1990.ClassicalandModernRegressionwithApplications.2ndEdition.DuxburyPress, Belmont,California.488pp.

Orensanz,J.M.,Parma,A.M.,Armstrong,D.A.,Armstrong,J.andWardrup,P.1995.Thebreedingecology of Cancer gracilis (Crustacea:Decapoda:Cancridae)andthematingsystemsofcancridcrabs.Journalof Zoology,London,235:411437.

Paul,A.J.1992.Areviewofsizeatmaturityinmaletanner( Chionoecetes bairdi )andKing( Paralithodes camtschaticus )crabsandthemethodsusedtodeterminematurity.AmericanZoologist,32:534540.

Paul,A.J.andPaul,J.M.1992.Secondclutchviabilityof Chionoecetes bairdi Rathburn(Decapoda:Majidae) inseminatedonlyatthematuritymoult.JournalofCrustaceanBiology,12:438441.

Paul,A.J.andPaul,J.M.1995a.Changesinchelaheightsandcarapacelengthsinmaturemaleredkingcrabs Paralithodes camtschaticus aftermoultinginthelaboratory.AlaskaFisheriesResearchBulletin,2:164167.

Paul,A.J.andPaul,J.M.1995b.Moultingoffunctionallymaturemale Chionoecetes bairdi Rathburn(Decapoda: Majidae)andchangesincarapaceandchelameasurements.JournalofCrustaceanBiology,15:686692.

Paul,A.J.andPaul,J.M.1996a.Observationsonmatingofmultiparous Chionoecetes bairdi Rathburn (Decapoda:Majidae)heldwithdifferentsizesofmalesandoneclawedmales.JournalofCrustaceanBiology, 16:295299.

Paul,J.M.andPaul,A.J.1990.Breedingsuccessoflegalandsublegalsizemaleredkingcrab, Paralithodes camtschatica (Tilesius,1815)(Decapoda,Lithodidae).JournalofShellfishResearch,9:2932.

Paul,J.M.andPaul,A.J.1996b.Anoteonmortalityandinjuryratesofmale Chionoecetes bairdi (Decapoda, Majidae)competingformultiparousmates.HighLatitudeCrabs:Biology,Management,andEconomics. AlaskaSeaGrantCollegeProgramReportNo.9602,UniversityofAlaskaFairbanks,343347.

SainteMarie,B.andCarriere,C.1995.Fertizationofthesecondclutchofeggsofsnowcrab, Chionoecetes opilio ,fromfemalesmatedonceortwiceaftertheirmoulttomaturity.FisheryBulletin,93:759764.

SainteMarie,B.andLovrich,G.A.1994.Deliveryandstorageofspermatfirstmatingoffemale Chionoecetes opilio (Brachyura,Majidae)inrelationtosizeandmorphometricmaturityofmaleparent.Journalof CrustaceanBiology,14:508521.

SainteMarie,B.,Raymond,S.andBrêthes,J.C.1995.Growthandmaturationofthebenthicstagesofmale snowcrab, Chionoecetes opilio (Brachyura:Majidae).CanadianJournalofFisheriesandAquaticSciences,52: 903924.

Shields,J.D.1991.Thereproductiveecologyandfecundityof Cancer crabs. In CrustaceanEggProduction,pp. 193213.Ed.byA.WennerandA.Kuris.A.A.Balkema,Rotterdam.

Simonson,J.L.andHochberg,R.J.1992.Ananalysisofstonecrab(genus Menippe )clawsandtheirusein interpretinglandingsonFlorida'swestcoast. In ProceedingsofaSymposiumonStoneCrab(Genus Menippe ) BiologyandFisheries,pp.2650.Ed.byT.M.Burt.FloridaMarineResearchInstituteno.50.118pp.

Smith,L.D.1990.Patternsoflimblossinthebluecrab, Callinectes sapidus Rathburn,andtheeffectsof autotomyongrowth.BulletinofMarineScience,46:2336.

Sokal,R.R.andRohlf,F.J.1981.Biometry.2nded.W.H.Freeman,NewYork.859pp.

232 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Somerton,D.A.andMacIntosh,R.A.1983.Thesizeatsexualmaturityofbluekingcrab, Paralithoides platypus , inAlaska.FisheryBulletin,81:621628.

Uma,K.andSubramoniam,T.1984.Acomparativestudyonthespermatophorein Scylla serrata (Forskal) (Decapoda:Brachyura)and Clibanarius longitarsus (DeHaan)(Decapoda:Anomura).JournaloftheMarine BiologicalAssociationofIndia,26:103108.

VanEngel,W.A.1990.Developmentofthereproductivelyfunctionalforminthemalebluecrab, Callinectes sapidus .BulletinofMarineScience,46:1322.

Wenner,E.L.1989.Incidenceofinseminationinfemalebluecrabs, Callinectes sapidus .JournalofCrustacean Biology,9:587594.

233 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Ovarian Development and Female Reproductive Biology

15

234 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Abstract

Thegrossanatomyofthefemalereproductivetractofthegiantcrab Pseudocarcinus gigas is typicalofbrachyurans.Thematingsystemwasinvestigatedandalthoughcopulationwas neverobserved,indirectevidencefromtheanatomyofthevaginaandapparentmating scarsindicatesthatmatingoccurswhilethefemaleissoftshelled,whichisconsistentwith othermembersofthefamilyEriphiidae.Femalesproducebroodsatmorethanoneinstar andretainejaculatesthroughmoults.Ejaculatesarestoredinpairedventraltype spermathecae.Separateregionsofspermcellswereobservedinthespermathecaeand thesewerepresumedtobeseparateejaculates.Thenumberofthesepresumptive ejaculatesincreasedwithfemalesizewithuptothreeregionsidentifiedinsomeindividuals. Internalspermplugswereapparentalthoughexternalspermplugswereneverobserved. However,thismayhavebeenanartefactofsamplingasallstoredspermatophoreshad dehisced(releasedspermatids),indicatingthatmatinghadnotoccurredrecently.Patterns ofovariandevelopmentandobservationsofcrabsheldintanksdemonstratedthatthe reproductivecycleisannual,althoughfemalesmayfailtoproduceabroodeach reproductiveseason.Hepatosomaticindex(weightofhepatopancreasrelativetototal weight)wasreducedinresponsetoovariandevelopmentalthoughtherewasnoevidence ofdepletionofreservesinthehepatopancreasduringgonaddevelopment.Moisture contentofthehepatopancreasdeclinedasgonaddevelopmentproceededandprotein concentration(dryweight)remainedstable.Carotenoidconcentrationinthe hepatopancreasshowedstrongseasonaltrendsalthoughtheseappearedunrelatedto vitellogenesisastrendsweresimilarbetweenreproductivelyactiveandinactivecrabs. Ovariancarotenoidconcentrationincreasedduringvitellogenesisandpeakedimmediately priortoextrusion.

Introduction

Informationonreproductivebiologyisessentialformanagementofexploitedcrabspecies asitformsthebasisofbiologicallyrationalcontrolsonfishingeffort,especiallyforinput controlssuchasclosedseasonsandsizelimits.Theonlypublishedinformationonfemale 240 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner reproductionin Pseudocarcinus gigas (Lamarck,1818)isbyLevingsetal.(1996)whoreported seasonalpatternsofcaptureofovigerousfemales,determinedaregressionofeggmass weightagainstcarapacelength,andnotedthatnotallfemalesbecomeovigerousduringthe incubationperiod(statedasJune/JulytoOctober/November).Theyalsostatedthat femalesmigratefrom270mdepthto210140mtoreleaselarvae,andthattheymatewhile softshelledinJuneandJuly,althoughnodatawerepresentedinsupport.

Thegenus Menippe isinthesamefamilyas P. gigas andtheyarethemosttaxonomically similarexploitedcrabspecies (FamilyEriphiidae 7).Aconsiderableamountofinformation hasbeenpublishedon Menippe species 8whichservesasausefulguidetoprobable reproductivepatternsin P. gigas .However,whilethereissimilarityinreproductivebiology withintaxa,aspectssuchasmatingbehaviourmayvarywithinbrachyuranfamilies (Norman,1996)andevenwithingenera(Orensanzetal.,1995).

Giventhelimitedbiologicalinformationonreproductioninfemale P. gigas ,itwas consideredusefultoinvestigatefundamentalaspects,aswellasissuesrelatingdirectlyto fisheriesmanagement.Theanatomyofthereproductivetractisdescribedwithemphasis onthespermathecaeasthestructureofthisorganreflectsaspectsofthematingsystem (Jensenetal.,1996).Additionalresearchonthematingsystemwasconductedby maintainingcrabsintanksforseveralyearsinanattempttoobservemating.

Informationonthematingsystemisalsousefulformanagingtheharvestofmalecrabsas malestendtosufferhigherexploitationandthereisconcernthatspermlimitationmay result(Chapter14).Theoperationalsexratiocanbelowered,andthustheriskofsperm limitationincreased,byfactorssuchasmatingwhilethefemaleissoftshelled(duringshort seasonalperiods)andbyprolongedmateguardingbehaviours(Christy,1987).

Seasonalpatternsofdevelopmentwereinvestigatedbyholdinganimalsforprolonged periodsintanksandfromchangesinthesize,compositionandhistologyofdissected ovaries.Seasonalchangesinthehepatopancreaswerealsomonitoredasthisorganis consideredtobeanimportantorganforstorageofnutrientspriortogonadogenesis,and

7EriphiidaeissynonymouswithOziidaeandMenippidae(Holthuis1993).

8Menippe adina wasseparatedfrom Menippe mercenaria in1986soearlierstudiesreferringto M. mercenaria may havebeenbasedon M. adina ,oronhybridmaterial(WilliamsandFelder,1986;Wilber,1989a).

241 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner itscompositiontendstofollowoppositetrendstotheovary(Kulkarniand Nagabhushanam,1979;CastilleandLawrence,1989;DyPenafloridaandMillamena,1990).

Materialsandmethods

Collection of specimens for dissection

Atotalof101femalecrabswerecapturedintrapssetat150300mbyacommercialfisher. AllsampleswerecollectedfromtheeastcoastofTasmania(41 °10'42 °00'S;148 °30' 149 °00'E)betweenMay1994andAugust1995.Itwasintendedtocollectatleast10crabs monthlyalthoughthiswasnotalwayspossibleduetopoorweatherorclosedseasons (Table1).Specimensrangedfrom83to203mmcarapacelength(CL).

Commercialfishersreportedthatnotallcrabsbecameovigerousduringthewintermonths. Toimproveclarityofresultsingonadanalyses,femaleswereclassedasreproductively activeorinactive,onthebasisofgonaddevelopment.Asthisclassificationdiscriminated onthebasisofgonaddevelopment,itwastheoreticallypossibleforafemalecrabtobe ovigerous,yetclassedashavinginactivegonadsforthenextspawningseason.This distinctionwasnotclearinsamplescollectedinJuneandAugustasgonadogenesiswasnot advanced.Consequently,nocrabssampledintheseperiodswereclassedasinactive. Overall,15ofthetotal101femalecrabswereclassedasinactive.

Table 1. Number of crabs sampled in each month from May 1994 to August 1995. 1994 1995 M J J A S O N D J F M A M J J A Active 3 9 9 8 12 12 3 9 4 12 9 Inactive 1 2 2 1 5 Total 3 9* 9* 8 13 14 5 10 9 12 9* (6*) (10*) *numberofovigerouscrabsinsample

242 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Assessing maturity

Crabswerekilledinabathofcloveoilinseawaterat0.125mll 1(Chapter11;Gardner, 1997a),measured(carapacelength),weighed,andthendissectedtoremovethe hepatopancreas,ovary,andspermathecae.Wherecrabswereovigerous,theeggmasswas removedbeforethefemalewasweighedtoobtainwholeweight.Thehepatopancreasand ovarywerethenweighedandsubsampleswereeitherpreservedin10%phosphatebuffered formalinforhistology,orfrozen(60 °C)forbiochemicalanalyses.Indicesofgonad(GSI) andhepatopancreas(HSI)sizewerecalculatedas:(wetweightoforgan/totalbody weight) x100.

Ovariantissueandbisectedspermathecaewereprocessedbystandardhaematoxylinand eosin,paraffinhistologyandsectionswerecutat7 µm.Thedevelopmentofoocyteswas quantifiedfromhistologicalsectionsbymeasuringtheareaof50largeoocyteswithinthe ovarybyimageanalysisusingNIHImage™1.6software.Asthediameterofoocyteswas oftengreaterthanthethicknessofsections,itwasinevitablethatmanyoocyteswouldbe notbesectionedthroughtheirmedialplane.Thisproblemwaspartiallyovercomebyonly selectinglargeoocytesformeasurement.

SpermathecaewerepreservedinDavidson’sfixative.Distinctregionsofspermdeposits wereapparentinhistologicalsectionsofthespermathecaeandthesemayhavebeen separateejaculatesalthoughbiochemicaltechniques,suchaselectrophoreticanalysisof enzymes,isrequiredtoconfirmthis(SévignyandSainteMarie,1996).Thenumberof thesepresumptiveejaculateswascountedforeachfemale.

Composition of ovary and hepatopancreas

Allanalyseswereduplicatedandaveraged.Wheretheduplicateanalysesdifferedbymore than10%theanalysiswasrepeated.Todeterminewatercontent,samplesweredriedat 80°Cfor24h,withafinal1hvacuumperiodbeforeweighing.Samplesofaround2g wereashedat450°Cfor2h.Samplesforproteinandcarotenoidanalyseswere homogenisedwithamortarandpestle.ProteinwasassayedbyamodifiedLowry procedure(Peterson1977;SigmaDiagnostics™#5656;Appendix10).

243 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Carotenoidswereextractedfromtissuewithacetone(Appendix10).Theacetoneextract waspartitionedwithdiethyletherwhichwasthenwashedwith20volumesof10%NaClto removeresidualacetone.Sixsamplesofcarotenoidextractfromwelldevelopedovaries collectedinMay1994and1995werechromatographedbythinlayerchromatography (TLC)onC8octylsilicaplates(Merck™)usingasolventmixtureof95:5petroleumether :methanol.Tissueextractswererunalongsidesaponifiedextracts(5%ethanolicKOHfor 24hatroomtemperature)andastaxanthinstandard(RochePharmaceuticals™). Carotenoidspresentinextractswereidentifiedaspredominantlyastaxanthinorastaxanthin esters.Consequently,totalcarotenoidswereestimatedfromtheextractsasastaxanthinby

1% measuringtheirabsorptionindiethyletherat472nmassuminganE 1cm of2099(Clarke, 1977).Althoughlipidsweretobeanalysed,thiswasnotpossibleduetothedestructionof specimensduringafreezermalfunction.

Reproductive behaviour

Threelarge,morphometricallymature(seeChapter14)malecrabswereplacedwiththree femalecrabsina4m 3tankfromJanuary1995toAugust1995andmonitoreddailyfor signsofprecopulatorymateguarding.Inaddition,maleswereplacedinto4m 3tankswith femalesundergoingecdysisinFebruary1995andtheirbehaviourmonitored.

Topermitcyclesoffemalereproductiontobeobservedintanks,31ovigerousfemales werecapturedintrapsfromdepthsintherangeof300–380mofftheeastcoastof Tasmania(41°15'S;148°40'E)inMay1994byacommercialfisher.Thesefemalesranged from2.2–3.5kgandweremaintainedintwo4m 3tankswithflowthroughwatersupply andfedtwiceweekly.Femaleswereindividuallytagged.Thesecrabsweremaintainedin isolationfrommalesuntilSeptember1997(3years,4months).

Statistical analysis

Theeffectoffemalesizeonoocytearea(assumedtoinfertimingofextrusion)was assessedbystandardleastsquaresregressionfortwoseparatesamples:FebruaryandApril, 1995.ThesewerealsotestedfornormalitywithaShapiroWilkwtest(Tietjen,1986). Nonnormaldistributionwouldprovideevidenceofindividualsatseparatedevelopment

244 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner stages,possiblyduetoabiannualcycle.ANOVAwasusedtotestiffemalesizediffered betweencrabswith1,2or3presumptiveejaculates.

Results

General morphology of the female reproductive tract

Thereproductivetractoffemale Pseudocarcinus gigas consistsoftheovary,pairedoviducts, spermathecae,vaginasandgonopores(Fig.1).Theovaryissurroundedbyfibrous connectivetissueandislocatedbeneaththeendocuticle,anddorsaltothehepatopancreas. Theanteriorlobesoftheovaryextendtobothlateralsidesofthehepaticregionsofthe carapace.Theposteriorlobesextendlaterallypastthecardiacregiontotheintestinal regionwheretheylieimmediatelylateraltotheintestine.Thereisamedialcommissure anteroventraltotheheart.Theovaryextendsventrallytothespermathecaesothatthe oviductformsonlyashorttubeoflessthan10mmpassingalongonesideofthe spermathecae.Spermathecaewereovoid,andwere41mmonthelongestaxisinthe largestspecimen(203mmCL).Theoviductsjointhespermathecaeventrally,thusthe spermathecaeareoftheventraltype.Thecuticularvaginasextendfromtheventralsurface ofthespermathecae,throughmusculartissuetothegonoporeswhicharelocatedonthe sternalplastronofthe2 nd walkingleg.Anexternalspermplugwasneverobservedinthe vaginasofanyspecimendissectedhere,oroccludingthevulvainlatersamplingof162 ovigerousfemalecrabs(Gardner,1997b).

245 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 1. Drawing of the gross anatomy of the female giant crab Pseudocarcinus gigas . The carapace, heart, and pericardiac sinuses were removed to expose the ovary. The spermathecae are largely obscured by the ovary but are located below the posterior lobes of the ovary, and lateral to the intestine.

Histology of the spermathecae

Thespermathecaeofallfemalesgreaterthan124mmCLcontainedspermcellsindicating thatfemaleshadcopulatedatleastonce.Only5femalesweresampledbelowthissizesoit isnotpossibletoassessthesizeatfirstmating.Inallmatedspecimens,spermatophores hadalreadydehiscedandspermcellswereobservedasacloselypackedmass(Fig.2).This suggeststhateitherthespermatophoresdehiscesoonaftercopulation,orthatnoneofthe femalessampledhadmatedrecently.Massesofspermcellsweredividedbybasophilic proteinaceousmatrixandseparatespermdepositsappearedtobepresent,possiblyasa resultofseparatecopulations(Fig.3).Thenumberofthesepresumptiveejaculatesranged from1to3withlargerfemalestendingtohavemorepresumptiveejaculates(P=0.062;Fig. 4).Femaleswhichmoultedinisolationfrommalesweredissectedandfoundtohave retainedthecontentsofthespermathecae.

246 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 2. Sperm cells within the spermathecae. Note that the sperm cells are not bound into spermatophores.

220 µµµm

Figure 3. Spermathecae of giant crab Pseudocarcinus gigas bisected along the longitudinal axis. Note that three distinct deposits are present within the spermathecae, these are termed presumptive ejaculates.

10 mm

247 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 4. Relationship between size of female (carapace length) and the number of distinct regions of sperm deposit within the spermathecae. Distinct sperm deposits may be separate ejaculates. Number of females was 64, 24 and 8 for groups 1,2 and 3 respectively.

160 155 24 8 150 145 64 140 135 130 1 2 3 Mean carapace length (mm±s.d.) Presumptive ejaculates

Ovarian maturation

Theproportionofreproductivelyinactivecrabsincludedinsamplesisinfluencedby feedingbehaviourasovigerousgiantcrabsarelesslikelytoentertraps,aswithmanyother species(Howard,1982;Heasmanetal.,1985;Schultzetal.,1996).Consequently,theratio ofreproductivelyinactivetoreproductivelyactivegiantcrabsislikelytobiasedandisof limitedvalue.Nonetheless,itisnoteworthythatreproductivelyinactivecrabsspanneda rangeofsizeswhichsuggeststhatsomeofthesefemaleswerenotsimplyimmature,but were“skipping”areproductiveseason(Fig.5).Resultsfromthesefemaleswerekept separateinsubsequentanalyses(Figs.7and8).

Patternsinthegonadosomaticindex(GSI)andoocyteareaindicatedthatovarian maturationisseasonalwithincreaseinovarysizecommencingshortlyafterextrusion(Fig. 7).Histologicalexaminationoftheovaryindicatedthatoocytesseparatedfromthe germinallayerdevelopedsynchronouslywhichindicatesthatonlyasingleclutchis producedeachspawningcycle(Fig.6).Forbothyearssampled,femalegiantcrabs extrudedeggsinlateAutumn,duringthemonthsMaytoJune.AllfemalescapturedinMay hadhighlydevelopedovarieswhilefemalescapturedinJunewereovigerous.The hepatosomaticindex(HSI:(wetweightofhepatopancreas/wholeweight)x100)increased duringspring(SeptembertoNovember)thenslowlydeclinedinsummer(Decemberto February).ThisdeclineinHSIoccurredconcurrentlywithasharpincreaseinthe gonadosomaticindex(GSI)insummer(Fig.7).TheHSIofreproductivelyinactive 248 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner femalesalsodeclinedatthistime,buttendedtobelargerthantheHSIofreproductively activefemales,presumablyduetogreaterspaceavailablewithinthecarapaceintheabsence ofdevelopedgonads.

Figure 5. Weight of females in relation to carapace length (CL). Hollow symbols represent crabs with developing ovaries (n=86); solid symbols represent crabs classed as reproductively inactive (n=15). Whole weights of ovigerous crabs are with eggs removed. The regression is for both groups combined.

6000 2 5000 y = 0.246x - 31.816x + 1407.949

4000 3000

weight (g) 2000 1000 0 75 100 125 150 175 200 carapace length (mm)

Figure 6. Oocytes from ovary in advanced development (April 1995). All oocytes are at a similar stage of development indicating that only a single clutch is produced each spawning cycle.

2000 µµµm

249 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 7. Seasonal changes in gonado-somatic index (GSI), oocyte size (area in cross section), and hepato-somatic index (HSI) of female giant crabs Pseudocarcinus gigas . Hollow symbols represent crabs with developing ovaries or brooding egg masses; solid symbols represent crabs classed as reproductively inactive. N of each sample was variable and is listed in Table 1.

10

7.5

5

2.5 meansd GSI ±

0 M J J A S O N D J F M A M J J A 250000 200000

+sd) 150000 2 100000 (µm 50000 meanoocyte area 0 M J J A S O N D J F M A M J J A 15

12.5 10

7.5

meanHSI±sd 5

2.5 M J J A S O N D J F M A M J J A

Therewasnoevidenceofaneffectoffemalesizeontimingofthereproductivecycle (assessedbyoocytearea)foreitherFebruary(n=12)orApril(n=9)samples(P>0.4). However,itshouldbenotedthatsamplingwasnotspecificallydesignedtoassesstheeffect offemalesizeonovariandevelopment,sothesamplesizesweresmallandtheresultsare notdefinitive.

Increaseinovarysize,duetovitellogenesis,initiallyresultedinadeclineinthemoisture contentoftheovariesandanincreaseinproteincontent(Fig.8).Proteincontentpeaked inDecemberandthendeclineduntilovarieswerefullyripeinMay.Totalcarotenoid contentoftheovariesincreasedthroughoutgametogenesis.Thehepatopancreas compositionofreproductivelyactiveandinactivefemalesweresimilarwhichsuggests

250 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner compositionwasnotaffectedbyvitellogenesis.Moisturecontentofthehepatopancreas waslowestduringsummer(DecemberFebruary;Fig.8)whenHSIwasrelativelyhigh. Totalcarotenoidcompositionofthehepatopancreasroseinspring(SeptemberNovember; Fig.8)inasimilarpatterntotheseasonaltrendinHSI(Fig.7).

Figure 8. Seasonal changes in composition of giant crab Pseudocarcinus gigas ovaries and hepatopancreas. Protein and carotenoid composition are expressed as ash free dry weight. Hollow symbols represent crabs with developing ovaries or brooding egg masses; solid symbols represent crabs classed as reproductively inactive. N of each sample was variable and is listed in Table 1.

GONAD HEPATOPANCREAS 90 80

80 70

70 60

60 50 non gon % moist % gon non 50 40 M J J A S O N D J F M A M J J A M J J A S O N D J F M A M J J A 10 15 7.5

10 5

5 2.5 non gon % prot % gon non 0 0 M J J A S O N D J F M A M J J A M J J A S O N D J F M A M J J A

200 200

150 150

100 100

non gon carot gon non 50 50

0 0 M J J A S O N D J F M A M J J A M J J A S O N D J F M A M J J A

Reproductive behaviour

Neithermatingnormateguardingwereobservedintanktrials,andmalesdidnotappearto respondtofemalesundergoingmoult.Consequently,itwasnotpossibletoascribetheir matingbehaviourtobeingeithersoftorhardshelled.However,inadditionalresearchof fecundityofgiantcrabs(Gardner,1997b),femaleswereobservedwithmelanisedwounds aroundthegonopore(Fig.9).Theseappeartobeduetodamagefromthemale’spleopods asmelanisedlesionsinthemusclebeneaththesewoundshadhistopathologyconsistent 251 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner withspermatiferousgranulomas,asoccurinfemalesheep(Pers.Comm.,BarryMunday, UniversityofTasmania).Thesternumoffemalesinintermoultisextremelythickso damagetothefemalesternumfromthemale’spleopodscouldonlyoccurwhenthefemale wassoftshelled(althoughthisdoesnotexcludethepotentialforhardshelledmating).

Figure 9. Apparent mating scars near the gonopores of a female giant crab Pseudocarcinus gigas . The abdomen has been pulled downwards (4 fingers are out of focus at the base of the figure) to expose the sternum. Two black lesions are visible immediately below the gonopores.

Gonopore Lesion

Tank observations of females and evidence for annual reproductive cycle

Detailedreproductivehistoryofindividual P. gigas femalesheldforextendedperiods withoutmaleswaspresentedpreviouslyinChapter14.Inbrief,mostofthefemalesheld intankswereobservedtoproduceclutchesofeggsannually,althoughfemalesoccasionally skippedaseason.Skippingareproductiveseasonappearedtobeassociatedwithmoulting as6ofthe31crabsmoultedinJanuary/February(latesummer)afterfailingtoproducea broodinthepreviouswinter.Generalpatternofeggextrusionandhatchingthesameas observedinwildstocks,thatis,eggswereextrudedinMay/Juneandhatchedin October/November.Twelveofthe31crabsproduced4viablebroodsinsuccessiveyears withoutmoulting.

ThedistributionofoocyteareadatainsamplesfromFebruaryandApril1995provided additionalevidenceforanannualcycleofovariandevelopment.Thesedatawere distributednormally(afterexclusionofreproductivelyinactivefemales),whichwouldnot occuriftherewasabimodaldistributionduetoabiennialreproductivecycle.Thesmall errorbarsformeanoocytearea(Figure7)formostmonthsarealsoconsistentwitha unimodaldistribution.Also,allfemaleswithbroodsdissectedinOctober1994(late Spring;n=8)hadwelldevelopedovariesindicatingextrusionwouldoccurthefollowing 252 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Autumn.Theseresultsconfirmedthatfemalescanproducebroodsannually,althoughthey willoccasionallyskipareproductiveseason.

Discussion

Anatomical features

Thegrossanatomyofthereproductivetractoffemale Pseudocarcinus gigas conformstothat ofotherbrachyurans(Ryan,1967;Diesel,1989;Beningeretal.,1993;Jensenetal.,1996; Nagaoetal.,1996).Theovaryisbilobedandtheselobesareconnectedbyacentral commissure,withtheposteriorlobesconnectingtopairedspermathecaewhicharelinked tothegonoporebyavagina.Thevaginaissimpleandwithoutabursaorotheraccessory structures.

Mating system

Duetotheabsenceofdirectobservationsofmatingin P. gigas ,itisnotpossibletoascribe conclusivelythematingsystemtoeitherhardorsoftshelledfemale(i.e.duringintermoult oratpostmoult;Hartnoll,1969).However,indirectevidenceindicatesthat P. gigas may copulatewhilethefemaleisatthesoftpostmoultstage:thevaginaisofthesimpletype (Hartnoll,1969);andthescarsobservedonthesternumoffemale P. gigas wereconsistent withsoftshelledmating.Theapparentlackofaresponsebymalestomoultingfemales doesnotinvalidatesoftshelledmatingin P. gigas asthemalesweredisturbedbymoving themfromadifferenttank,andthefemaleshadalreadycommencedmoultingbeforethe malewasintroduced.Also,tankconditionsinbehaviouraltrialswerefarfromnaturalas P. gigas inhabitsdeepwaterwithmostofthefisherybasedbetween150and200m.

Althoughthereareexceptions(e.g.hardshelledmatingoftheportunidcrab, Thalamita sima ;Norman,1996),thematingsystemofcrabsisgenerallyconsistentacrossfamilytaxa sothesystemof P. gigas islikelytobethesameasthatof Eriphia smithii and Menippe species, theonlycrabsofthefamilyEriphiidaewherethematingbehaviourhasbeenreported. Eriphia smithii and Menippe species( M. adina, M. mercenaria andhybrids)mateexclusively 253 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner duringthefemale’ssoftpostmoultphase(Binford,1913;Porter,1960;Savage,1971; TomikawaandWatanabe,1992)andthesespeciesarenotonlyinthesamefamilyas P. gigas ,butalsothesamesubfamily(Oziinae).Phylogeneticsimilaritybetween P. gigas and M. adina , M. nodifrons , M. rumphii andM. mercenaria wasevidentfromstudiesoflarval development(Chapter3;GardnerandQuintana,1998).

Menippespecieshavematingbehaviourtypicalofcrabswhichmatewhilethefemaleis softshelled,suchasprotactedpreandpostcopulatorymateguarding,andlackof elaboratecourtshipbehaviour(Hartnoll,1969;Wilber,1989a).Thedurationof precopulatorymateguardingappearstobescaledtosizewithintheCancridae(Orensanzet al.,1995)whichsuggestsmateguardingmaybeprotractedinthemassive P. gigas .Ifmale P. gigas guardfemalespriortocopulation,thedurationofthisattendanceislikelytobe longerthanfor Menippe spp.(15days;Wilber,1989b;Wilber1992),andpossiblyupto21 daysormoreasthishasbeenreportedforthelargest Cancer species, Cancer pagurus which inhabitssimilaropenhabitatintemperateregions(Edwards,1966).

Whileitappearslikelythat P. gigas matewhilethefemaleissoftshelled,electrical stimulationofthegonoporeofintermoultfemalescausesthegonoporetodilate (unpublishedresearchbyRudolfDieselandtheauthor).Thisdemonstratesthatcontrolof thegonoporeismuscularandthathardshelledmatingistheoreticallypossible,although thishasalsobeenobservedwithspecieswhichmateexclusivelywhilethefemaleissoft shelled(R.Diesel,Pers.Comm.).

Sperm competition and the functional anatomy of the spermathecae

Diesel(1991)dividedthespermathecaeofhigherbrachyurancrabsintotwogroups,ventral anddorsal,basedonthepositionoftheattachmentoftheovaryandvagina.Bothtypesof spermathecaearefoundinthesuperfamilyXanthoidea,whichincludes P. gigas ,withdorsal spermathecaeinthePilumnidae(Diesel,1991)andventraltypespermathecaeinEriphiidae (e.g. Menippe mercenaria ;Wilber,1989b).Thepresenceofventraltypespermathecaeinboth P. gigas and M. mercenaria isconsistentwiththeirphylogeneticsimilarityindicatedbylarval developmentasmentionedpreviously(Chapter3;GardnerandQuintana,1998).

Femalexanthoidcrabstypicallyhaveseveralpostpubertalinstars(Tomikawaand Watanabe,1992)andthisoccursin P. gigas asmoultingwasobservedoffemaleswhichhad previouslyproducedbroods.Theprogressionthroughseveralpostpubertalmoultsby 254 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner female P. gigas wasalsoindicatedbythebroadsizerangeofindividualswithdeveloping ovaries.Femaleswhichmoultedwerefoundtohaveretainedthespermathecalcontentsas reportedin M. mercenaria (Cheung,1968).Thetrendtowardsanincreaseinnumberof presumptiveejaculateswithfemalesizemayresultfromadditionalinseminationsateach moultandthepositionofthesepresumptiveejaculatesinthespermathecaeindicatesthat spermisdisplaceddorsally,whichwouldresultinlastmalespermprecedence.

Diesel(1991)describedtwokindsofspermplug:internalplugswhichsealoffprevious ejaculateswithinthespermathecae;andexternalspermplugswhichextendupthevagina andoutthegonopore.Theseplugsaregenerallyconsideredtofunctioninpreventing paternitybyothermales(Jensenetal.,1996)althoughithasalsobeenproposedthatthe plugisproducedbythefemale(BawabandElSherief,1989)andthatitsroleistoreduce damagetothefemalebyrepeatedmating(Diesel,1991).

Abasophilic,proteinaceousmatrixwithoutspermcellsorspermatophoreswasobserved withinthespermathecaeof P. gigas femalesandthisappearedtoactasaninternalsperm plug,sealingoffseparateejaculates.However,noexternalspermplugwasobserved despitethepresenceofanexternalspermpluginothercrabsinthefamilyEriphiidae (TomikawaandWatanabe,1990).Externalspermplugsareshortlivedandfunctiononly withinasinglereceptiveperiod(Orensanzetal.,1995)soitispossiblethattheyarepresent in P. gigas, despitethefactthatnonewereobservedinthisresearch.Aswith Menippe species, P. gigas mayproduce4broodsbetweenmoultsfertilisedbystoredspermso recentlymatedfemalesmaybeencounteredonlyoccasionally(Porter,1960;Chapter14). Thisisconsistentwithunpublishedanalysesoftagrecapturedataofmaturesizefemale P. gigas whichindicatethatmoultingmayoccuronlyevery4yearsormore(R.McGarvey, Pers.Comm.).Consequently,ifanexternalspermplugisproducedduringmating,itmay onlybepresentinasmallproportionofthepopulationforabriefperiodeachyear.

Itisalsonoteworthythatnospermatophoreswereobservedwithinthespermathecae,that is,theyhadalreadydehiscedpriortosampling.Thismaybeevidenceofaprolongeddelay betweenmatingandsamplingasspermatophoresremainintactaconsiderabletimeafter matingin Chionoecetes opilio (Beningeretal.,1988;Beningeretal.,1993),anduntilafter dissolutionofthespermplugin Portunus pelagicus (Ryan,1967).

255 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Female reproductive cycle

OvigerousgiantcrabsarefoundfromMay/JunetoOctober/November(winterand spring)butaround50%ofthefemalescapturedbycommercialfishersduringthisperiod arenonovigerous(Levingsetal.,1996).Until1995,thiswasinterpretedasevidencefora biennialreproductivecycleuntilfemalesmaintainedintanksforthepresentstudy producedeggsinsuccessiveyears,andovigerousfemaleswerefoundtohavedeveloping ovaries(ascitedbyLevingsetal.,1996).Additionalevidenceofanannualcycleis presentedherewithdistinctannualtrendsinoocytediameterandGSI,andnobimodal distributioninoocytesize(asoccursinbiennialspecies;JensenandArmstrong,1989).The presenceofnonovigerous P. gigas femaleshasbeenreportedinpopulationsofother specieswithstronglyseasonal,synchronisedreproduction(e.g. Cancer magister ,Hankinetal., 1989)andin P. gigas itappearstobeassociatedwithmoulting(Chapter14).The proportionofnonovigerousfemalesinthepopulationislikelytobelessthanthe50% determinedbytrappingsurveysasovigerousfemalestendtoavoidtraps(Howard,1982).

Seasonalsynchronisationofreproductionpatternsistypicaloftemperatedecapods(lessso indeepwater;Haefner,1978)althoughthereisconsiderablevariationinthedurationof thereproductivecycle(Sastry,1983).Smallertemperatecrabsoftenproduceseveral broodswithinaseasonallyrestrictedperiod(Griffin,1971)whilelargercrabsmayhave biannualcycles(e.g. Chionoecetes opilio ,SainteMarie,1993;and ,Jensen andArmstrong,1989),andeventriannualcycles( Erimacrus isenbeckii ,Nagaoetal.,1996). Anannualcycle,asin P. gigas ,istypicaloflargercrabsfoundatsimilarlatitudes(e.g . Ovalipes catharus ,Armstrong,1988).

Thetimingofthefemalereproductivecyclemayalsovarywithfemalesizesothattiming oflarvalreleasevaries(AttardandHudon,1987;BakirandHealy,1995).Fromthe analysesofoocytesizeconductedinthisstudy,therewasnoevidencethattimingof ovipositionin P. gigas wasaffectedbyfemalesize(asin Scylla serrata ;Heasmanetal.,1985). However,thisresultisonlyageneralindicationasthesamplesizewassmall,andthesize ofextrudedeggsisknowntovarywithfemalesizewhichcouldconfoundanalyses (Chapter16;Gardner,1997b).

256 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Ovary and hepatopancreas interactions

BothHSIandGSIbegantoincreaseinspring,possiblyinresponsetoincreasedforaging behaviourandfoodsupplyassociatedwithwarmerwater.Thisissupportedbythe observeddeclineinmoisturecontentofthehepatopancreasduringthisperiod. Dichotomoustrendsinmoisturecontentofthehepatopancreasandgonadduetotransfer ofnutrientsduringvitellogenesishavebeenobservedin Scylla serrata ,atropicalspecies (NagabhushanamandFarooqui,1982),butthetrendsinmoisturecontentofthetwo organsaresimilarin Crangon crangon and P. gigas whicharebothtemperatespecies(Haefner andSpaargaren,1993).Theeffectofgonaddevelopmentonmoisturecontentofthe hepatopancreasmaybeovershadowedintemperatespeciesbyseasonalchangeinfood availabilityandconsumptionrate.

HSIpeakedinlateSummer(February1995sample)andthendeclinedwhileGSI continuedtoincrease.ItistemptingtoattributethedeclineinHSItothetransferof nutrientreservesfromthehepatopancreastothegonad,andphysicaldisplacementbythe enlarginggonad,butHSIofreproductivelyinactivecrabsfollowedthesametrend. Overall,HSIwaslowerinreproductivelyactivecrabsthaninreproductivelyinactivecrabs, whichisexpectedgiventhelimitedvolumeavailablewithinthebodyofacrabforovarian development.

Despitelargefluctuationsintheproteincompositionofthegonad,therewasnoevidence oftransferofproteinfromthehepatopancreas.Proteininthehepatopancreasremained relativelystable,whichhasbeenreportedinothercrabs,andthereappearedtobeno differencebetweenreproductivelyactiveandinactivefemales(HeathandBarnes,1970; NagabhushanamandFarooqui,1982;Mourenteetal.,1994).Percentageproteincontent ofthegonadbegantodeclineseveralmonthsbeforeextrusionwhichhasbeenreportedin otherdecapodsduringlateovarianmaturation(DyPenafloridaandMillamena,1990).This relativedeclineinproteinmaybeduetothedepositionoflipidrichlipovitellininoocytes (FyffeandO’Connor,1974;Clarke,1979;CastilleandLawrence,1989).

Theabsenceoflipidanalysisinthepresentstudymakescommentonthestagesof vitellogenesisin P. gigas difficult,althoughthepatternofcarotenoidandlipidconcentration intheovarymaybelinked.Thisisbecausecarotenoidsindecapodovariesareusually incorporatedintovitellogeninmoleculesandincreaseinconcentrationduringovarian developmentinproportiontothedepositionofvitellogenin(Wallaceetal.,1967;Fyffeand 257 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

O’Connor,1974;KomatsuandAndo,1992;Dalletal.,1995).Thisdepositionof carotenoidduringvitellogenesiscausestheovarytochangeincolourwhichhasbeenused asaguidetoovariandevelopmentbynumerousauthors(e.g.Meredith,1952;Dayakarand Rao,1992),althoughthereisnoconsistentpatterninsomespecies(eg. Scylla serrata : Heasmanetal.,1985).

Theconcentrationofcarotenoidsinthegonadof P. gigas femalesincreasedrapidlyfrom Januaryuntiloviposition,presumablyduetosecondaryvitellogenesis.Secondary vitellogenesisdidnotappeartoresultindepletionofcarotenoidsinthehepatopancreas,as concentrationinreproductivelyactivefemaleswassimilartothatofreproductivelyinactive females.Thisindicatesthatcarotenoidwasnotdepletedfromthehepatopancreasduring vitellogenesisashasbeenreportedinotherdecapods(Dalletal.,1995).

References

Armstrong,J.H.1988.Reproductioninthepaddlecrab Ovalipes catharus (Decapoda:Portunidae)from BlueskinBay,Otago,NewZealand.NewZealandJournalofMarineandFreshwaterResearch,22:529536.

Attard,J.andHudon,C.1987.Embryonicdevelopmentandenergeticinvestmentineggproductionin relationtosizeoffemale lobster (Homarus americanus). CanadianJournalofFisheriesandAquaticSciences,44: 11571164.

Bakir,W.M.A.andHealy,B.1995.Reproductivecycleofthevelvetswimmingcrab Necora puber (L.) (Decapoda,Brachyura,Portunidae)ontheeastcoastofIreland.IrishFisheriesInvestigations,SeriesB,43. 13pp.

Bawab,F.M.andElSherief,S.S.1989.Contributionstothestudyoftheorigin,natureandformationofthe pluginthespermathecaofthefemalecrab Portunus pelagicus (Linnaeus,1766)(Decapoda,Brachyura). Crustaceana,57:924.

Beninger,P.G.,Elner,R.W.,Foyle,T.P.andOdense,P.H.1988.Functionalanatomyofthemale reproductivesystemandthefemalespermathecaeinthesnowcrab Chionoecetes opilio (Fabricius)(Decapoda: Majidae)andahypothesisforfertilisation.JournalofCrustaceanBiology,8:322332.

Beninger,P.G.,Lanteigne,C.andElner,R.W.1993.Reproductiveprocessesrevealedbyspermatophore dehiscenceexperimentsandbyhistology,ultrastructure,andhistochemistryofthefemalereproductive systeminthesnowcrab Chionoecetes opilio (Fabricius).JournalofCrustaceanBiology,13:116.

Binford,R.1913.Thegermcellsandtheprocessoffertilisationinthecrab, Menippe mercenaria .Journalof Morphology,24:147210.

Castille,F.L.andLawrence,A.L.1989.Relationshipbetweenmaturationandbiochemicalcompositionofthe gonadsanddigestiveglandsofthe Penaeus aztecus ives and Penaeus setiferus (L.).JournalofCrustacean Biology,9:202211.

Cheung,T.S.1968.Transmoultretentionofsperminthefemalestonecrab , Menippe mercenaria (Say). Crustaceana,15:117120. 258 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Christy,J.H.1987.Competitivemating,matechoiceandmatingassociationsofbrachyurancrabs.Bulletinof MarineScience,41:177191.

Clarke,A.1977.Lipidclassandfattyacidcompositionof Chorimus antarcticus (Pfeffer)(Crustacea:Decapoda) atSouthGeorgia.JournalofExperimentalMarineBiologyandEcology,28:297314.

Clarke,A.1979.Lipidcontentandcompositionofthepinkshrimp, Pandalus montagui (Leach)(Crustacea: Decapoda).JournalofExperimentalMarineBiologyandEcology,38:117.

Dall,W.,Smith,D.M.andMoore,L.E.1995.Carotenoidsinthetigerprawn duringovarian maturation.MarineBiology,123:435441.

Dayakar,Y.andRao,K.V.R.1992.Breedingperiodicityofthepaddyfieldcrab Oziotelphusa senex senex (Fabricius)(Decapoda:Brachyura),afieldstudy.JournalofCrustaceanBiology,12:655660.

Diesel,R.1989.Structureandfunctionofthereproductivesystemofthesymbioticspidercrab Inachus phalangium (Decapoda:Majidae):observationsonspermtransfer,spermstorage,andspawning.Journalof CrustaceanBiology,9:266277.

Diesel,R.1991.SpermcompetitionandtheevolutionofbehaviourinBrachyura,withspecialreferenceto spidercrabs(Decapoda,Majidae). In (Eds.R.T.BauerandJ.W.Martin)CrustaceanSexualBiology,Columbia UniversityPress,NewYork.pp145163.

DyPenaflorida,V.andMillamena,O.M.1990.Variationinthebiochemicalcompositionof Penaeus monodon tissuesduringthereproductivecycle.TheIsraeliJournalofAquacultureBamidgeh,42:8490.

Edwards,E.1966.MatingbehaviourintheEuropeanediblecrab( Cancer pagurus ).Crustaceana,10:2330.

Fyffe,W.E.andO’Connor,J.D.,1974.Characterisationandquantificationofacrustaceanlipovitellin. ComparativeBiochemistryandPhysiology,47B:851867.

Gardner,C.1997a.Optionsforhumanelyimmobilisingandkillingcrabs.JournalofShellfishResearch,16: 219224.

Gardner,C.1997b.Effectofsizeonreproductiveoutputofgiantcrabs Pseudocarcinus gigas (Lamarck) (Oziidae).MarineandFreshwaterResearch,48:581587.

Gardner,C.andQuintana,R.1998.LarvaldevelopmentoftheAustraliangiantcrab Pseudocarcinus gigas (Lamarck,1818)(Decapoda:Oziidae)rearedinthelaboratory.JournalofPlanktonResearch,20(6),1169 1188.

Griffin,D.J.G.1971.TheecologicaldistributionofgrapsidandocypodidshorecrabsinTasmania.Journal ofAnimalEcology,40:597621.

Haefner,P.A.Jr.1978.Seasonalaspectsofthebiology,distributionandrelativeabundanceofthedeepsea redcrab Geryon quinquedens Smith,inthevicinityoftheNorfolkCanyon,WesternNorthAtlantic.Proceedings oftheNationalShellfisheriesAssociation,69:4961.

Haefner,P.A.Jr.andSpaargaren,D.H.1993.Interactionsoftheovaryandhepatopancreasduringthe reproductivecycleof Crangon crangon (L.).I.Weightandvolumerelationships.JournalofCrustaceanBiology, 13:523531.

Hankin,D.G.,Diamond,N.,Mohr,M.S.andIanelli,J.1989.Growthandreproductivedynamicsofadult femaleDungenesscrabs( Cancer magister )innorthernCalifornia.JournalduConseilInternationalpour l’ExplorationdelaMer,46:94108.

Hartnoll,R.G.1969.MatingintheBrachyura.Crustaceana,16:161181.

Heasman,M.P.,Fielder,D.R.andShepherd,R.K.1985.Matingandspawninginthemudcrab, Scylla serrata (Forskål)(Decapoda:Portunidae),inMortonBay,Queensland.AustralianJournalofMarineandFreshwater

259 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Research,36:773783.

Heath,J.R.andBarnes,H.1970.Somechangesinthebiochemicalcompositionwithseasonandduringthe moultingcycleofthecommonshorecrab, Carcinus maenus (L.).JournalofExperimentalMarineBiologyand Ecology,5:199233.

Holthuis,L.B.1993.ThenonJapanesenewspeciesestablishedbyWideHaanintheCrustaceavolumeof FaunaJaponica(18331850).In:T.andK.Baba,1993,Ph.F.vonSieboldandNaturalHistoryinJapan. Crustacea.T.Yamaguchi(Ed.).CarcinologicalSocietyofJapan,Tokyo,pp599646.

Howard,A.E.1982.Thedistributionandbehaviourofovigerousediblecrabs( Cancer pagurus ),and consequentsamplingbias.JournalduConseilInternationalpourl’ExplorationdelaMer,40:259261.

Jensen,G.C.andArmstrong,D.A.1989.Biennialreproductivecycleofbluekingcrab, Paralithodes platypus ,at thePribilofIslands,Alaskaandcomparisontoacongener , P. camtschatica .CanadianJournalofFisheriesand AquaticSciences,46:932940.

Jensen,P.C.,Orensanz,J.M.andArmstrong,D.A.1996.Structureofthefemalereproductivetractinthe DungenessCrab( Cancer magister )andimplicationsforthematingsystem.BiologyBulletin,190:336349.

Komatsu,M.andAndo,S.1992.Isolationofcrustaceaneggyolklipoproteinsbydifferentialdensitygradient ultracentrifugation.ComparativeBiochemistryandPhysiology,103B:363368.

Kulkarni,G.K.andNagabhushanam,R.1979.Mobilisationoforganicreservesduringovariandevelopment inamarinepenaeidprawn, Parapanaeopsis hardwickii (Miers)(Crustacea,Decapoda,Penaeidae).Aquaculture, 18:373377.

Levings,A.,Mitchell,B.D.,Heeren,T.,Austin,C.,andMatheson,J.1996.Fisheriesbiologyofthegiantcrab (Pseudocarcinus gigas ,Brachyura,Oziidae)insouthernAustralia.Highlatitudecrabs:biology,management,and economics.AlaskaSeaGrantCollegeProgramReportNo.9602,UniversityofAlaska,Fairbanks,pp.125 151.

Meredith,S.S.1952.Astudyof Crangon vulgaris intheLiverpoolBayarea.ProceedingsandTransactionsof theLiverpoolBiologicalSociety,58:75109.

Mourente,G.,Medina,A.,Gonzalez,S.andRodriguez,A.1994.Changesinlipidclassandfattyacid contentsintheovaryandmidgutglandofthefemalefiddlercrab Uca tangeri (Decapoda,Ocypodidae)during maturation.MarineBiology,121:187197.

Nagabhushanam,R.andFarooqui,U.M.1982.Mobilisationofprotein,glycogenandlipidduringovarian maturationinmarinecrab, Scylla serrata Forskal.IndianJournalofMarineSciences,11:184186.

Nagao,J.,Munehara,H.andShimazaki,K.1996.Spawningcycleofhorsehaircrab( Erimacrus isenbeckii )in FunkaBay,SouthernHokkaido,Japan.Highlatitudecrabs:biology,management,andeconomics.AlaskaSea GrantCollegeProgramReportNo.9602,UniversityofAlaska,Fairbanks,pp315331.

Norman,C.1996.Reproductivebiologyandevidenceforhardfemalematinginthebrachyurancrab Thalamita sima (Portunidae).JournalofCrustaceanBiology,16:656662.

Orensanz,J.M.,Parma,A.M.,Armstrong,D.A.,Armstrong,J.andWardrup,P.1995.Thebreedingecology of Cancer gracilis (Crustacea:Decapoda:Cancridae)andthematingsystemsofcancridcrabs.Journalof Zoology,London,235:411437.

Peterson,G.L.1977.AsimplificationoftheproteinassaymethodofLowryetal.whichismoregenerally applicable.AnalyticalBiochemistry ,83:346356.

Porter,H.J.1960.Zoealstageofthestonecrab,Menippe mercenaria Say.ChesapeakeScience,1:168177.

260 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Ryan,E.P.1967.Structureandfunctionofthereproductivesystemofthecrab Portunus sanguinolentus (Herbst) (Brachyura:Portunidae).II.Thefemalesystem.ProceedingsofaSymposiumonCrustacea,Marine BiologicalAssociationofIndia,Jan.1215,Ernakulum,Pt2,pp522544.

SainteMarie,B.1993.Reproductivecycleandfecundityofprimiparousandmultiparousfemalesnowcrab, Chionoecetes opilio ,intheNorthwestGulfofSaintLawrence.CanadianJournalofFisheriesandAquatic Sciences, 50:21472156.

Sastry,A.N.1983.Ecologicalaspectsofreproduction.In(Eds.F.J.VernbergandW.B.Vernberg)The BiologyofCrustacea,AcademicPress,NewYork.Pp179270.

Savage,T.1971.Matingofthestonecrab, Menippe mercenaria (Say)(Decapoda,Brachyura).Crustaceana,20: 315316.

Schultz,D.A.,Shirley,T.C.,O’Clair,C.E.andTaggart,S.J.1996.Activityandfeedingofovigerous DungenesscrabsinGlacierBay,Alaska.Highlatitudecrabs:biology,management,andeconomics.Alaska SeaGrantCollegeProgramReportNo.9602,UniversityofAlaska,Fairbanks,pp.411424.

Sévigny,J.M.andSainteMarie,B.1996.Electrophoreticdatasupportthelastmalespermprecedence hypothesisinthesnowcrab, Chionoecetes opilio (Brachyura:Majidae).JournalofShellfishResearch,15:437 440.

Tietjen,G.L.1986.ATopicalDictionaryOfStatistics.ChapmanandHall,NewYork,148pp.

Tomikawa,N.andWatanabe,S.1990.Occurenceofthespermplugsof Eriphia smithii MacLeay. Researches on Crustacea ,18:1921.CarcinologicalSocietyofJapan.OdawaraCarcinologicalMuseum.

Tomikawa,N.andWatanabe,S.1992.Reproductiveecologyofthexanthidcrab Eriphia smithii McLeay. JournalofCrustaceanBiology,12:5767.

Wallace,R.A.,Walker,S.L.andHauschka,P.V.1967.Crustaceanlipovitellin.Isolationandcharacterisation ofthemajorhighdensitylipoproteinfromeggsofDecapoda.Biochemistry,6:15821590.

Wilber,D.H.1989a.Reproductivebiologyanddistributionofstonecrabs(Xanthidae, Menippe )inthehybrid zoneonthenortheasternGulfofMexico.MarineEcologyProgressSeries,52:235244.

Wilber,D.H.1989b.Theinfluenceofsexualselectionandpredationonthematingandpostcopulatory guardingbehaviourofstonecrabs(Xanthidae, Menippe ).BehaviouralandEcologicalSociobiology,24:445 451.

Wilber,D.H.1992.Observationsonthedistributionandmatingpatternsofadultstonecrabs(Genus Menippe)onthenortherngulfcoastofFlorida.ProceedingsofaSymposiumonStoneCrab(Genus Menippe ) BiologyandFisheries,FloridaMarineResearchPublications,50:1016.

Williams,A.B.andFelder,D.1986.Analysisofstonecrabs: Menippe mercenaria (Say),restricted,anda previouslyunrecognisedspeciesdescribed(Decapoda:Xanthidae).ProceedingsoftheBiologicalSocietyof Washington,99:517543.

261 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Effect of Size on Reproductive Output of Female Giant Crabs

16

Researchforthischapterhasbeenpreviouslypublishedas: Gardner,C.1997.Effectofsizeonreproductiveoutputof giantcrabs Pseudocarcinus gigas (Lamarck)(Oziidae). MarineandFreshwaterResearch,48:581587.

262 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Abstract

Fecundityandeggsizeofgiantcrabs( Pseudocarcinus gigas )weredeterminedfromeggmasses of162crabssampledfromthreesitesinsoutheasternAustralia:westernVictoria;western Tasmania;andeasternTasmania.Crabsrangedincarapacelengthfrom126to220mm andeggnumberrangedfrom830,000to2,500,000.Eggnumberandeggsizeincreased withsizeoffemale.Thereappearedtobeadeclineinnumberofeggsandsizeofeggs withsuccessivebroods(inferredfromcarapacecondition)producedbetweenmoults. Samplinglocalityappearedtohavelittleeffectonreproductiveoutput.Comparisonof regressionsofoocytenumberinovariesandnumberofeggsbeneaththeabdomen indicatedtherewasnodetectablelossofeggsduringoviposition.Regressionofan allometricmodeloflogeggnumbertologcrabsizehadaslopeof1.76whichwas significantlylessthan3.0.Thisindicatesthereisnotasimplevolumetricrelationship betweenthevariables,whichwouldtendtooccurifincreasingfecunditywithfemalesize wasasimplefunctionofincreasedbodyspaceavailableforovariandevelopment.This patternappearedtobeafunctionofdecreasingeggnumberandsizewithsuccessive broods,andthetrendofincreasingeggsizewithfemalesize.

Ovigerous giant crab Pseudocarcinus gigas (photo by Karen Gowlett-Holmes)

262 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Introduction

Femalegiantcrabsproducebroodsannually(seepreviouschapter)andfisheryrestrictions currentlyexcludethemfromharvestwhileovigerous.However,unlikemanycrab fisheries 9,femalesmaybeharvestedwhentheyarenotcarryingbroods.Asmostfishing effortforgiantcrabsisinFebruaryandMarch,priortooviposition,exploitationrateof femalesmaybehighinsomeareas.Highexploitationoffemalescanaffectrecruitmentso informationonfecundityiscriticalformanagement.

Informationonthefecunditysizerelationshipcanbecombinedwithgrowthinformation, sizefrequency,onsetofmaturity,andtheproportionmatureoverthesizerangetodevelop fundamentalmanagementmodelssuchaseggperrecruitandrelativepopulationfecundity (AnnalaandBycroft,1987).Theobjectivesofthisstudyweretoassesstheeffectofthe followingfactorsonfecundityingiantcrabs:(1)sizeofthefemale,(2)regionalvariation betweenthreewidespreadsitesaroundsoutheastAustralia(Fig.1)representativeofthe majorfishingareas,and(3)successivebroodsproducedbetweenmoults(moultfrequency remainspoorlyunderstood).Inaddition,theeffectofthesesamevariablesoneggsizewas examined.

9e.g. Cancer magister inUSA(Hankinetal.,1996); Lithodes santolla and Paralomis granulosa inChileandArgentina (Vinuesaetal.,1996); Chionoecetes japonicus inJapan(Kon,1996);and Chionoecetes opilio inCanada(SainteMarie etal.,1996).

263 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 1. Location of sampling sites in western Victoria, western Tasmania, and eastern Tasmania. Latitude 42°30’S approximates the southern limit of the fishery for P. gigas .

Materialsandmethods

Sampling

Ovigerousfemalecrabs(n=166)werecollectedbycommercialfishersusingtrapsduring theperiod10Augustto15September1995fromthreeregions:easternTasmania(n=30), westernTasmania(n=121),andwesternVictoria(n=11)(Fig.1).AsHoward(1982)noted with Cancer pagurus ,female P. gigas feedlesswhenovigerousandarelesslikelytoenterpots. ThisbehaviourappearstohaveaffectedsamplingfromwesternVictoriawhereonly11 crabswerecollecteddespiteconsiderableeffort.

264 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Inadditiontosamplingofovigerousfemales,13femalesinlateovariandevelopmentbut beforeextrusion,werecollectedforoocytecounts,inAprilandMay1995,fromnortheast Tasmania.

Preliminaryresearchin1994investigatedchangesineggsinrelationtodevelopmentwhich wascategorisedbytheschemeofSubramoniam(1991).Thispreliminarystudyshowed thatalthoughthesizeandmassofindividual P. gigas eggschangedwithdevelopment, relativelylittlechangeoccurredinthefirst2stagesofembryonicdevelopmentin:dry weight,3.4%comparedwith11.0%throughoutdevelopment;diameter,1.8%compared with7.5%throughoutdevelopment;andcomposition,e.g.moisture,2.2%comparedwith 8.9%throughoutdevelopment.Consequently,samplingwasrestrictedtoeggsuptoand includingdevelopmentstage2(Subramoniam,1991).

Thefollowingmeasuresofsizewererecordedforallspecimens:wholeweight(withegg massremoved),carapacelength(CL,mm),abdomenwidth,chelalength,andchelaheight. Thesampleincluded21crabsmissing1legand2crabsmissing2legs;thewholeweight (W,g)oftheseindividualswasadjustedbycorrectingformissinglimbswitharegression formula,W=4076.3+37.35[CL]+0.0325[CL] 2(n=138,r 2=0.95).Female P. gigas appear toproduceclutchesannually,andseveralclutchesofeggsmaybeproducedbetween moults(seechaptersonspermlimitationandfemalereproduction).Itwasconsideredthat fecunditymaybealteredinthesesuccessiveclutchessoameasureofshellwearwasused toquantifytimesincethepreviousmoult.Shellwear,or“carapacecondition”,was recordedusingthefollowingscheme:

Carapace cleanbrightshell;littletonofouling.Ifgooseneckbarnaclespresent,then<5 condition1 mmacrosslongestaxis,littletonowearapparentonthedactylusofpereiopods.

Carapace brightshell;foulingoftenheavybutcomposedalmostentirelyofgooseneck condition2 barnacles;wearapparentonthedactylusofpereiopodswiththebristles completelyremovedinplaces.

Carapace shellisoftenfaded;foulingisheavyandiscomposedofmanyorganismsbesides condition3 gooseneckbarnacles,especiallycolonialascidiansandbryozoans;thedactylusof pereiopodsisheavilywornwithabrasionontheshellsurface.

Itisimportanttonotethatthecarapaceconditiongradedoesnotprovideameasureofthe actualnumberofclutchesproducedbyafemalesincemoulting.Forinstance,itisassumed thatacarapacecondition3(heavywear)femaleislikelytohavehadmoreclutchesofeggs 265 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner sincemoultingthanacarapacecondition1female(cleanshell),butitdoesnotimplythat thecrabhasproduced3broods.

Derivation of egg counts

Halfofeacheggmasswasremovedfromthecrabsbyseveringfouroftheeightpleopods attheirbaseinanalternatefashion,toremovepossiblebiasfromunevendistributionof eggsbetweenpleopods.Eggswerethenremovedfromthepleopodsbyseveringsetaeat thepointofjunctionwiththepleopodsandpooled.

Meanindividualeggdryweightwascalculatedbasedontheweightoftwosubsamplesof atleast250eggs,countedandthenweighedcollectively( ±10 µg).Samplesweredriedat 80°Cfor24h,withafinal1hvacuumperiod.Dryweightofthewholeeggmasswas estimatedbyweighingtheblottedeggmassandthencalculatingmeanmoisturecontent fromtwosubsamplesof1.5g.Totalnumberofeggsperfemalewasthenestimatedfrom thevaluesofmeanindividualeggdryweightandthedryweightofthewholeeggmass.

Derivation of oocyte counts

Thenumberofoocyteswascomparedwiththenumberofeggsinabdominalclutches (aftercorrectingforfemalesize)toassessrealisedreproduction.Thatis,whatproportion oftheoocyteswerelostduringattachmenttopleopodsetae.

Wholeovarieswereremovedbydissectionandweighedtoobtainwholewetweight. Numberofoocytesinovarywasestimatedforeachsampleasdescribedforabdominalegg countsexceptthatportionsoftheovarywerefirstfixedinDavidson’sfixative.This hardenedtheyolksothatoocytescouldbeteasedapartandcounted.Fixationresultedin leachingofsomecomponentsfromtheoocytes,soitwasnecessarytocalculatea correctionfactorbyweighingthesubsamplebeforeandafterfixation.

Egg diameter

Subsamplesweretakenfromeachabdominaleggmassandteasedapartinseawater.The diameterof50eggswerethenrecordedbyimageanalysisusingNIHImage™1.60 266 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner software.Onlythoseeggswhichwereroundandappearednormalweremeasured.Egg volumewascalculatedfromeggdiameter.

Statistical analyses

Fourcrabs,fromwesternTasmania,wereexcludedfromanalysesastheyhadfeweggsand werenotrepresentativeofthepopulation.Threehadasinglesmallchelawhichappeared tobepartiallyregenerated;chelaelossbeforeextrusionhasbeenshowntoaffectbrood sizesotheseindividualswereexcluded(NormanandJones,1993).Thefourthcrabhad eggsattachedtoonlyasmallproportionofavailablepleopodsetaewhichsuggestedthat extrusionmayhavetakenplaceaftercaptureandwithoutanaturalsubstratepresent (Shields,1991).

Therelationshipbetweeneggnumberandsizewasassessedwithanallometricmodelof logfecundity(abdominaleggnumber)andlogsize(carapacelength)asrecommendedby Somers(1991).Somers(1991)notedthatthetheoreticalslopeoflinearregressionsoflog fecundity–logcrabsizeshouldequal3.0astherelationshipshouldbesimplyvolumetric. Analysisoffactorsaffectingtheslopecanprovideadditionalinformationonthe reproductivebiologyandthistechniquewasappliedto P. gigas .Analysisoffactors affectingtheslopeofthismodelwasby t-tests.

Inattempttoexplainpatternsoffecundityforfisheriesmanagement,thelogfecunditylog sizemodelwascomparedwithmodelswhichincludedadditionaleffectsofcarapace condition,site,andinteractions,using F-testsontheresidualsumofsquares(Draperand Smith,1981).Alladditionstothemodelweretestedusingtheresidualmeansquarefroma modelincorporatingallpossibletermsasthescalefactor.Thisstepwisemultiple regressionisthesameasthatusedfordevelopingfecunditymodelscurrentlyinusefor managingtheSouthernRockLobster Jasus edwardsii fishery(R.Kennedy,Tasmanian DepartmentofPrimaryIndustryandFisheries,Pers.Comm.,1997).

Theeffectoffemalesize,site,carapacecondition,andinteractionsonindividualeggdry weightanddiameterwerealsoassessedbystepwisemultipleregression.Aswithegg number,datawerelogtransformedtoaccountforallometricrelationshipsbetween reproductivetraits.Additionalcurvatureinregressions,aftertransformation,wastestedby includingpolynomialfunctionsinstepwisemultipleregression(SokalandRohlf,1981).

267 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Wherethecategoricaleffectsofsiteandcarapaceconditionwerefoundtoreduceerror significantly(P<0.05),comparisonswithintheeffectsweremadebycorrectingforsize effectswithanalysisofcovariance(ANCOVA).Comparisonscouldthenbemade betweenseparatesitesorcarapaceconditionbycontrasts.

Effectofsizeofcrabsoncarapaceconditionwasassessedbyonewayanalysisofvariance (ANOVA);wherecrabsizehadasignificanteffecttheindividualmeanswerecomparedby TukeyKramerHSD.Whereappropriate,powerdetails(as β,PCtypeIIerror)are suppliedfornonsignificantresults(SearcyBernal,1994).

Comparisonbetweenoocytenumberandeggnumberweremadebycomparingregression elevationdifferenceswithANCOVAtocorrectforsizeoffemale(SokalandRohlf,1981). AllanalyseswereperformedwithJMP™3.1software.

268 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Results

Fecundity model

Eggnumberincreasedwithadultsizeforallsizemeasuresused:wholeweight,carapace length,abdomenwidth,chelalength,andchelaheight(Appendix11).Asvariationwas similarforeachmeasureofsize,carapacelengthwasselectedforuseinsubsequent analysesasthismeasureofsizeisalreadyusedinthefisheryfordescribingsizelimits(Fig. 2).

Figure 2. Effect of body size of female giant crabs, measured as carapace length (mm), on fecundity (number of eggs). Trends were similar for all other measures of crab size: weight, abdomen width, chela length, and chela height.

15.0

14.5

14.0 LnFecundity

13.5 4.8 4.9 5.0 5.1 5.2 5.3 5.4 Ln Carapace length Thenumberofeggsproducedbyeachfemalerangedfrom706,000(carapacelength=131 mm)to2,545,000(carapacelength=203mm)withameanof1,575,000.Sampledata fromthedifferentsitesaresummarisedinTable1.Thehypothesisthatincreaseinsize leadstonoincreaseineggnumberwastestedandrejected(P<0.001).Additionalterms werethenaddedtothemodeltoattempttoexplainvariation.Inclusionoftheeffectof siteinthemodeldidnotsignificantlyimprovemodelfit(P>0.1, β=0.79)sositewasnot includedinsubsequentanalyses.Inclusionofcarapaceconditioninthemodelsignificantly reducedtheunexplainederrorcomparedtothemodelwithcarapacelengthonly (P<0.001).Thiswasduetoatrendofdecreasingfecunditywithdeterioratingcarapace

269 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner condition(Table2;Fig.3).Theeffectofincludingatermforextracurvature((lncarapace length)2)wastestedbutdidnotsignificantlyimprovemodelfit(P>0.3, β=0.13).

Table 1. Characteristics of female giant crabs from three sites in southern Australia. Data (mean ± s.d.) for three grades of carapace condition pooled. Significantly different sites denoted by superscripts in ascending order of intercept on regression (P<0.05). Significance of difference in female size between sites not tested; female size used only as covariant to establish the effect of site on reproductive output. NS, not significant; β, power.

Site P EastTasmania WestTasmania WestVictoria (n=30) (n=117) (n=11) Carapacelength,mean± 156±13.7 183±17.0 147±16.6 SD(mm) Weight,mean±SD(g) 2488±617.8 3859±915.4 2072±644.4 Eggnumber,mean±SD 1.35±0.294 1.67±0.435 1.07±0.407 NS β=0.26 (millions) Eggnumber,coefficient 31.94 26.93 34.20 ofvariation Eggmassdryweight, 76.5±26.2 99.1±26.2 69.6±28.7 NS β=0.45 mean±SD(g) Individualeggdry 56.37±5.03 58.17±4.55 56.64±5.88 NS β=0.06 weight,mean±SD(g)

Eggdiameter,mean± 562.6±22.5 a 600.0±26.2 b 579.2±23.1 b <0.001 SD(m) β is power

270 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Table 2. Summary of characteristics of females of carapace-condition grades 1, 2 and 3 Data (mean ± s.d.) for three sites pooled. For qualitative carapace-condition grades, see text. Significantly different carapace conditions denoted by superscripts in ascending order (P<0.05). Analysis of the effect of carapace-condition on egg measures by ANCOVA to correct for the significantly different carapace length of females. For egg mass dry weight, the pattern of ascending superscripts relates to intercepts of the model, rather than to mean values, because this corrects for carapace length.

Carapacecondition P 1(n=53) 2(n=78) 3(n=27)

Carapacelength,mean± 174±17 a 173±22 a 190±10 b <0.001 SD(mm)

Weight,mean±SD(g) 3462±982 a 3422±1110 a 4194±609 b <0.01

Eggnumber,mean±SD 1.64±0.40 b 1.53±0.52 b 1.57±0.43 a <0.0001 (millions) Eggnumber,coefficient 24.42 33.71 27.15 ofvariation

Eggmassdryweight, 99.7±26.6 c 89.1±29.6 b 92.4±26.3 a <0.001 mean±SD(g)

Individualeggdry 59.89±3.56 c 56.72±4.69 b 56.61±5.74 a <0.0001 weight,mean±SD(g) Eggdiameter,mean± 597.2±21.49 586.8±33.78 594.0±26.32 NS β=0.66 SD(m) β is power.

Table 3. Parameter estimates of fecundity models for female giant crabs. My.x = βo + [CC] i + β1 ln [CL], where CC is carapace condition, CL is carapace length and i is 1, 2, 3 using ln transformed fecundity. Correction factor for converting the results of the model back to the original scale of measurement is 1.0045819 for the full model, and 1.0119281 for the model with length alone, i.e. predicted values (as numbers of eggs) are (e My.x ) 1.0045819.

Parameter Fullmodel lnlength Estimatedvalue SE Estimatedvalue SE βo(intercept) 4.598535 0.56149 5.202213 0.56429 β1(slope) 1.868524 0.10831 1.754983 0.10915 Carapacecond.`offset:grade1; 0.070893 0.01841 grade2; 0.017130 0.01713 grade3 0

271 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 3. Relationship between Ln fecundity and Ln carapace length for each carapace-condition in female giant crabs.

15 Carapace-condition 1 Ο Ο ΟΟΟ 14.5 Ο ΟΟ ΟΟ ΟΟ Ο ΟΟΟΟ ΟΟ Ο ΟΟΟΟΟ Ο ΟΟ Ο ΟΟΟ Ο Ο Ο Ο Ο Ο 14 Ο Ο Ο Ο Ο Ο Ο 13.5 Ln Fecundity (eggs)

13 15 Carapace-condition 2 Ο Ο ΟΟ Ο Ο ΟΟ Ο Ο Ο ΟΟ ΟΟΟ Ο 14.5 ΟΟΟ ΟΟ Ο Ο Ο Ο Ο Ο ΟΟΟ Ο ΟΟΟ Ο Ο ΟΟ Ο Ο ΟΟ ΟΟ ΟΟ Ο Ο Ο Ο Ο Ο Ο Ο 14 Ο Ο Ο ΟΟΟΟΟ Ο Ο Ο Ο Ο Ο Ο Ο 13.5 Ln Fecundity (eggs)

13 15 Carapace-condition 3 Ο Ο ΟΟ 14.5 Ο Ο ΟΟ Ο Ο ΟΟ ΟΟΟ Ο Ο Ο ΟΟ Ο Ο 14 Ο Ο Ο Ο

13.5 Ln Fecundity (eggs)

13 4.8 4.9 5 5.1 5.2 5.3 5.4 Ln Carapace Length (mm)

Insummary,themostaccuratemodelfordescribingtheeggnumbersizerelationship incorporatestheeffectsoflogcarapacelengthandcarapacecondition(Table3).Theslope ofthismodelwassignificantlylessthan3.0,basedontheassociated95%confidencelimits (Table4).Mostofthemodelerrorwasexplainedbyinclusionofsizewithonlyarelatively slightimprovementinfitachievedbyincorporatingcarapacecondition(4%).As improvementinfitwithcarapaceconditionwasrelativelysmall,albeitsignificant,model parametersarealsopresentedforthemodelwithcarapacelengthalone(Table3).A summaryoftheeffectofcarapaceconditiononreproductiveoutputisoutlinedinTable2.

272 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Effect of female size on egg size

Althoughtherewasagreatdealofvariation,thedryweightofindividualeggswas significantlyaffectedbyfemalesize(P<0.0001;Fig.4).Incorporationofcarapace conditionintothemodelformeaneggweightsignificantlyimprovedfit(P<0.0001)while sitedidnot(P>0.05,b=0.12).Allgradesofcarapaceconditionweresignificantly differentandtherewasatrendofdecliningeggsizewithadeteriorationincarapace condition(Table2).Includingatermforextracurvature((lncarapacelength) 2) significantlyimprovedfit(P<0.05),suggestingtheincreaseineggsizewithfemalesize levelsoutasthefemalesbecomelarger.

Figure 4. Effect of size of female giant crab (carapace length) on egg size. (a) Effect of maternal size on egg dry weight: upper regression, carapace-condition 1 (r 2=0.17), mid regression, carapace-condition 2 (r 2=0.18), lower regression, carapace-condition 3 (r 2=0.10). (b) Effect of maternal size on mean egg diameter: upper regression, western Tasmania (r 2=0.09), middle regression, western Victoria (r 2=0.85), lower regression, eastern Tasmania (r 2=0.08).

4.3

4.2

4.1

4

3.9

3.8 Ln Mean Egg Weight (µg)

3.7 6.6

6.5

6.4

6.3 Ln Mean Egg Diameter (µm) 6.2 4.8 4.9 5 5.1 5.2 5.3 5.4 Ln Carapace Length (mm)

Meaneggdiameterincreasedsignificantlywithsizeofthefemale(P<0.05;Fig.4),and termsforextracurvature( β=0.29)orcarapacecondition( β=0.56)didnotsignificantly

273 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner improvefit(P>0.05).Themodelwassignificantlyimprovedbyincludingsite(P<0.001). ThisresultedfromsignificantlysmallerdiametereggsintheeasternTasmaniasamples whileeggsfromwesternVictoriaandwesternTasmaniawerenotsignificantlydifferent (P>0.05).

Realised reproduction

Therewasnosignificantdifferencebetweenthenumberofoocytesintheovaryandthe numberofeggsheldundertheabdomenwhichsuggeststhatthereisnoegglossduring oviposition(Fig.5;P>0.6, β=0.16).

Figure 5. Comparison between fecundity estimated by the number of mature oocytes in the ovary, and the number of eggs held under the tail after oviposition. Linear regressions against ln carapace length are shown: the lower regression is for oocytes.

15.0

14.5

14.0

Ln FECUNDITY Ln Eggs 13.5 Oocytes

13.0 4.8 4.9 5.0 5.1 5.2 5.3 5.4 Ln CARAPACE LENGTH

Analysis of factors affecting slope

Theslopeoftheallometricmodeloflogcarapacelength–logfecundity,was1.76and significantlyless(P<0.05)thanthetheoreticalvalueof3.0(Somers,1991).Thisappeared tobeduetotheobserveddeclineineggnumberwithdeteriorationincarapacecondition andtheobservedincreaseineggsizewithfemalesize(Table4).Bothofthesefactorswere reassessedbyincludingcarapaceconditionandtotaleggvolume(eggnumberbyegg volume)inthemodelasindependentanddependentvariablesrespectively.Although inclusionofthesefactorsproducedaslopeof2.63,thiswasstillsignificantlyless(P<0.05) thanthetheoreticalvalueof3.0.

274 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Table 4. Regression statistics of reproductive output to evaluate whether the relationship between carapace length (CL) and fecundity (F) is volumetric with a slope of 3.0.

Model 1a: simple allometric model of F predicted by CL; model 1b predicts total egg- mass dry weight (W) from CL. Models 2a and 2b: as 1a and 1b, but with the addition of carapace-condition (CC) as an independent variable. Model 3 predicts volume of the whole egg-mass as the product of individual egg volume (V e) and F from CL and CC. All continuous variables were log transformed. All models were tested against the null hypothesis (H o) that the slope ( β1) was not different from 3.0.

Slope 95%Conf.Limits H0;β1=3.0 onslope(L1L2) (ttest) 2 Model (β1) r value 1a)y=lnF;x=lnCL 1.76 1.551.97 Reject 0.635 1b)y=lnW ;x=lnCL 2.25 1.952.56 Reject 0.581 2a)y=lnF;x=lnCL&CC 1.87 1.662.08 Reject 0.675 2b)y=lnW;x=lnCL&CC 2.40 2.102.69 Reject 0.638

3)y=ln(VexF );x=lnCL&CC 2.63 2.312.95 Reject 0.647

Discussion

Site

Theabsenceofasiteeffectonnumberofeggsandeggdryweightsuggestthatthemodels listed(Table3)areappropriateforstocksthroughoutTasmaniaandthroughtowestern Victoria.Fishinggroundsfor P. gigas inTasmaniaareroughlysplitintowesternandeastern regionswithfewanimalscapturedinBassStraightorbelow42°30'Sontheeastcoastof Tasmania.Consequently,samplesiteswerefromtheextremerangesofthefisheryfor theseStates.Sitehadasignificanteffectoneggdiameter(P<0.001)withfemalesfrom easternTasmania(n=30)producingsmallereggsthanthosefromtheothertwosites(n= 132).Thisobservedeffectofsiteoneggdiameterissurprisingasindividualdryeggweight didnotappeartobeaffectedbysite.Itisimportanttonotethattheeffectofsiteon

275 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner diameterwasveryweak,althoughsignificant,sothereisunlikelytobeanybiological implication.

Effect of carapace condition on reproductive output

Thesignificantimprovementinmodelfitofloglengthlogfecunditybyincorporating carapaceconditionindicatesthatthereisadeclineinfecunditywithsuccessivebroods withinaninstar.

Theeffectofsuccessivebroodsbetweenmoultsonfecundityhasbeenexamined previouslyinsnowcrabs, Chionoecetes opilio (Majidae)whichterminallymoultintomaturity andproduceonlytwobroods.SainteMarie(1993)observedanincreasewithconsecutive clutches(opposedtoadeclinein P. gigas )intheorderof20%perbrood.Therelationship in P. gigas ismorecomplexastheredoesnotappeartobeterminalmoultintomaturity,so broodsareproducedatseveralinstars.Thispatternissimilartomost Cancer specieswhere viablespermmayberetainedforgreaterthan2yearsandusedtofertilisesuccessive broodswithoutmoulting.Apatternofdecliningfecundityforsuccessivebroodsproduced betweenmoults,asin P. gigas ,alsooccurswith Cancer magister and Cancer anthonyi (Hankinet al.,1989;Shieldsetal.,1991).

Somefemalesincarapaceconditiongroups2and3appearedtohavelowerfecunditythan thoseingroup1.Biologicalcausesforthisobservedeffectofcarapaceconditionon fecunditymayinclude:damagetopleopodsthatmayphysicallypreventacrabfrom carryingafulleggmass(Hankinetal.,1989);reducedovariandevelopmentinresponseto depletionofspermatophorereservesfrompreviousextrusions(Hankinetal.,1989);and senescenceofolderfemales.Thepotentialfordamagetopleopodstoimpairattachment ofeggsincarapacecondition3crabscouldnotbeassessedfrominformationcollectedin thepresentstudy,butHankinetal.(1989)didobserveshortpleopodsonseveralnon moulted C. magister females.Large,carapacecondition3, P. gigas femaleshavebeenheldin tankstoextrudetheirbroodsandnoegglossappearedtooccur(Gardner,unpublished).

Heavilyfouled,grade3 P. gigas femalesweresignificantlylargerthanothergrades(Table2) andareunlikelytohavenaturalpredatorsexceptduringecdysis.Consequently,itis feasiblethatthisgroupdoescontainsenescentfemales.LargefemaleEuropeanedible crabs( Cancer pagurus )arealsooftenheavilyfouledandtermed“grannycrabs”(Pearson,

276 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

1908)whichhasbeenattributedtobothprolongedintermoultdurationandsenescence (Edwards1979).However,aswith C. magister and C. anthonyi ,declineinfecundityof P. gigas withsuccessivebatchesofeggsproducedbetweenmoultsconfoundsdetectionof senescence(Hankinetal.,1989;Shields,1991).

Whilethedeclineinfecundityofgrade3femalesmaybeaneffectofsenescence,thisis unlikelytobethecasewithgrade2females.Thelatterwerewellrepresentedacrossthe sizerangecollected,butmanyhadsignificantlysmallerclutchesthandidgrade1females (P<0.05).Ifthereisalimitingfactoronreproductiveoutput,suchasremainingsperm reserves,thereareadvantagestoastrategyofreducingclutchsizetooptimisefuture survival,ratherthanriskingmortalityduringmoultingtoremate(BegonandParker,1986). Matinghasneverbeenobservedin P. gigas ,butthereisindirectevidencethatitoccurs whilethefemaleissoftshelled(seepreviouschapter).

Theeffectofcarapaceconditiononfecundityisimportantwhenmodellingfecundityfor fisherymanagementasitsuggeststhatchangestostocks,otherthanthosedetectedby monitoringsizeofindividuals,havetheabilitytoaffecteggproduction.

Egg size

Sizeofindividualeggsdidnotremainconstantbutdeclinedsignificantly,albeitslightly, withdeteriorationincarapaceconditionandincreasedwithcarapacelength(P<0.0001). ChangeinindividualeggsizewithdeteriorationincarapaceconditionandincreaseinCL hasalsobeenreportedin Chionoecetes opilio inwhicholder,multiparousfemalesproduced smallereggs(SainteMarie,1993).Changeineggsizewithfemalesizeisimportantifthe amountofnutrientreservesavailabletotheembryoisincreased(Clarke,1993).Thishas beendemonstratedinthelobster Homarus americanus wherelargerfemalesproduceeggs withgreaterenergycontent(AttardandHudon,1987).Althoughsignificant,theeffectof femalesizeoneggsizein Pseudocarcinus gigas wasweakandtherewasconsiderablevariation betweenindividuals;consequently,femalesizeoneggsizemayhavelittleeffectonnutrient reserves.

Differencesineggsizemayaffectnotonlythenutrientreservesavailabletothelarvae,but mayaffecttimingoflarvalrelease(Wear,1974).Itappearsthatevensmalldifferencesin eggsizecanhaveprofoundeffectsoneggdevelopment;SainteMarie(1993)notedthat

277 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner developmenttakesaround3monthslongerinprimiparous C. opilio ,withlargereggs,than inmultiparoussnowcrabfemales,eventhougheggdiameterdifferedbyonly1.42.7%. Thissuggeststhattheobservedeffectoffemalesizeoneggsizein P. gigas mayinfluence larvalrelease,althoughitwasnotpossibletoassessthisinthecurrentstudy.

Realised reproduction

Corey(1991)listedfactorsthatmaycauselossofeggsatovipositionincrustaceans: incompleteextrusionofeggs;infertileeggs;lackofproperattachmentofeggstopleopods; andtheextrusionoftoomanyeggsforattachment.Comparisonbetweencountsof oocytesandeggsheldunderthetailindicatedthatnoneofthesefactorscontributeto significantegglossin P. gigas .Corey(1991)speculatedthatthemostimportantfactor affectingattachmentofeggsinthefreshwatercrayfish, Orconectes spp,wasrapidwater movement.

Female P. gigas heldforlongtermspermretentiontrials(seeChapter14)wereheldina200 m3tankwitha15cmdeepsandysubstrateandobservedduringoviposition.Females buriedtheirabdomensinsubstrateduringovipositionandremainedinthispositionfor severalweeks(Fig.6).Thisbehaviourhasbeenobservedinotherbrachyuransandis knowntoreducelossofeggsduringoviposition(Crothers,1969;Wear,1974;Edwards, 1979;Wild,1983;Shields,1991;Shieldsetal.,1991).

Figure 6. Female giant crabs Pseudocarcinus gigas during oviposition with their abdomens buried into pits in the substrate.

278 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Relative reproductive expenditure with increase in female size

Aswouldbeexpected,eggnumberincreasedwithsizeofthefemale.Withlog transformeddata,theslopeofthisrelationshiphasatheoreticalvalueof3.0aseggnumber isavolumetricmeasurewhilesizeislinear(Somers,1991);however,in Pseudocarcinus gigas , theslopewas1.76andsignificantlylessthan3.0(P<0.05).Somers(1991)postulatedthat valueslessthan3.0couldbecausedby:separateageclasses;changesintheproportionate sizeoftheovariesrelativetothefemale;changeineggsizerelativetofemalesize;and senescence.Additionalfactorswhichmayhavebeenimportantinthisstudywerethe effectsofsite,andsuccessiveclutchesbetweenmoults.

Ofthesehypotheses,itwaspossibletoassesstheeffectofchangeineggsizerelativeto femalesize,site,successiveclutchesbetweenmoults,andtosomeextenttheeffectof separateageclasses.Therewasnoevidencethatsiteaffectedfecundityasitdidnot improvetheregressionfit.Likewisetheinclusionofatermforextracurvaturedidnot improvefit,suggestingthattherewasnodistincttrendofseparateageclassesasshownby Wenneretal.(1987)in Emerita analoga. However,byadjustingforcarapacecondition(or possiblysenescenceasdiscussedabove)theslopewasraised(seeeffectofcarapace condition,Table4).Also,therewereindicationsthatchangesinthesizeofeggswithsize offemaleswasaffectingtheslope,basedoncomparisonsbetweenregressionsforlog fecundityandlogtotaleggmassdryweight,thelatterhavinghigherslopes.Thiswouldbe expectedgiventheobservedrelationshipbetweenfemalesizeandeggsizein P. gigas (Fig. 4);ifafemalecrabisproducinglargereggsthenfewercouldbecontainedwithinthespace availabletotheovarywithinthebodycavity.Thishypothesiswassupportedasslopeof theregressionfortotaleggvolume(numberofeggsxeggvolume)was2.63,andfarcloser tothetheoreticalvalueof3.0,althoughstillsignificantlyless(P<0.05).

Insummary,thefecundityoffemalegiantcrabsdidnotfollowasimplevolumetric relationship;therelationshipisaffectedbydecliningfecunditybetweensuccessiveclutches, andalsobyanincreaseineggsizewithfemalesize.Despitecorrectingforboththese factors,theslopewasstilllessthan3.0whichmaybeduetoerrorfromthecoarsenessof themeasureoftimesincemoultingbycarapacecondition,ortheremaybeanadditional biologicalprocessinvolved.Ifmoultingoccursinperiodsofgreaterthan3yearsthen carapaceconditionmaymaskpatternsasthiswasonlydividedinto3groups.Also,if senescentfemaleswerepresent,theywerelikelylumpedwithfouled,buthealthy,females

279 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner intocarapacecondition3.Whilethereisageneralassumptionthatclutchsizeshould increasewithfemalesize,optimisingreproductiveoutputbyoptimisingfuturegrowthand survivalcanleadtoadecliningclutchsizewithage(CharlesworthandLeon,1976;Begon andParker,1986);suchabiologicalpatternmaybeoperatingwith P. gigas females.

Additional factors affecting fecundity

Allsamplesforthisstudywerecollectedintheearlystageofembryonicdevelopment,as preliminarytrialshadshownthatvariationinindividualeggweightwasleastduringthat period.Thispreventedanalysisofpossibledeclineinbroodsizethroughdevelopment whichhasbeenshowntobeimportantinothercrustaceanspecies(AnnalaandBycroft 1987;KurisandWickham1987).Nemerteansandamphipodswereobservedineggs sampledfrom P. gigas soadeclineinbroodsizeduringdevelopmentfrompredationis possible.

References

Annala,J.H.andBycroft,B.L.1987.FecundityoftheNewZealandredrocklobster, Jasus edwardsii .New ZealandJournalofMarineandFreshwaterResearch21,591597.

Attard,J.andHudon,C.1987.Embryonicdevelopmentandenergeticinvestmentineggproductionin relationtosizeoffemalelobster (Homarus americanus). CanadianJournalofFisheriesandAquaticSciences44, 11571164.

Begon,M.andParker,G.A.1986.Shouldeggsizeandclutchsizedecreasewithage?Oikos47,293302.

Charlesworth,B.andLeon,J.A.1976.Therelationofreproductiveefforttoage.AmericanNaturalist110, 449459.

Clarke,A.1993.Eggsizeandeggcompositioninpolarshrimps(Caridea:Decapoda).Journalof ExperimentalMarineBiologyandEcology168,189203.

Crothers,J.H.1969.ThedistributionofcrabsinDaleRoad(MilfordHaven,Pembrokeshire)duringsummer. FieldStudies3,109124.

Draper,N.R.andSmith,H.1981.Appliedregressionandanalysis.JohnWileyandSons,Toronto,Canada. 709pp.

Edwards,E.1979.Theediblecrabandit’sfisheryinBritishwaters.FishingNewsBooks,Farnham, England.142pp.

280 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Hankin,D.G.,Diamond,N.,Mohr,M.S.andIanelli,J.1989.Growthandreproductivedynamicsofadult femaleDungenesscrabs( Cancer magister )innorthernCalifornia.JournalduConseilInternationalpour l’ExplorationdelaMer46,94108.

Hankin,D.G.,Butler,T.H.,Wild,P.W.andXue,Q.L.1996.Doesintensemaleharvestlimiteggproduction ofprotectedfemalestocksofDungenesscrabs?HighLatitudeCrabs:Biology,Management,andEconomics. AlaskaSeaGrantCollegeProgramReportNo.9602,UniversityofAlaskaFairbanks,507510.

Howard,A.E.1982.Thedistributionandbehaviorofovigerousediblecrabs( Cancer pagurus ),andconsequent samplingbias.JournalduConseilInternationalpourl’ExplorationdelaMer40,259261.

Kon,T.1996.OverviewoftannercrabfisheriesaroundtheJapaneseArchipelago.HighLatitudeCrabs: Biology,Management,andEconomics.AlaskaSeaGrantCollegeProgramReportNo.9602,Universityof AlaskaFairbanks,1324.

Kuris,A.M.andWickham,D.E.1987.Effectofnemertianeggpredatorsoncrustaceans.BulletinofMarine Science41,151164.

Norman,C.P.andJones,M.B.1993.Reproductiveecologyofthevelvetswimmingcrab, Necora puber (Brachyura:Portunidae),atPlymouth.JournaloftheMarineBiologicalAssociationoftheUnitedKingdom 73,379389.

Pearson,J.1908. Cancer (theediblecrab).MemoirsoftheLiverpoolMarineBiologyCommittee16,263p.

SainteMarie,B.1993.Reproductivecycleandfecundityofprimiparousandmultiparousfemalesnowcrab, Chionoecetes opilio ,intheNorthwestGulfofSaintLawrence.CanadianJournalofFisheriesandAquatic Sciences50,21472156.

SainteMarie,B.,Sevigny,J.M.,Smith,B.D.andLovrich,G.A.1996.Recruitmentvariabilityinsnowcrab, Chionoecetes opilio:pattern,possiblecauses,andimplicationsforfisheriesmanagement.HighLatitudeCrabs: Biology,Management,andEconomics.AlaskaSeaGrantCollegeProgramReportNo.9602,Universityof AlaskaFairbanks,451478.

SearcyBernal,R.1994.Statisticalpowerandaquaculturalresearch.Aquaculture127,371388.

Shields,J.D.1991.Thereproductiveecologyandfecundityof Cancer crabs.In‘Crustaceaneggproduction’. (EdsA.WennerandA.Kuris)pp.193213.(A.A.Balkema,Rotterdam.)

Shields,J.D.,Okazaki,R.K.andKuris,A.M.1991.Fecundityandthereproductivepotentialoftheyellow rockcrab Cancer anthonyi .FisheryBulletin89,299305.

Sokal,R.R.andRohlf,F.J.1981.Biometry.2nded.W.H.Freeman,NewYork,N.Y.859p.

Somers,K.M.1991.Characterisingsizespecificfecundityincrustaceans.In‘Crustaceaneggproduction’. (EdsA.WennerandA.Kuris)pp.357378.(A.A.Balkema,Rotterdam.)

Strathmann,R.R.1990.Whylifehistoriesevolvedifferentlyinthesea.AmericanZoologist30,197207.

Strathmann,R.R.andChaffee,C.1984.Constraintsoneggmasses.II.Effectofspacing,size,andnumberof eggsonventilationofmassesofembryosinjelly,adherentgroups,orthinwalledcapsules.Journalof ExperimentalMarineBiologyandEcology84,8593.

Subramoniam,T.1991.Yolkutilizationandesteraseactivityinthemolecrab Emerita asiatica (Milne Edwards).In‘Crustaceaneggproduction’.(EdsA.WennerandA.Kuris)pp.1929.(A.A.Balkema, Rotterdam.)

Vinuesa,J.H.,Guzman,L.,andGonzalez,R.1996.Overviewsofsouthernkingcrabandfalsekingcrab fisheriesintheMagellanicregion.HighLatitudeCrabs:Biology,Management,andEconomics.AlaskaSea GrantCollegeProgramReportNo.9602,UniversityofAlaskaFairbanks,312.

281 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Wear,R.G.1974.IncubationinBritishdecapodCrustacea,andtheeffectsoftemperatureontherateof successofembryonicdevelopment.JournaloftheMarineBiologicalAssociationoftheUnitedKingdom54, 745762.

Wenner,A.M.,Hubbard,D.M.,Dugan,J.,Shoffner,J.andJellison,K.1987.Eggproductionbysandcrabs (Emerita analoga) asafunctionofsizeandyearclass(Decapoda,Hippidae).BiologicalBulletin172,225235.

Wild,P.W.1983.Influenceofseawatertemperatureonspawning,eggdevelopment,andhatchingsuccessof theDungenesscrab, Cancer magister .In(Eds.P.WildandR.Tasto)LifeHistory,Environment,and MaricultureStudiesoftheDungenessCrab, Cancer magister ,withEmphasisontheCentralCalifornianFishery Resource.CalifornianDepartmentofFishandGameFisheriesBulletin175,197205.

282 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Composition of Eggs in Relation to Embryonic Development and Female Size

17

Researchforthischapterhasbeenpreviouslypublishedas: Gardner,C.Compositionofeggsinrelationtoembryonicdevelopmentand femalesizeingiantcrabs Pseudocarcinus gigas (Lamarck) MarineandFreshwaterResearch,inpress.

283 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

277 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Abstract

Thesizeandcompositionofeggsfrom22giantcrabs Pseudocarcinus gigas weremonitored over165daystodeterminetrendsthroughembryogenesis.Eggcompositionwasmost stableduringtheearlystagesofembryogenesissoadditionalsampling(n=143)was conductedduringthisperiodtoassesstheeffectoffemalesize,samplinglocation(eastand westTasmania),andsuccessivebroodsbetweenmoults,oneggcomposition.During embryogenesis,eggsincreasedindiameterandmoisturecontentwhileorganicdryweight declined.Totalcarotenoidcontentdidnotchangesignificantlywhileproteindeclinedand lipidincreased(asproportionofashfreedryweight).Thisindicatesthatproteinwasused preferentiallytolipidwhichisatypicalofmostdecapodsandmaybeanadaptationtothe deeperwaterhabitatof P. gigas .Femaleswithheavyandintermediatecarapacewearwere consideredmorelikelytohaveproducedpreviousclutchesandtheyproducedeggswith significantlylesscarotenoid.Theeggsoflargerfemalescontainedsignificantlymorewater, lessprotein,andlesscarotenoidwhiletherewasnoeffectontotallipid(P<0.05). Althoughtheeffectsoffemalesizeoneggcompositionweresignificant,themagnitudeof theeffectwassmall(r 2≤0.17).Consequently,itisunlikelythatlarvalviabilityisaffected,or thatlargerfemalescontributemoretorecruitmentthanpredictedbyfecundity.

Introduction

Yolkreservesofcrustaceaneggsarecriticaltothedevelopmentoftheembryoand subsequentlarvae.Thepatternofutilisationofreservesvariesbetweenspeciesandthereis evidencethatthisinterspecificvariationisaneffectofenvironmentaladaptation(Pandian, 1970;PillaiandSubramoniam,1985).Ecophysiologicalresearchonyolkutilisationin decapodshasbeenbasedonfreshwater,inshorecoastal,andterrestrialspecieswhilethis chapterdescribeseggdevelopmentandyolkutilisationinthedeeperwater,oceanic decapodspecies, Pseudocarcinus gigas .Giventhatthedemandsonanemerginglarvaindeep, oceanicwaterarelikelytobedifferenttothoseofalarvahatchingininshoreareas,itwas anticipatedthatyolkutilisationmaybeaffected.

278 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Incommercialcrustaceanspecies,understandingfactorsaffectingeggproductionis importantasthesemayinfluencerecruitment.Eggsizehasbeenshowntovarywithin speciesinresponsetoarangeoffactorsincludingdepth(ThessalouLegaki,1992),region (CollartandRabelo,1996),femalesize(AttardandHudon,1987),andproductionof successivebroods(SainteMarie,1993).Earlierworkonfecundityofgiantcrabs demonstratedthateggsizeincreasedwithfemalesize(previouschapter;Gardner,1997). Inaddition,eggsizeof P. gigas appearedtodeclinewithsuccessiveclutchesofeggs producedbetweenmoults.Itwashypothesisedthatthesedifferencesineggsizemay influencelarvalviabilityandsubsequentlarvalrecruitment.

Althoughtheseobservationsoneggsizeof P. gigas indicatedeffectsoffemalesizeand successivebroodsonreproductiveoutput,theyarenotdefinitive.AsnotedbyClarke (1993),theassumptionthatlargereggscontainmorenutrientisusuallyintuitiveandis rarelytested.Whileeggsizehasbeenshowntoreflectrealdifferencesininvestmentper eggbypolarshrimps(Caridea;Clarke,1993),thisrelationshipisnotpresentinall invertebratesandcannotbeassumed(McEdwardandCoulter,1987).

Themostdirectmeasureofthe“quality”ofeggs,andtheeffectoffemalesizeor successivebroods,isameasureoflarvalsizeorvitality.Thiscanbedifficulttomanage, especiallyinlargercrustaceanslikethegiantcrab,asfemalesmustbehousedseparately untillarvalrelease.AnindirecttechniquetoassesseggqualitywasemployedbyAttardand Hudon(1987)inaninvestigationoftheeffectoffemalelobster Homarus americanus sizeon eggquality.Theyassessedeggcompositionasenergycontentandshowedthatthe expenditurepereggwasgreaterbylargerfemalesthansmallerfemales.Thissuggeststhat largerfemalelobstersmaycontributemoretorecruitmentthanwouldbepredictedby fecundityalone.Similarresearchwasconductedongiantcrabsandisdescribedinthis chapter.Thecompositionofeggsofgiantcrabswasanalysedtotestiftheeffectsof femalesizeandsuccessiveclutchesoneggsizerepresentrealdifferencesinparental contribution(inotherwords,dobiggerfemalegiantcrabsproducebettereggs?).

279 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Materialsandmethods

Collection of samples

Twosetsofsampleswerecollected:thefirstwasfortheassessmentofchangesinegg compositionduringembryogenesis,andthesecondwasforassessmentoffemalesizeon eggcomposition.Forthefirst,22ovigerousfemaleswerecapturedintrapsfromdepthsin therangeof300–380mofftheeastcoastofTasmania(41°15'S;148°40'E)inMay1994by acommercialfisher.Ovigerousfemaleshadonlyjustbeguntobeobservedbyfishersso theseeggmasseswereregardedasrecentlyextruded.Femalesrangedfrom2.2–3.5kg andweremaintainedintwo4m 3tankswithflowthroughwatersupplyandfedtwice weekly.Hatchingoccurredoveraperiodof2weeksinNovember1994,duringwhich femaleswerecheckedeverytwodaystoallowthedateofeggsamplecollectiontobeback calculated,relativetohatching.Femaleswereindividuallytaggedandsamplesofeggs (around30g)wereremovedat165,125,75,50,and20dbeforehatching(averagedacross sample).

Thisfirstsetofsamplesdelineatedaperiodduringdevelopmentwheneggcomposition wasrelativelystable;samplingoffemalestodeterminetheeffectoffemalesizewasthen conductedduringthismorestableperiod.Developmentofeggswasstagedbyaqualitative scheme(Table1).

Forthesecondsetofsamples,ovigerousfemalecrabs(n=143)werecollectedduringthe period10Augustto15September1995fromeasternTasmania(n=30),andwestern Tasmania(n=113).Thesewerethesamesamplesusedpreviouslytodeterminefecundity (seeFig.1inGardner,1997).Halfoftheeggmasswasremovedfromeachfemalefor analysisofcomposition(developmentofindividualeggswashomogeneouswithintheegg mass).Fourofthesefemaleswerecapturedwithmoreadvancedeggsbutalleggsretained foranalysiswereatdevelopmentstage2(Table1).

Female Pseudocarcinus gigas producebroodsannuallyandappeartoproduceseveralbroods betweenmoults(Chapter14).Thetimesincemoultingwasroughlyquantifiedbyassigning acarapaceconditiongraderangingfromgrade1,cleanshelled,tograde3,heavilyworn

280 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner andfouled(Gardner,1997).Thiscarapaceconditiongradewasnotintendedtoprovidea directscaleofyearssincethepreviousmoult,rather,itsimplyassumesthataheavilyfouled femaleismorelikelytohaveproducedpreviousbroodsthanacleanshelledfemale.

Table 1. Classification of egg development in Pseudocarcinus gigas

Stage Description I: Eggsbrightorangewithnoembryopigmentation.Theeggistranslucentand recentlyextruded containsevenlydistributedyolkgranules. II: Eggsbrightorange;aclear,yolkfreestreakevidentatonepole;yolkgranules earlydevelopmental evenlydistributedthroughout. III: Eggsdullorange;aquarteroftheyolkmassiscleared;somestructural intermediateI developmentofembryo;noblackpigmentation;somefaintredeye pigmentation. IV: Eggsdullorange;embryoeyepigmentationvisibleassmall,grey/black intermediateII patches;theinneryolksacappearsslightlydetachedfromthesurrounding capsule. V: Eggsbrownishorange;eyepigmentationisblack;embryowellformed;heart latestage beatisobviousandscatteredpigmentationisvisible;someyolkremains. VI: Eggsbrownishorangetoburgundy;embryofullyformed;pigmentationmore prehatch definedwithlinesontheabdomen;smallamountofpaleyolk;frequent movement.

Analysis of egg size and composition

Formeasuringdiameter,subsampleswereteasedapartinseawaterandthediameterof50 eggswasthenrecordedbyimageanalysisusingNIHImage™1.60software. Pseudocarcinus gigas eggsareroundandonlythoseeggswhichappearednormalweremeasured.

Allanalyseswereduplicated.Eggswereblotdriedbeforeweighingtoobtainaninitialwet weight.Todeterminewatercontent,eggsweredriedat80°Cfor24h,andcooledfor1h undervacuumbeforeweighing.Samplesofaround2gwereashedat450°Cfor2h.Mean individualeggdryweightforeachbroodwasobtainedbycountingatleast250eggswhich werethenrinsedindistilledwater,dried,andweighed.Samplesforbiochemicalanalyses werestoredat60°Cthenthawedandgroundinamortartoahomogeneouspaste. ProteinwasassayedbyamodifiedLowryprocedure(Peterson,1977;SigmaDiagnostics™ #5656;Appendix9).TotallipidwasmeasuredbythegravimetricmethodofFolchetal. (1957)usingchloroformandmethanolassolvents(Appendix9).

281 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Carotenoidswereextractedfromtissuewithacetone(Appendix9).Theacetoneextract waspartitionedwithdiethyletherwhichwaswashedwith20volumesof10%NaClto removeresidualacetone.Foursamplesofcarotenoidextractfrombothearlyandlate developmentstageeggsofthesamefemaleswerechromatographedbythinlayer chromatography(TLC)onC8octylsilicaplates(Merck™)usingasolventmixtureof95:5 petroleumether:methanol.Tissueextractswererunalongsidesaponifiedextracts(5% ethanolicKOHfor24hatroomtemperature)andastaxanthinstandard(Roche Pharmaceuticals™).Carotenoidspresentinextractswereidentifiedaspredominantly astaxanthinorastaxanthinesterswithlowlevelsofarapidlyelutingredpigment,possiblyß carotene,andanunidentifiedyellowpigment.Consequently,totalcarotenoidswere estimatedfromtheextractsasastaxanthinbymeasuringtheirabsorptionindiethyletherat

1% 472nmassuminganE 1cm of2099(Clarke,1977).

Data analysis

Theeffectofembryonicdevelopmentoneggsizeandcompositionwastestedbyrepeated measuresanalysisasthesamefemalesweresampledthroughoutthetrial(Mardiaetal ., 1979).SignificancewastestedbyWilk’slambda(Mardiaetal .,1979).

Effectoffemalesizeoneggsizeandcompositionwasinitiallytestedbysimplelinear regression.Additionalanalyseswerethenconductedtoassesstheeffectsofsiteand carapaceconditionbyanalysisofcovariance(ANCOVA),afterfirstestablishingequalityof slopesbytestingforinteractionwithfemalesize(SokalandRohlf,1981).Wherethe resultsofANCOVAweresignificant,elevationsofseparatecarapaceconditionclasses werecomparedbyttests.AllanalyseswereperformedwithJMP™3.1software(SAS Institute).

282 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Results

Changes in egg size, mass, and composition during embryogenesis

Relativelylittleembryonicdevelopmentoccurredduringthefirst90dofincubationwith themajorityofeggmassessampledat75dbeforehatchbeingatdevelopmentstage2(Fig. 1).By50dpriortohatch,mosteggmasseshadprogressedtostage3withaquarterofthe yolkcleared.Embryogenesisappearedtoproceedmorerapidlyinthelast50dwithmost yolkutilisedby20d.

Embryogenesisresultedinasignificantchangeineggdiameter(P<0.001);individualegg dryweight(P<0.01);moisture(P<0.001);protein(P<0.001);andlipid(P<0.01;Fig.2). Greatestrateofchangeinthewater,protein,andlipidcompositionappearedtooccur duringtheperiodofmostrapidyolkdepletion:between50dandhatch(Fig.2).Meanegg dryweightdeclinedduringdevelopmentwhilediameterincreased.Totalcarotenoid(asash freedryweight)didnotchangesignificantlyduringembryogenesis(P=0.22).

283 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 1. Effect of embryogenesis on egg diameter, weight and composition (moisture, protein, lipid, and carotenoid; n=22). Moisture content is presented as percentage of wet weight while protein, lipid, and carotenoid are presented as proportion of ash-free dry weight. Days prior to hatch was averaged across each sample.

650 mean egg diameter ± s.d.

600

550 diameter (µm) diameter

65 mean egg dry weight ± s.d. 60

55

50 weight (µg) weight

45 70 mean % water ± s.d. 65

water (%) 60

55

600

500

400

protein (mg/g) protein 300 mean protein ± s.d.

200 mean lipid ± s.d. 175

150 125

lipid (mg/g) lipid 100 75 500 mean carotenoid ± s.d. 400

300

200

carotenoid (ug/g) carotenoid 100

150 100 50 0 days before hatch

284 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 2. Developmental stages of egg masses collected at each sample period. Days prior to hatch was averaged across each sample.

100 %I

75 %II

%III 50 %IV

25 %V %VI 0 Percentage of egg clutches (n=22) 170 145 120 95 70 45 20 days prior to hatch

Influence of female size and carapace condition on egg composition

Theeggsoflargerfemalestendedtohavesignificantlyhigherwatercontent(P<0.01),less eggprotein(P<0.05),andlesstotalcarotenoid(P<0.0001;Table2).Althoughsignificant, theeffectoffemalesizeappearedtoberelativelyslight,especiallyforwaterandprotein content(r 2=0.049).Lipidcontentdidnotappeartobeinfluencedbyfemalesize(P>0.2). AdditionalanalysesbyANCOVAindicatedsiteandcarapaceconditionhadnosignificant effectonwater,proteinorlipidcontent(P>0.2;bothasaproportionofashfreedryweight andasatotalmassperegg).Totalcarotenoiddidnotappeartobeinfluencedbysite althoughitwasaffectedbycarapacecondition(P<0.05;Table3).Theinterceptsofeach carapaceconditiongradewerecomparedbyttests;thesetestsindicatedthatthesignificant effectofcarapaceconditionontotalcarotenoidcontentwasattributabletohigherlevelsof carotenoidineggsfromgrade1(cleanshelled)femaleswhilegrades2and3(intermediate andheavywear)werenotsignificantlydifferent(Fig.3).

285 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Table 2. Regressions of egg composition on female size, measured as carapace length (CL; mm). Results from 143 females were used in each analysis. Protein and carotenoid concentrations are as ash-free dry weight per gram of egg mass and per individual egg. NS, P>0.2; * P<0.05; **P<0.01; ***P<0.0001.

Regressionequation r2 Fratio water(mg/g)=0.673CL+502.39 0.049 7.420** protein(mg/g)=1.332CL+750.10 0.028 4.129* proteinperegg(g)=0.030CL+15.14 0.037 5.564* lipid(mg/g)=0.190CL+214.10 0.009 1.119NS lipidperegg(g)=0.00001CL+1.04 <0.001 0.0001NS carotenoid(g/g)=2.176CL+603.11 0.153 25.753*** carotenoidperegg(ng)=0.046CL+12.75 0.170 29.216***

Table 3. Results of analyses of variance examining the effect of carapace-condition on carotenoid content. Analyses were conducted on carotenoid content as ash-free dry weight per gram of egg mass and per individual egg. Carapace length (mm) was included in the analyses to correct for the effect of female size on carotenoid content of eggs. * P<0.05; **P<0.01; ***P<0.0001.

Carotenoid(g/g) Carotenoidperegg(ng) Sourceofvariation D.F. M.S. Fratio D.F. M.S. Fratio Carapacelength(covariate) 1 170254 21.01*** 1 86.54 22.48*** Carapacecondition 2 28766 3.55* 2 19.34 5.02** error 140 8103 140 3.85

Figure 3. Regressions of total carotenoid per egg (as ash-free dry weight) on carapace length, for each carapace-condition class (denoted by numerals). Carapace- condition class 1 - solid dots; class 2- hollow dots; class 3-diamonds.

12.5

10

7.5 1 2 5 3 2.5

Total carotenoid per(ng) egg carotenoid Total 0 125 150 175 200 225 Carapace length (mm)

286 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Discussion

Changes in egg size, mass, and composition during embryogenesis

Generaltrendsduringembryogenesisin Pseudocarcinus gigas weretypicalofdecapods;eggs tookupwaterduringdevelopmentwitharesultantincreaseindiameterwhileorganicdry weightdeclined(Clarkeetal.,1990;Subramoniam,1991;LardiesandWehrtmann,1996; Wild,1983).However,utilisationofproteinandlipidreservesdifferedfromthepatternof mostdecapodswherelipidtendstodeclineduringdevelopmentwithproteinremaining stableorproportionallyincreasing(Pandian,1970;Raoetal.,1981;Pillaiand Subramoniam,1985;Subramoniam,1991).In P. gigas ,proteinappearedtobeutilisedin preferencetolipidwithlipidreservesappearingtodeclineslightlyinitiallythenincrease laterinembryogenesis.Theapparentincreaseinlipidcontentofeggsisconfoundedto someextentbyconcurrentdeclinesinothercomponentsbuttheresultsclearlyindicate thatlipidcatabolismisrelativelylow.Anincreaseinlipidcontentduringembryogenesisis unusualindecapodsalthoughithasbeenreportedpreviouslyin Ovalipes punctatus (Portunidae;DuPreezandMcLachlan,1984)and Macrobrachium rosenbergii (Palaemonidae; Clarkeetal .,1990).

Enhancedlipidmetabolismisafeatureofcleidoiceggs(whichdonotexchangematerial otherthangasseswiththeenvironment)andterrestrialcrabshavebeenshowntoproduce eggswithlargelipidreserveswhichareutilisedthroughoutembryogenesis(Pillaiand Subramoniam,1985).Eggsofmarinespecieshavegreateropportunityforreleaseofwaste productsandgreaterrelianceonproteinreserveshasbeenreported;eggsofthemolecrab Emerita asiatica areintermediatebetweencleidoicandnoncleidoicasproteinreservesare usedcontinuouslythroughdevelopment,althoughlipidisalsodepleted(Subramoniam, 1991).Eggsof Pseudocarcinus gigas appeartobefurtherdevelopedtowardsnoncleidoictype metabolismwithgreaterrelianceonproteinreservesinasimilarpatterntobonyfish (Lasker,1962).

Unlikemostdecapodspecieswheretheeffectsofembryogenesishavebeeninvestigated, Pseudocarcinus gigas inhabitsrelativelydeepwaterofaround300m.Habitatisknownto influenceyolkutilisation(PillaiandSubramoniam,1985)andthelowleveloflipid

287 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner catabolismby P. gigas embryosmaybeanadaptivestrategyfordeeperwater.Subramoniam (1991)suggestedthatthelowerleveloflipidutilisationintheshallowwatermolecrab Emerita asiatica maybeastrategytoretainhigherlipidcontentinzoeastoincrease buoyancyandprovideabufferagainststarvation.Buoyancymaybeespeciallyimportantin deeperwaterdecapodssuchas P. gigas wherenewlyhatchedlarvaeappeartoswimupwards inresponsetonegativegeotaxis(Gardner,1996).Likewise,retaininglipidreservesmaybe ofadvantageindelayingstarvationofzoeasinoceanicwaters(19dat16 °Cin P. gigas ; GardnerandNortham,1997).

ThepredominantcarotenoidinPseudocarcinus gigas eggsisunesterifiedastaxanthin,asin Penaeus semisulcatus (Dalletal.,1995).Concentrationoftotalcarotenoidremainedconstant duringembryogenesisin Pseudocarcinus gigas althoughadeclinehasbeenreportedinother decapods(DersanKourandSubramoniam,1992;Dall,1995).Theapparentlylow utilisationrateofcarotenoidreservesin P. gigas maybeduetodelayofdevelopmentof carotenoidoxidationandesterificationpathwaysuntilthelarvalstagesashasbeen observedin Penaeus japonicus (Petitetal.,1991).

Effect of female size on egg composition

Thecompositionof Pseudocarcinus gigas eggswasmoststableduringtheearlystagesof embryogenesis,sofurthersamplingtodeterminetheeffectoffemalesizeonegg compositionwasconductedduringthisperiod(eggdevelopmentstage2).Femalesize appearedtohaveasignificanteffectoneggcompositionwithlargerfemalesproducing eggswithmorewater,lessprotein,andlesstotalcarotenoidwhiletherewasnoeffecton totallipid.Althoughsignificant,theeffectoffemalesizeonwaterandproteincontentwas smallandcorrelationwasweak,evenwhenanalysedasmassperindividualegg(r 2=0.049; Table2).Basedontheseanalyses,theeffectoffemalesizeoneggsizereportedinGardner (1997)islikelytohavenegligibleeffectontheviabilityoflarvae.

InasimilarstudybyAttardandHudon(1987),sizeoffemalelobsters Homarus americanus wasshowntoinfluenceenergycontentofeggsanditwasspeculatedthatthiseffectwas largeenoughtoinfluencelarvalgrowthandsurvival.AttardandHudon(1987)concluded thattheeffectoffemalesizeoneggcompositionislikelytoenhancethecontributionof largerfemalestorecruitment.In Pseudocarcinus gigas ,itappearsthattheeffectoffemalesize

288 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner oneggcompositionissmallsoreproductiveoutputofdifferentsizedfemalesmaybe effectivelymodelledbyanalysisoffecundityalone.

Carotenoidcontentdeclinedwithfemalesizeandwasalsoinfluencedbycarapace condition,aqualitativemeasureoftimesincemoulting.Extremelylowlevelsofdietary carotenoidshavebeenshowntoreducesurvivalofcrustaceans( Penaeus japonicus ;Cheinand Jeng,1992)althoughin Pseudocarcinus gigas ,therewasonlyaweakcorrelationbetweenegg carotenoidcontentandfemalesize(r 2=0.17).Consequently,theeffectsonlarvalvitality maynotbeimportant.Carotenoidscannotbesynthesised de novo bycrustaceanssothediet offemalesduringgametogenesiswillinfluencecarotenoidcontentofeggs(Harrison, 1990).Levingsetal .(1996)statedthat Pseudocarcinus gigas showdepthstratificationof differentsizeandcarapaceconditionclasseswithmostfemalesfoundbetween120and270 m.Althoughallfemalesusedinthisstudywerecapturedatsimilardepth,theymayhave movedfromdifferentdepthsbeforecapture.Consequently,theobservedeffectoffemale sizeandcarapaceconditiononcarotenoidcompositionofeggsmaysimplyreflectdifferent preyitemsencountered.

Aneffectoffemalesizeoncompositionhasbeenrecordedinotherdecapodspecies including Chionoecetes opilio and Homarus americanus (AttardandHudon,1987;SainteMarie, 1993).Ithasbeenspeculatedthatthiseffectoffemalesizemaymeanthatlargerfemales havegreatercontributiontowardsrecruitmentthanwouldbepredictedbyfecundityalone. Thisclearlyhasimportantimplicationsforfisheriesmanagementof P. gigas where minimumsizelimitsselectivelytargetlargefemalesforharvest.Thisstudyshowsthat biochemicalcompositionofeggswasnotlargelyaffectedbyfemalesizeandthat managementbyminimumsizelimitmaybeappropriate.Nonetheless,analysisof biochemicalcompositiondoesnotnecessarilyprovideameasureoflarvalvitalitywhichis criticalinassessingtheeffectoffemalesizeoneggquality.Furtherresearchontheeffect offemalesizeonlarvalvitalityisneededtofullyaddresstheissue.

References

Attard,J.andHudon,C.1987.Embryonicdevelopmentandenergeticinvestmentineggproductionin relationtosizeoffemalelobster( Homarus americanus ).CanadianJournalofFisheriesandAquaticSciences44, 11571164.

289 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Chien,YH.andJeng,SC.1992.Pigmentationofkurumaprawn Penaeus japonicus Bate,byvariouspigment sourcesandlevelsandfeedingregimes.Aquaculture102,333346.

Clarke,A.1977.Lipidclassandfattyacidcompositionof Chorimus antarcticus (Pfeffer)(Crustacea:Decapoda) atSouthGeorgia.JournalofExperimentalMarineBiologyandEcology28,297314.

Clarke,A.1993.Eggsizeandcompositioninpolarshrimps(Caridea;Decapoda).JournalofExperimental MarineBiologyandEcology168,189203.

Clarke,A.,Brown,J.H.andHolmes,L.J.1990.Thebiochemicalcompositionofeggsfrom Macrobrachium rosenbergii inrelationtoembryonicdevelopment.ComparativeBiochemistryandPhysiology96B,505511.

Collart,O.O.andRabelo,H.1996.Variationineggsizeofthefreshwaterprawn Macrobrachium amazonicum (Decapoda:Palaemonidae).JournalofCrustaceanBiology16,684688.

Dall,W.1995.Carotenoidsversusretinoids(VitaminA)asessentialgrowthfactorsinpenaeid (Penaeus semisulcatus ).MarineBiology124,209213.

Dall,W.,Smith,D.M.andMoore,L.E.1995.Carotenoidsinthetigerprawn Penaeus esculentus duringovarian maturation.MarineBiology123,435441.

DersanKour,V.R.andSubramoniam,T.1992.Carotenoidmetabolismduringembryonicdevelopmentofa marinecrab, Emerita asiatica (MilneEdwards).InvertebrateReproductionandDevelopment21,99106.

DuPreez,H.H.andMcLachlan,A.1984.Biologyofthethreespotswimmingcrab, Ovalipes punctatus (De Haan).III.Reproduction,fecundityandeggdevelopment.Crustaceana47,285297.

Folch,J.,Lees,M.andBloaneStanley,G.H.1957.Purificationoftotallipidsfromanimaltissues.Journalof BiologicalChemistry266,497509.

Gardner,N.C.1996.Behaviouralbasisofdepthregulationinthefirstzoealstageofthegiantcrab (Pseudocarcinus gigas ,Brachyura,Xanthoidea,Oziidae).In‘HighLatitudeCrabs:Biology,Management,and Economics’.pp.22953.(AlaskaSeaGrantCollegeProgramReportNo.9602,UniversityofAlaska, Fairbanks).

Gardner,C.1997.Effectofsizeonreproductiveoutputofgiantcrabs Pseudocarcinus gigas (Lamarck) (Oziidae).MarineandFreshwaterResearch48,581587.

Gardner,C.andNortham,M.1997.Useofprophylactictreatmentsforlarvalrearingofgiantcrabs Pseudocarcinus gigas (Lamarck).Aquaculture158,203214.

Harrison,K.E.1990.Theroleofnutritioninmaturation,reproductionandembryonicdevelopmentof decapodcrustaceans:areview.JournalofShellfishResearch9,128.

Lardies,M.A.andWehrtmann,I.S.1996.Aspectsofthereproductivebiologyof Petrolisthes laevigatus (Guérin, 1835)(Decapoda,Anomura,Porcellanidae).PartI:Reproductiveoutputandchemicalcompositionofeggs duringembryonicdevelopment.ArchiveofFisheryandMarineResearch43,121135.

Lasker,R.1962.EfficiencyandrateofyolkutilisationbydevelopingembryosandlarvaeofthePacific sardine Sardinops caerula (Girard).JournaloftheFisheriesResearchBoardofCanada19,867875.

Levings,A.,Mitchell,B.D.,Heeren,T.,Austin,C.andMatheson,J.1996.Fisheriesbiologyofthegiantcrab (Pseudocarcinus gigas ,Brachyura,Oziidae)insouthernAustralia.In‘HighLatitudeCrabs:Biology,Management, andEconomics’.pp.12551.(AlaskaSeaGrantCollegeProgramReportNo.9602,UniversityofAlaska, Fairbanks).

Mardia,K.V.,Kent,J.T.andBibby,J.M.1979.‘MultivariateAnalysis.’(AcademicPress,N.Y.)

McEdward,L.R.andCoulter,L.K.1987.Eggvolumeandenergeticcontentarenotcorrelatedamongsibling offspringof:implicationsforlifehistorytheory.Evolution41,914917.

290 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Pandian,T.J.1970.EcophysiologicalstudiesonthedevelopingeggsandembryosoftheEuropeanlobster .MarineBiology5,154167.

Peterson,G.L.1977.AsimplificationoftheproteinassaymethodofLowryetal.whichismoregenerally applicable.AnalyticalBiochemistry83,346356.

Petit,H.,Sance,S.,NegreSadargues,G.,Castillo,R.andTrilles,J.P.1991.Ontogenyofcarotenoid metabolismintheprawn Penaeus japonicus Bate(1888)(Crustacea:Penaeidea).Aqualitativeapproach. ComparativeBiochemistryandPhysiology99B,667671.

Pillai,C.K.andSubramoniam,T.1985.Yolkutilisationasanadaptivestrategyofterrestialisationinthe freshwatercrab Paratelphusa hydrodromous (Herbst).PhysiologicalZoology58,445457.

Rao,N.C.H.,Ponnuchamy,C.,Shakuntala,K.andReddy,S.R.1981.Fecundityandenergeticsofembryonic metabolismof Caridina weberi (deMann)(Decapoda:Atydae).InternationalJournalofInvertebrate Reproduction3,7585.

SainteMarie,B.1993.Reproductivecycleandfecundityofprimiparousandmultiparousfemalesnowcrab, Chionoecetes opilio ,intheNorthwestGulfofSaintLawrence.CanadianJournalofFisheriesandAquatic Sciences50,21472156.

Sokal,R.R.andRohlf,F.J.1981.‘Biometry.2nded.’(W.H.Freeman,NewYork,N.Y.)

Subramoniam,T.1991.Yolkutilisationandesteraseactivityinthemolecrab Emerita asiatica (Milne Edwards).In‘CrustaceanEggProduction’.(EdsA.WennerandA.Kuris.)pp.1929.(A.A.Balkema: Rotterdam.)

ThessalouLegaki,M.1992.Reproductivevariabilityof Parapandalus narval (Crustacea:Decapoda)alonga depthgradient.Estuarine,CoastalandShelfScience35,593603.

Wild,P.W.1983.Theinfluenceofseawatertemperatureonspawning,eggdevelopment,andhatching successoftheDungenesscrab, Cancer magister .In‘LifeHistory,Environment,andMaricultureStudiesofthe DungenessCrab, Cancer magister ,withEmphasisontheCentralCaliforniaFisheryResource’.(EdsP.Wild andR.Tasto .). StateofCaliforniaDepartmentofFishandGame,FishBulletin172,197213.

291 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

General Discussion: Reproductive Biology of the Giant Crab Pseudocarcinusgigas

18

Researchconductedonthereproductivebiologyofthegiantcrabwasprimarily intendedtoprovidefundamentalinformationforfisheriesmanagement.Foreffective fisheriesmanagement,informationisrequiredongrowth,behaviour(selectivity),and populationstructureanddetailedinformationonallthesefactorsisnotavailable. Nonetheless,informationonthereproductivebiologyprovidesaguideforbasic fisheriesmanagementtoolssuchasseasonalrestrictionsandsizelimits.

Harvestofmales

Despiteresearchonmorphologicalandphysiologicalmaturityofmalegiantcrabs,the availabledatadonotclearlyindicatethesizeoffunctionalmaturity(Chapter14).The currentminimumsizelimitdoesnotprotectmorphologicallyadolescentormature malecrabsalthoughtherelationshipbetweenthesemorphologicalgroupingsand functionalmaturityisnotknown.Giventhatexploitationrateappearstobehigh,and thatmalesappeartospendatleast2yearsbetweenmoults(Pers.Comm.,R. McGarvey,SouthAustralianResearchandDevelopmentInstitute),itisprobablethat

292 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner veryfewmaleswilllivethroughmorphologicaladolescencetoreachmorphological maturity.Ifmorphologicallyadolescentcrabsarenotfunctionallymature,sperm limitationwouldseeminevitable.

Furtherresearchontheonsetoffunctionalmaturityisimportantbutisconstrainedby logisticdifficultiesinworkingwiththeserelativelydeepwatercrabs(asdiscussedin Chapter14).Atechniquedevelopedforrecordingmatingofintertidalxanthoidcrabs maybesuitable.Thisinvolvesimmobilisingcrabs(Chapter11)andattachingatrigger acrosstheabdomentodetermineifrecapturedmaleshaveliftedtheirabdomen,and thusmayhavemated(Pers.Comm.,P.Jivoff,SmithsonianMarineStation,Florida; Fig.1).Malecrabsarebeingfittedwiththesetriggersinongoingresearchbutuntil databecomeavailableonfunctionalmaturity,managementmustbeconservativeand shouldaimtoprotectaportionofmorphologicallyadultmales.Thiscouldbe achievedwithaconservativequota(TAC)orbyimplementingamaximumsizelimitso thataproportionofcrabscouldmoultdirectlyfrombelowtheminimumsizelimitto abovethemaximumsizelimit.

Figure 1. Male giant crab with trigger attached to the abdomen to detect if the abdomen has been lifted since the crab was released. The trigger is mono-filament nylon and is glued to the sternum. It runs backwards to the abdomen and through a tube so that the abdomen can be lifted freely, but the nylon will slip from the tube.

293 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

FemalegiantcrabsareharvestedinTasmania(Chapter10)sothesexratioislesslikely tobebiasedbyfishingthaninamaleonlyfishery,althoughmalegiantcrabsmaybe harvestedpreferentially.Malesgrowlargerthanfemalessolessprotectionisoffered bytheminimumlegalsize,andrestrictionsonthetakingofovigerousfemalesprevent harvestoffemalesduring2or3monthsoftheopenseason.Whileitwouldbeuseful tomonitorchangesinsexratiowithinthepopulationbymarketmeasuringorbyfield sampling,itisadifficultgoalascrabsarenotdistributedrandomly.Giantcrabsappear toliveatdifferentdepthsdependingonsexandsize(Levingsetal.,1996)and commercialfishersaimtocatchthesmallersizedcrabswhicharefavouredby exporters.Fisheriesindependentsurveysconductedatfixedstationsareanoptionfor obtainingmorereliabledataonchangesinsexratio.

Incrabfisherieswhereharvestoffemalesisprohibited,researchonthedevelopment ofmaleshastakenprioritywiththeaimoflimitingexploitationtosexuallymature males(Hankinetal.,1996).Evenwithgoodinformationonthesizeofmalesin matingpairs,andthusfunctionalmaturity,thereisconcernaboutthepotentialfor spermlimitationinseveralcrabfisheries.Importantaspectsinconsideringthe potentialforspermlimitationare:

294 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

¤ maleonlyfisheriesinevitablybiastheoperationalsexratio(SmithandJamieson, 1991); ¤ themaleisalwayslargerthanthefemaleinmatingpairsofmanyspecies(e.g. Cancer magister ),sofertilityoflargefemaleswillbeaffectedbyintenseexploitation oflargermales 10 (SmithandJamieson,1991); ¤ largeinterannualfluctuationsinrecruitmentmaylowertheoperationalsexratio, duetosize/agedimorphismbetweenthesexes(i.e.malesneedtobeolderthan femalestomate 1)(SainteMarieandSevigny,1997); ¤ thenumberoffemalesthatamalecanmatewithisrestrictedbypreandpost copulatorymateguardingbehaviourandtheseasonalwindowofmoultingby females(wherematingiswithsoftshelledfemales)(ArmstrongandJamieson, 1997);and ¤ theweightofejaculatedeliveredtofemalesisdirectlyproportionaltothe operationalsexratio,soejaculatereservesdonotrecoverrapidlybetween copulations.Thissubsequentlyresultsinloweredfertilisationrate(in Chionoecetes opilio ;SainteMarieandSevigny,1997).

Severaloftheseissuesarerelevanttogiantcrab.Despitethelackofdirectinformation onthematingsystemof P. gigas ,indirectevidencefromtheanatomyofthevagina, matingscars,andtaxonomicaffinities( Menippe spp.)indicatesthatmatingprobably occurswhilethefemaleissoftshelled(Chapter15).Specieswhichmatewhilethe femaleissoftshelledtypicallyhaveprotactedpreandpostcopulatorymateguarding (Hartnoll,1969;Wilber,1989)whichlowerstheoperationalsexratioandraisestherisk ofspermlimitation.Itisalsolikelythatmalesneedtobelargerthanfemalesfor matingtobesuccessfulasindicatedbytheirhabitat(opentype),dimorphismofthe chelae,largedifferencesinbodysizebetweensexes,greaterlimblossinmales(indirect evidenceofmalerivalry),andtaxonomicaffinity(Menippe spp.)(Christy,1987;Wilber, 1992;Orensanzetal.,1995).Aswith Cancer magister ,thissuggeststhatspermlimitation

10 Ifgrowthrateofbothsexesissimilaruntilsexualmaturity(typicalforcrabs),andifmalesneedtobe largerthantheirfemalepartner,thenmostmalesinvolvedinmatingwillbeolderthanfemales. Consequently,theywillhavebeensubjecttoanadditionalperiodofnaturalmortalityandthesexratio willbeskewedtowardsfemales(ArmstrongandJamieson,1997).

295 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner maybeaproblemforlarger P. gigas femalesifthereisintenseexploitationofmales (SmithandJamieson,1991 11 ).

Iffemalegiantcrabscanonlymatewhensoftshelled,thenmatingmayoccuronly every4yearsormore,aspreliminaryanalysisofrecaptureinformationfromSouth Australiaindicatesthatthisisatypicalintermoultperiod(Pers.Comm.,R.McGarvey, SouthAustralianResearchandDevelopmentInstitute).Althoughfemaleswereableto storespermforatleast4years,andproducebroodswithviableeggs(Chapter14),the fecundityofheavilyfouled,presumablylateintermoult,femaleswaslowerthanclean shelledfemales.Ifthisreducedfecunditywasduetodepletionofspermreserves,then fecundityoflateintermoultfemaleswouldbemoreseverelyreducedwheretheamount ofspermdeliveredwasreduced.Thishasbeenreportedinotherspecieswherethe abundanceoffunctionalmaleshasbeenreduced(Jivoff,1997;SainteMarieetal., 1997).Ifmalesneedtobeofadifferentagetofemales,naturalvariationin recruitmentwillalterthesexratioandmaycompoundtheeffectoffishingmortality.

Managingvariationinrecruitment

Classificationofthelifehistorystrategiesofmarineorganismsas ror Kselected providedausefulguideofthepotentialofspeciestoincreaseinpopulation(Pianka, 1970).However,thissimplecontinuumwaslimitedandfailedtodescribesome strategies,soatriangularcontinuumwasproposedbyWinemillerandRose(1992)with threeendpointsofopportunisticperiodicequilibriumtypestrategies.Aswithmost crabs,clawedlobstersandspinylobsters, Pseudocarcinus gigas maybeconsidereda periodicstrategistsinceitislarge,highlyfecundandlonglived.Periodicstrategistsare typifiedbyfluctuatingrecruitment(WinemillerandRose,1992).

Cobbetal.(1997)consideredthat Cancer speciesarelikelytohaverecruitment variabilityequaltoorgreaterthanthatofspinylobsters,basedontheirrelative fecundityandlarvalduration.Thisislikelytoapplyto P. gigas alsoasthelifehistory

11 NotethatHankinetal.(1996)considerthatthereisnofieldevidenceinsupportoftheconclusions drawnbySmithandJamieson(1991).

296 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner strategyissimilartothatof Cancer specieswithsimilarfecundity(Hines,1991;Bennett, 1995)andlarvalduration(SulkinandMcKeen,1994;Bennett,1995).Recruitment variationofspinylobsters Jasus edwardsii inTasmaniacanvaryinterannuallybyafactor of5(Gardneretal.,1998)sosimilarorgreatervariationmayoccurin P. gigas .

Thepotentialforlargeinterannualvariationinrecruitmentsuggestedbythefecundity andlarvaldurationof P. gigas maybecompoundedbycannibalismasfragmentsof giantcrabexoskeletonhavebeenfoundinthestomachsofgiantcrabs(Heerenand Mitchell,1997).Althoughtheseshellfragmentsmayhavebeenfromexuviaerather thanliveanimals,cannibalismhasbeenreportedinothercrabsanditisquitepossible in P. gigas (Hinesetal.,1987;Smith,1995;BotsfordandHobbs,1995).Cannibalismin crabpopulationsisimportanttofisheriesmanagementasitcancompoundfluctuation inrecruitmentbycannibalismofsmallercrabsbycohortsfromhighrecruitmentyears. SeveralauthorshaveconsideredthattheinherentfluctuationsinCanadiansnowcrab Chionoecetes opilio andDungenesscrab Cancer magister fisheriesmaybeduetocannibalism (ComeauandConan,1992;SainteMarieetal.,1995,1996;BotsfordandHobbs,1995; LovrichandSainteMarie,1997).

Largefluctuationsinrecruitmentisproblematicfortraditionalsinglespeciesfisheries managementasitbecomesdifficulttointerpretthecauseofdeclinesincatchandcatch rates(isitaneffectofcyclicallowrecruitmentorintensiveexploitation?),andit removeseconomicstabilityforparticipantsinthefishery.Understandingthese patternswillonlybecomepossibleinthe P. gigas fisherybythedevelopmentofpre recruitindices(suchasfisheryindependentsurveysofsublegalcrabs)combinedwith longtermmonitoringofatleasttenyears(Thresher,1997).Managersmustconsider thattheexploitablebiomasswillfluctuatebetweenyearssothatfishingmortalitywill increasewhenarecruitmenttroughentersthefishery,anddeclinewhenarecruitment pulseentersthefishery.Thisisespeciallydifficulttomanageinmajidcrabsasthey oftenreachlegalsizeattheterminalmoult.Inperiodsofhighrecruitment,crabswill growolderwithassociatedincreaseinexoskeletonwearandadeclineinvalue(Sainte Marieetal.,1996).

Giantcrabsdonotappeartohaveaterminalmoultandtheirbeachpriceisnot affectedbyexoskeletoncondition,sounlikemajidcrabs,itshouldbepossibleto “bank”giantcrabsduringperiodsofhighrecruitmentintothefishery.Thatis,periods

297 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner ofhighrecruitmentcanbeexploitedoverseveralyearstobridgethegaptothenext periodofhighrecruitment.Managementdecisionswhichaimtodampenvariationin recruitmentwillbeenhancedbytheabilitytoforecastabundancetrendsseveralyears inadvanceashasbeenachievedwithsnowcrab Chionoecetes opilio ineasternCanada (SainteMarie,1997).Intheabsenceofthisinformation,restrictionsoneffortsuchas totalallowablecatches(TAC’s)shouldbesetconservativelytopermit“banking”of crabsfromhighrecruitmentyears.Thisassumesthatpopulationcyclingwillcontinue atregulardurationandthatfishingmortalitydoesnotdestabilisecycles. Destabilisationofrecruitmentcyclesthroughexploitationhasbeenpredictedin Cancer magister (Botsford,1995)andisconceivablypossiblein P. gigas aseggproductionis reduced.

Eggproduction

Informationoneggproductionisessentialforformulatingfisheriesmanagementtools, suchasminimumlegalsize,andinmodellingtheeffectofmanagementstrategieson eggproduction.Simplestaticmodelssuchaseggperrecruitanalysesincorporate fecundity,growth,andnaturalmortalitytoestimatesuitablesizelimitstoprotectegg productionaboveacertainproportionofthevirginstock.Thisproportionisusually setarbitrarilyat20%to30% 12 ,althoughsomespeciesareresilienttofarhigher exploitation(e.g.90%inSpanishfisheriesfor ; Freireetal.,1997)while othercrabfisherieshavehighlyconservativemanagementwhichaimstoprotect100% ofeggproductionbyrestrictinglandingstomalecrabs(egintheCalifornianfisheryfor Cancer magister ,Hankinetal.,1989).

12 Theselimitsaregenerally“pluckedouttheair”asprecisestockrecruitmentrelationships(SRR)are extremelyvariablebetweenspeciesandaccuratevaluescanonlybeobtainedthroughcollapseofthe fishery.ModelingtheSRRisgenerallydifficultandhaslowprecision.Forinstance,Maceand Sissenwine(1994)conductedanextensivereviewoftheSRRof90speciesandstocksandconcluded thatspeciessuchascodwouldberesilienttorecruitmentoverfishing.Unfortunately,theirtimingwas extremelybadascodstockscollapsedalmostimmediatelyafterthisworkwaspublished.Verylittleis knownaboutthelimitsofrecruitmentoverfishingincrabstocks.TheHawaiianspannercrabfishery collapsedbutnoprecisedatawascollected(seediscussionsin“WorkshoponStockRecruitment RelationshipsinAustralianCrustaceanFisheries”).

298 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Femalegiantcrabsareharvestedcommerciallysotheeggproductionoffished populationswillbeaffected.Aninterimsizelimitof150mmcarapacelengthwas introducedbyTasmanianfisheriesmanagementin1994andthiswasintendedto protectapproximately60%ofvirgineggproductioninNorthWesternTasmaniaand WesternVictoria.Thisminimumsizelimitwasbasedonananalysiscombiningthe proportionoffemalesmatureateachsizeinterval(mm),therelationshipbetween femalesizeandeggmassweight,andalengthfrequencydistributionoffemalecrabs obtainedduringmonthswhenfemaleswereovigerous.

Asaninterimrestrictiononfishingeffort,theimplementationofasizelimitprovided aneffectiveinputcontrolofeffortuntilmoredatabecameavailable.However,there wereflawswiththeoriginalanalysis.Firstly,therewasnomeasureofgearselectivity sotheanalysisassumedthatthenaturalpopulationdistributionwasequivalenttothe distributionofcatchtakenbytrapping.Trappinginevitablybiasespopulationsurveys againstsmalleranimals(MyersandHoenig,1997).Estimatesofpopulationstructure werealsobiasedbysamplingwhenfemaleswereovigerous,whichaffectstheir catchability(Edwards,1978;Howard,1982;Levingsetal.,1996;Schultzetal.,1996). Itislikelythatthisbiaswouldalsohaveaffectedestimatesoftheonsetofsexual maturity.

Toemphasisetheproblemswithseasonalbiasinpopulationsurveysofgiantcrabs,the analysisofeggproductionwasrepeatedusingdatacollectedinAutumn1998,whichis beforefemalesbecomeovigerous(Fig.2).Thisanalysisindicatesthatthecurrentsize limitdoeslittletoprotecteggproductionwithonlyaround10%ofeggproduction affected.However,thereareproblemswiththisanalysisasthereisnomeasureof onsetofmaturity(itassumesallfemalesaremature),thepopulationhadbeenfished priortothepopulationsurvey(solargefemaleswillbeunderrepresented,relativeto virginstocks),andnotallfemalesproduceeggseveryyear(especiallywhentheyare small).Allthesefactorscausetheanalysistooverestimatetheeggproductionby femalesunderthesizelimit(thatis,eggproductionoffemaleslessthan150mmis probablylessthanthe10%shown).Also,theeffectofgearselectivityhasnotbeen incorporatedandthisiscriticalforestimatingtruepopulationdistribution.

299 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 2. Estimation of the proportion of egg production that would be protected by the minimum size limits shown on the horizontal axis. This analysis combines catch data from Tasmanian Department of Primary Industry and Fisheries research sampling (1998; n=659) with a simple fecundity model (Gardner, 1997). The resulting plot is an estimate of the cumulative contribution of different sized females to the egg production of the population. This analysis indicates that around 10% of egg production is protected by the current minimum size limit of 150 mm, and that the minimum size limit would need to be around 159 mm to protect around 30%.

100 90 80 70 60 50 40 30 20 % Egg Production Egg % 10 0 127 131 135 137 139 141 143 145 147 149 151 153 155 157 159 161 163 165 167 169 171 173 175 177 179 181 183 185 187 189 191 193 195 198 200 203 207 215 219 221 226 Female Size (carapace length, mm)

Twopathscanbetakentoobtainusefulandmeaningfulminimumsizelimitsforthe Tasmanianfishery.First,onsetofmaturityandgearselectivityeffectscouldbe estimatedtoimprovetheanalysisshowninFigure2.Onsetofsexualmaturityshould beassessedbyovariandevelopmenttopreventbiasfromreducedcatchabilityof ovigerouscrabs(e.g.byCTimaging,Chapter12).Gearselectivitycouldbeestimated byanalysisoftheeffectofsizeonrecaptureratesoftaggedanimals(providedthereis onlyashortperiodbetweensamplesof1or2weeks)(MyersandHoenig,1997). Alternatively,minimumsizelimitscouldbeformulatedbyaneggperrecruitanalysis althoughthisrequiresprecisegrowthinformation.Alargescaletaggingprojectis underwaytoobtaingrowthdatabutthisisunlikelytoprovideenoughdataforabasic growthmodelforseveralyearsduetolowrecapturerates,longintermoultperiods,and thenarrowsizerangeavailablefortagging.

Eithermethodrequiresfecundityinformationasaninputandthisinformationis presentedinChapter16.Themodelspresentedappeartobeapplicableforall Tasmanianwatersastherewasnoeffectofsite,althoughestimatesofeggproduction ofthepopulationwouldbeenhancedbyrecordingtheextentoffoulingonfemales sampledinpopulationsurveys(ascarapacecondition).AttardandHudon(1987) demonstratedthatthecontributionoffemaleAmericanlobsters Homarus americanus towardsrecruitmentcouldnotbemeasuredbyfecundityalone,aseggqualitywas

300 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner affectedbyfemalesize.Modelingtheeffectofsizelimitsongiantcrabeggproduction ismorestraightforwardasthecompositionofeggswasnotaffectedbyfemalesizein thisspecies(Chapter17).

References

Armstrong,D.andJamieson,G.1997.EvidenceforfisheryinducedspermlimitationinDungeness crab, Cancer magister .Abstracts,ICESInternationalSymposium–RecruitmentDynamicsofExploited MarinePopulations:PhysicalBiologicalInteractions,Baltimore,USA,September,1997.pp6263.

Attard,J.andHudon,C.1987.Embryonicdevelopmentandenergeticinvestmentineggproductionin relationtosizeoffemalelobster( Homarus americanus ).CanadianJournalofFisheriesandAquatic Sciences,44:11571164.

Bennett,D.B.1995.Factorsinthelifehistoryoftheediblecrab( Cancer pagurus L.)thatinfluence modellingandmanagement.InternationalCouncilfortheExplorationoftheSeaMarineScience Symposia,199:8998.

Botsford,L.W.1995.Populationdynamicsofspatiallydistributed,meroplanktonic,exploitedmarine invertebrates.InternationalCouncilfortheExplorationoftheSeaMarineScienceSymposia,199:157 166.

Botsford,L.W.andHobbs,R.C.1995.Recentadvancesintheunderstandingofcyclicbehaviourof Dungenesscrab( Cancer magister )populations.InternationalCouncilfortheExplorationoftheSeaMarine ScienceSymposia,199:157166.

Christy,J.H.1987.Competitivemating,matechoiceandmatingassociationsofbrachyurancrabs. BulletinofMarineScience,41:177191.

Cobb,J.S.,Booth,J.D.andClancy,M.1997.Recruitmentstrategiesinlobstersandcrabs:acomparison. MarineandFreshwaterResearch,48:797806.

Comeau,M.andConan,G.Y.1992.Morphometryandgonadmaturityofmalesnowcrab, Chionoecetes opilio .CanadianJournalofFisheriesandAquaticSciences,49:24602468.

Edwards,E.,1978.TheEdibleCrabanditsFisheryinBritishWaters.FishingNewsBooks,Farnham, England.142pp.

Freire,J.,Fernández,L.andGonzálezGurriarán,E.1997.Interactionsofthefisheryofthespidercrab Maja squinado withmating,reproductivebiologyandmigrations.Abstracts,ICESInternational Symposium–RecruitmentDynamicsofExploitedMarinePopulations:PhysicalBiologicalInteractions, Baltimore,USA,September,1997.p67.

Gardner,C.1997.Effectofsizeonreproductiveoutputofgiantcrabs Pseudocarcinus gigas (Lamarck): Oziidae.MarineandFreshwaterResearch,48:581587.

Gardner,C.,Cawthorn,A.,Gibson,I.,Frusher,S.,Kennedy,R.B.andPearn,R.M.1998.Reviewofthe SouthernRockLobster Jasus edwardsii PuerulusMonitoringProgram:19911997.TasmanianDepartment ofPrimaryIndustryandFisheriesTechnicalReport,52.40pp.

301 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Hankin,D.G.,Diamond,N.,Mohr,M.S.andIanelli,J.1989.Growthandreproductivedynamicsof adultfemaleDungenesscrabs( Cancer magister )innorthernCalifornia.JournalduConseilInternational pourl’ExplorationdelaMer46,94108.

Hankin,D.G.,Butler,T.H.,Wild,P.W.andXue,Q.L.1996.Doesintensemaleharvestlimitegg productionofprotectedfemalestocksofDungenesscrabs?HighLatitudeCrabs:Biology,Management, andEconomics.AlaskaSeaGrantCollegeProgramReportNo.9602,UniversityofAlaskaFairbanks, 507510.

Hartnoll,R.G.1969.MatingintheBrachyura.Crustaceana,16:161181.

Heeren,T.andMitchell,B.D.1997.Morphologyofthemouthparts,gastricmillanddigestivetractof thegiantcrab, Pseudocarcinus gigas (MilneEdwards)(Decapoda:Oziidae).MarineandFreshwater Research,48:718.

Hines,A.H.,Lipcius,R.N.andHaddon,A.M.1987.Populationdynamicsandhabitatpartitioningby size,sex,andmoultstageofbluecrabs Callinectes sapidus inasubestuaryofcentralChesapeakeBay.Mar. Ecol.Prog.Ser.,36:5564.

Hines,A.H.1991.Fecundityandreproductiveoutputinninespeciesof Cancer crabs(Crustacea, Brachyura,Cancridae).CanadianJournalofFisheriesandAquaticSciences,48:265275.

Howard,A.E.1982.Thedistributionandbehaviourofovigerousediblecrabs( Cancer pagurus ),and consequentsamplingbias.JournalduConseilInternationalpourl’ExplorationdelaMer40:259261.

Jivoff,P.,1997.Therelativerolesofpredationandspermcompetitiononthedurationofthepost copulatoryassociationbetweenthesexesinthebluecrab, Callinectes sapidus .BehaviouralandEcological Sociobiology,40:175185.

Levings,A.,Mitchell,B.D.,Heeren,T.,Austin,C.andMatheson,J.1996.Fisheriesbiologyofthegiant crab( Pseudocarcinus gigas ,Brachyura,Oziidae)insouthernAustralia.HighLatitudeCrabs:Biology, Management,andEconomics.AlaskaSeaGrantCollegeProgramReportNo.9602,Universityof AlaskaFairbanks,125151.

Lovrich,G.A.andSainteMarie,B.1997.Cannibalisminthesnowcrab, Chionoecetes opilio (O.Fabricius) (Brachyura:Majidae),anditspotentialimportancetorecruitment.JournalofExperimentalMarine BiologyandEcology,211:225245.

Mace,P.andSissenwine,M.P.1994.Howmuchspawningperrecruitisenough?In:Riskevaluation andbiologicalreferencepointsforfisheriesmanagement.(Eds.S.J.Smith,J.J.HuntandD.Rivard. SpecialPublicationCanadianJournalofFisheriesandAquaticScience,120:101118.

Myers,R.A.andHoenig,J.M.1997.Directestimatesofgearselectivityfrommultipletagging experiments.CanadianJournalofFisheriesandAquaticSciences,54:19.

Orensanz,J.M.,Parma,A.M.,Armstrong,D.A.,Armstrong,J.andWardrup,P.1995.Thebreeding ecologyof Cancer gracilis (Crustacea:Decapoda:Cancridae)andthematingsystemsofcancridcrabs. JournalofZoology,London,235:411437. Pianka,E.R.,1970.OnrandKselection.TheAmericanNaturalist,104:592597.

SainteMarie,B.,1997.Animprovedlinkbetweenindustry,managementandscience:reviewofcase historyofthesouthwesternGulfofStLawrencesnowcrabfishery.CanadianJournalofFisheriesand AquaticSciences,54:496500.

SainteMarie,B.,Sevigny,J.M.1997.Evidenceforspermlimitationinthesnowcrab (Chionoecetes opilio). Abstracts,ICESInternationalSymposium–RecruitmentDynamicsofExploitedMarinePopulations: PhysicalBiologicalInteractions,Baltimore,USA,September,1997.p61.

302 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

SainteMarie,B.,Raymond,S.andBrêthes,J.C.1995.Growthandmaturationofthebenthicstagesof malesnowcrab, Chionoecetes opilio (Brachyura:Majidae).CanadianJournalofFisheriesandAquatic Sciences,52:903924.

SainteMarie,B.,Sevigny,J.M.,Smith,B.D.andLovrich,G.A.1996.Recruitmentvariabilityinsnow crab, Chionoecetes opilio:pattern,possiblecauses,andimplicationsforfisheriesmanagement.HighLatitude Crabs:Biology,Management,andEconomics.AlaskaSeaGrantCollegeProgramReportNo.9602, UniversityofAlaskaFairbanks,451478.

SainteMarie,B.,Sevigny,J.M.andGauthier,Y.1997.Laboratorybehaviourofadolescentandadult malesofthesnowcrab( Chionoecetes opilio )(Brachyura:Majidae)matednoncompetitivelyandcompetitively withprimiparousfemales.CanadianJournalofFisheriesandAquaticSciences,54:239248.

Schultz,D.A.,Shirley,T.C.,O’Clair,C.E.andTaggart,S.J.1996.Activityandfeedingofovigerous DungenessCrabsinGlacierBay,Alaska.HighLatitudeCrabs:Biology,Management,andEconomics. AlaskaSeaGrantCollegeProgramReportNo.9602,UniversityofAlaskaFairbanks,411424.

Smith,L.D.1995.Effectsoflimbautotomyonjuvenilebluecrabsurvivalfromcannibalism.Marine EcologyProgressSeries,116:6574.

Smith,B.D.andJamieson,G.S.1991.Possibleconsequencesofintensivefishingformalesonthe matingopportunitiesforDungenesscrabs.TransactionsoftheAmericanFisheriesSociety,120:650653.

Sulkin,S.D.andMcKeen,G.1994.Influenceoftemperatureonlarvaldevelopmentoffourco occurringspeciesoftheBrachyurangenus Cancer .MarineBiology,118:593600.

Thresher,R.E.1997.Evidenceofglobalscaleclimateforcingofquasidecadalrecruitmentcyclesin marineandterrestrialpopulations,withcommentsonlikelyforcingmechanisms.Abstracts,ICES InternationalSymposium–RecruitmentDynamicsofExploitedMarinePopulations:PhysicalBiological Interactions,Baltimore,USA,September,1997.

Wilber,D.H.1989.Reproductivebiologyanddistributionofstonecrabs(Xanthidae, Menippe )inthe hybridzoneonthenortheasternGulfofMexico.MarineEcologyProgressSeries,52:235244.

Wilber,D.H.1992.Observationsonthedistributionandmatingpatternsofadultstonecrabs(Genus Menippe)onthenortherngulfcoastofFlorida.ProceedingsofaSymposiumonStoneCrab(Genus Menippe )BiologyandFisheries,FloridaMarineResearchPublications,50:1016.

Winemiller,K.O.andRose,K.A.1992.PatternsoflifehistorydiversificationinNorthAmericanfishes: implicationsforpopulationregulation.CanadianJournalofFisheriesandAquaticSciences,49:2196 2218.

WorkshoponStockRecruitmentRelationshipsinAustralianCrustaceanFisheries,Proceedings,1994. (Eds.A.J.CourtneyandM.G.Cosgrove).Joondoburri,QueenslandDepartmentofPrimaryIndustries andFisheries,Brisbane.3840.

303 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Appendix 1

Description of Pseudocarcinus gigas by McCoy (1889)

McCoy,F.,1889.AProdromusoftheNaturalHistoryofVictoria(Zoology).p293.

[Zoology.] NATURALHISTORYOFVICTORIA. [Crustacea.

PLATES 179 AND 180.

PSEUDOCARCINUSGIGAS(LAM . SP .).

THE GREAT RED KING CRAB .

[Genus PSEUDOCARCINUS (M ILNE EDWARDS ). (Subkingdom Articulata. Class Crustacea. Section Podophthalmata. OrderDecapoda.TribeBrachyura.FamilyCanceridae.)

Gen. Char.-Carapacegentlyarchedinfronthalf,narrowedandtruncatedbehind;widerthanlong,moderatelydepressed,the variousregionsandsubregionselevatedandembossed;frontnearlyhorizontal,lateralanteriormarginsmoderatelycurved,armed withprojectionsorteeth;posteriorlateralmarginsstraight,converging;hindmarginnarrow,straight;basaljointoftheexternal antennaeverysmall;secondjointscarcelyreachingthefront; thirdjointlodgedintheorbitalhiatus,butnotfillingit,sothatthe antennaryfossaisnotcompletelyseparatedfromthe orbit;prelabialspacenotchannelled;firstpairoflegs,especiallyinthemale, formingverylargepincers,thefingersofwhichareequallyroundedandobtusetothe tip,unequal,andarmedwithverylarge, bluntly rounded tubercles, fewer and of greater size on the right claw,* which greatly exceeds the left in size. Hinder feet moderatelylong,simplypointed;abdomenofthemaleandfemaledividedintosevendistinctsegments.IndianOcean.]

DESCRIPTION .Carapaceslightlyconvex,anteriorhalftumid,posteriorhalfmoreflattened,andbentdownwards atanangleofabout145 °fromtheanteriorhalf;theprotogastric,epibranchial,andmetagastricregionstumidand boundedbybroaddeepfurrows;thecardiacregionisboundedbytwofurrowsdeeperandmoreangularthanthe rest,extendingnearlytothehindmargin;uppersurfacesmoothasfarastheposteriormarginofepibranchialand metagastric regions, behind which the surfaces of the cardiac and mesobranchial and metabranchial regions are rough with scattered conical tubercles of very irregular size. Front between the orbits forming four projecting lobes,betweenwhichthemiddlesinusissmallerthantheothertwo;posteriorsuperiorexternalmarginofeach orbitincisedbytwodeepparallelfissures;firstjointofouterantennoeverysmall;secondjointreachingloweredge oforbit;fourth,halfthelengthofthirdjointandreachingedgeoffront;flagellumlittlelargerthananteriorlateral portion of the carapace, with about eleven irregular, conical tubercles and divided into four lobes by small indentationsonuppersurface,butlongnarrowslitsbelow,eachlobewithtwoorthreeofthespines.Anteriorlegs 304 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

✝ or chelae very large, the right much larger than the left ; movable finger (dactylopodite) rounded, moderately compressed, abruptly incurved at the obtuse tip; a little shorter than the fixed finger, with three elongate large, slightlycompressedteethonthebasalhalfoftheinnermargin,theanteriorsmallest,posteriorlargest,averyslight angularprojectionataboutonefourththelengthfromthetip;fixedfingerslightlylongerthanthemovableone,a littlebroaderandmorecompressed,butsimilarlyabruptlyincurvedatthebluntapex;innermarginwiththreevery large,roundedtuberclesonbasalhalf,themiddleonelargestandaslightcompressedoneaboutonethirdfromthe tip; hand (propodite) very broad rounded externally, moderately convex on inner and outer sides; carpus (carpopodite)withtwostrongspinesonupperinnermargin,whichhasalsothreeorfourslightblunttuberclesnear itsbase;nextjoint(meropodite)trigonal,withtheuppersharp,angularmarginwithanirregularrowofnineorten blunttubercles;fourposteriorpairsoflegs,withtheterminaljoints

*Reversedinourplate. ✝Reversedinthelithographingofourplate.

[293]

305 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Zoology .]NATURALHISTORYOFVICTORIA . [Crustacea.

(dactylopodites) simply pointed, villous; the next two joints (propodites and carpodites) also villous, the pile forming a close covering on upper margin, but forming a netting to bare spaces on the sides; next joints (meropodites,ischiopodites,basipodites,andcoxapodites)nearlynaked,butwitharow offivetosevenirregular, conicaltuberclesonupperangle,andwithonesmallertubercleatmiddleofupperdistalmargin,withafewminute tuberclesoneachsideofmeropodites. Colour :Alltheundersideofbody,threebasaljointsofchelae,andunderside, outerside,andmostofinnersideofchelae,includingbaseofpincers,andfourhindlegs,yellowishcreamcolour; upper surface of carapace scarlet; upper surface of carpus scarlet, mottled on the sides, with the ground cream colour;upperportionandvariableportionofsidesofhandmottledscarlet,andthegroundcreamcolour;velvety, close,pilosecoveringoflastjoint,andupperedgeofthepenultimateandantepenultimatejointsandthenetted patternontheirsidesformedbyvillouslinesonthefourposteriorpairsoflegs,ofrich darkbrown.Twofingersof chelaerichpurplishblack. Measurements of Male: Widthofcarapace,11ins.6lines;lengthfromfronttoposterior edge,9ins;greatestdepth,5ins.;lengthofabdomen,1in.8lines;greatestwidthatthirdsegment,9lines;lengthof basal joint (coxa or coxapodite) of chelae, 1 in.; second joint (or basipodite), 7 lines; third joint (ischium or ischiopodite),2ins.;fourthjoint(merusormeropodite)4ins.6linesfifthjoint,carpus(carpodite),3ins.9lines long,3ins.7lineswideatdistalend;sixthjoint(propodosorpropodite),1ft.3ins.frombasetotipoffixedfinger, 5ins.6linestobaseofmovablefinger,5ins.4lineswideatdistalendand3ins.thick;seventhjointormovable finger(dactylopodite),10ins.;widthatbase,2ins.3lines;terminaljoint(dactylopodite)offirstpairoflegs,2ins.9 lines; penultimate joint (propodite), 2 ins. 6 lines; antepenultimate. (carpodite), 2 ins. 3 lines ; preceding joint (meropodite),4ins.6lines;nextjoint(ischiopodite),1in.;basaljoint(coxapodite),1in. Female: Muchsmallerthan male, and with all the regions of the carapace set withirregularlysizedandspacedconicaltuberclesabouttheir middles,theboundariesofeachregionandsubregionbeingsmooth.Anteriorchelaeverymuchsmallerthaninthe male,andmorenearlyequaltoeachother,andthefingersofthepincersmuchshorterandtuberculatedfrombase nearlytoapex.Inadditiontothespinesonthecarpusandotherportionsofthelegs;asinthemale,thehandhas threeorfourlargeconicalspinesnearbaseofupperroundedmargin,andanirregularlyscatteredandsizedseriesof smallerconicaltuberclesthencetobaseofmovablefinger(dactylopodite).Aboutfivelargeblunttuberclesoninner edgeofmovablefinger,extendingfrombasenearlytothetip,andfourratherlargeroncorrespondingintervalsof fixedfingeronrighthand.Onleft,orsmaller,chelae thefixedfingerismuchmorecompressedoninneredge,and thefourorfivetuberclesstillmorecompressedandlessprominentthanontheright.Inneredgeoffixedfinger muchmorecompressedandwithproportionatelymuchsmaller,morecompressed,andlessprominenttubercles thanonrightside.Abdomenenormouslylarge,of'sevenverydistinctsegments. Measurements : Lengthofcarapace fromfronttoposteriormargin,8ins.6lines;greatestwidth,10ins.6lines;lengthofabdomen,8ins.;greatestwidth (atsixthsegment),4ins.2lines;lengthofrighthandfromcarpustotipoffixedfinger,6ins.6lines;lengthof movablefinger,3ins.2lines;greatestwidthofhandatbaseofmovablefinger,3ins.

REFERENCE .  = Cancer gigas, Lam.,Hist.desAn.sansvert,v.5,p.272;MilneEd.Hist.Nat.desCrust.,v.1, p.409.

Thisgiganticandbeautifullycolouredcrabisnowfiguredentireandofthecoloursof lifeforthefirsttime.Itisnotuncommonatthewesternextremityofthecoastlineof thecolony,particularly

[294]

306 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Zoology.] NATURALHISTORYOFVICTORIA. [Crustacea.

about Portland, from whence examples are often brought to the fishmarket. The smallfemalewiththemuchsmallerclawsseemsmorecommonthanthegreatmale withitsimmensepowerfulpincers.

EXPLANATIONOFFIGURES.

PLATE 179.Fig.1,female,aboutonethirdnaturalsize.Figla,abdomenoffemale,onethirdthenaturalsize.Fig.1b,antennules,orinner antennae,movableportionwithoutgreatfixedbase,twicethenaturalsize.Figlc,antennae,or outerantennae,withoutthe smallbasaljoint,twice thenatural size.Fig.lg,mandibleandfirst andsecondmaxillipedes,naturalsize.Fig.1d,thirdorexternalmaxillipede,naturalsize.Fig.2,abdomen ofmale,onethirdnaturalsize.

PLATE 180Fig.1,male,aboutonethirdnaturalsize.(Forabdomen,seepl.179,f.2).

FREDERICK MCCOY .

307 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

[295]

308 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Appendix 2

Abstract:Preliminaryreportonthe descriptionofthelarvaeof Pseudocarcinus gigas

Quintana,R.,Gardner,N.C.andKonishi,K.,1996.Onthelarvaeofthegiantcrab, Pseudocarcinus gigas (Lamarck):apreliminaryreport.Abstractsforthemeetingofthe JapaneseSocietyofFisheriesScience,Tokyo,April,1996.pp.93.

(English translation from the Japanese abstract by K. Konishi)

OnthelarvaeoftheAustraliangiantcrab, Pseudocarcinus gigas (Lamarck):a preliminaryreport.

Quintana,R.(AquatasLtd,Tasmania).Gardner,C.(UniversityofTasmania) Konishi,K.(Natl.Res.Inst.ofAquaculture)

[Introduction] The Australian giant crab, Pseudocarcinus gi gas (Lamarck), is wellknownasthelargestxanthidcrab.Thelargestrecordofthecarapace widthandwholeweightis40.6cmand17.6kg,respectively.Thedistribution

309 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

rangesmainlyalongthesoutherncoastofAustralia and around Tasmania. Thefisheriesofthiscrabhasbeenacutelyincreasedinrecentyears,andthe resources in risk of decline should be considered. Because its biological information remains poor, we tried to rear the larvae under laboratory conditions.

[Methodsand Results]ThirtyovigerousfemaleswerecollectedfromtheEast coastofTasmania,andtheywereheldinthelaboratory. After 7 months, threefemalesreleasedthefirstzoeas.Thelarvaewereculturedat16 °Cand 35 ppt salinity and we got zoea 15 and megalopa stages by the end of experiment. Main larval characters are different from those of previously knownlarvaeofthesubfamilyMenippinaeasfollows:1)remarkabledorsal spineonabdominalsomite1.2)posterolateralspinesonabdominalsomites 34,and3)budsofperiopodsalreadyinthefirstzoealstage.

310 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Appendix3

Effect of aeration on larval survival in experimental culture vessels

Apreliminarytrialwasconductedtotestiflarvalsurvivalwasinfluencedbyaeration. Larvaewereobtainedfromovigerousfemalesandplacedin0.2 µmfilteredseawaterat 13 °C.InstarIIartemianaupliiweresuppliedaspreyandwaterwaschangeddaily.

Meansurvivaldidnotappeartobeaffectedbylackofaeration.Theflowofairwas difficulttoregulatetoaconstantlevelsoitwasconsideredthataerationmayincrease errorvariationbetweenreplicates.Consequently,futurelarvaltrialswereconducted withoutaeration.

Figure 1. Percentage survival of zoea 1 giant crab larvae cultured with and without aeration in 1.8 l culture vessels. Flow rate was adjusted to approximately 8 ml per minute.

100

80 % % survival 60

40 no aeration - S.E. (N=4) aeration + S.E. (N=4)

20 0 2 4 6 8 Days after hatching

311 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Appendix4

Production of on-grown artemia for megalopa

Research for this appendix has been previously published as a popular article: Gardner, C. and Gardner, D. An improved method for on-growing artemia in batch culture. Austasia Aquaculture. 10(4): 42-43 & 10(5): 52-53.

Artemiaarenormallyfedatmetanaupliiinstar1or2,butitcanbeusefultogrowthem outtolargersizes;producingtheselargerartemiaisoneofthemoreunderratedtasks inaquacultureasit'smoredifficultthanproducingearlyinstarsforfeed.AttheMarine ResearchLaboratories,Taroona,we'veusedongrownartemiatofeedlargelarvalfin fishthatarenotfullyweaned,andalsoforfeedingthelastlarvalstageofgiantcrabs, themegalopa.Giantcrablarvaeweresuccessfullyrearedonlywhenenrichedon grownartemiaweresupplied.Ongrownartemiaareavaluableproductintheirown rightandcanbeproducedandsoldtoaquariumoutletsaslivefeed.

Themethodforongrowingartemiadescribedbelowismodifiedfromtherelatively standardmethodofSorgeloosetal.(1983)withchangestotwoaspects:tankdesign andthecombineduseofmicroalgaeandYM20 ™formuladiet.

General Principles

Lowdensityculturesofartemiacanbereadilyongrowntoadultsbutthedensity achievedinthesesystemsisfarbelowthatwhichisusefulfortheproductionoflive feeds.Wherelargeamountsofongrownartemiaarerequiredsomeadditionalfactors mustbeconsidered:

1.Artemiausuallytake1014daystoreachfeedingsize(around810mm,Fig1)soif adailysupplyisrequired,severaltanksmustberunningsimultaneously.Artemiawill

312 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner beusefulasfeedoverafairlybroadsizerangesoculturescanbespacedafewdays apart;weuse4dayintervals.

Figure 1. Standard growth rates for artemia in batch culture

8 ❁ 7 6 5 ❁ 4 ❁ 3

Length (mm) 2 ❁ ❁ 1 ❁ 0 0 2 4 6 8 10 Days

2.Thedensityinthetanksmustbehighforeconomicalproduction.Theproblemof lowdensityiscompoundedwhenseveralbatchesarerunningsimultaneouslyas numeroustankswillberequired.

3.Artemiaonlygrowrapidlyinwarmwaterwithaplentifulsupplyofanutritious, finelyparticulatefoodinsuspension.Thesearealsoperfectconditionsforgrowing bacteriawhichcanleadtolowD.O.,thebuildupofnitrogenouswastes,andclumping offoodparticles.Clumpingoffoodparticlesisaproblemastheparticlesbecomestoo largeforartemiatoingestandanaerobicbacterialgrowthisenhancedbytheformation ofdetritus.

4.Forthefirstfewdays,artemiaaretinyandtendtobeaffectedbythesamephysical forcesastheothersmallparticlesinsuspensionintheculture.Thiscanbean importantconsiderationinculture,forexample;artemiaaretrappedbythesurface tensionofveryfinebubblesandaccumulateontherimoftheculturevesselaswith proteinscum;artemiacollectinthedetritusatthebaseofthetank;andartemiaare hardtoseparatefromexuviaeanddetritusbyscreeningbecauseoftheirsimilarsize.

5.Bearinmindthattheartemiabecomeincreasinglyvaluableastheygrowolder becausemoretime,effort,andmoneyhasbeenexpended.Artemiaareeasytohatch solossof50%inacultureafter1dayisofnoconcern,butasimilarlossatday8 shouldbeavoided.

313 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Artemiahavemanypositiveattributesthatcanbeusedtomakeongrowingeasier. Mostusefully,theyarerelativelyresilienttodamagesoculturescanbewellaerated,and harvestedorcleanedbygentlypouringthroughascreen.Also,theywilleatandgrow onalargerangeoffoodtypesprovidedtheparticlesizeiscorrect(<50 µm)including soyflour,microalgae,YM20™(acommercialdiet,mainlymicronisedricebran), yeast,andboiledandgroundhensyolk.

Tank Design

Artemiacanbeongrowninalmostanyvesselbutitbecomesconsiderablyeasierin welldesignedtanks.ForthescaleofworkconductedattheMarineResearch Laboratoriesweuselarge300ltanks(Fig.2)andwe'lldescribethese,butsmallertanks canbeusedwhichutilisethesameprinciples.We'vetrieddifferenttankdesignsbut wegetbestresultsforthisscaleofculturewiththeonedescribedbelow.

Figure 2. Tank system (300 l) used for ongrowing artemia at the Tasmanian Marine Research Laboratories. Circulation is produced by upwelling from aeration which is enhanced by the narrow and deep design of the tank. The steep conical base assists in removal of detritus.

Air Lines

Stand Pipe

Valve

Thebatchcultureofartemiadescribedby(Sorgeloosetal.,1983)wasforculturesof upto5000landshallowertankswereusedwithcirculationprovidedbyairlifts.We foundthatthisproducedpoorresultsastheairliftstendedtoproducefoamwhich

314 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner trappedartemiathatthendiedaroundtherimofthetank.Toovercomethiswe avoidedtheuseofairliftsforcirculation,instead,weusedsimpleweightedairlinesin deep,narrowtanks.

1.Tanksshouldberelativelyhighandnarrowwithasteeplyconicalbase.Thishelps ensurethatallthewateriskeptwellcirculatedand"deadpockets"arekepttoa minimum.Thesteeplyconicalbaseisimportantinhelpingtocollectalldetritusatthe mouthoftheoutflow,ratherthanlettingitbankupalongthebase.Othersystems incorporateplateseparatorstoefficientlyremovefaecalwastesandexuviae(Figure3). Weutilisethetankdesigntocollectwastesatthebaseoftheculturetankandtheseare thendrawnoffdaily.Thisismorelaboriousthanusingaplateseparator,butthe systemissimplerandlesstimeisspentinconstruction.

Figure 3. Plate separator used for primary water treatment. Water is circulated from the culture tank by pumping. Artemia must be prevented from entering the culture tank outflow by a filter screen. (after Sorgeloos et al., 1983).

2.Tankwallsshouldbesmoothtoreducethebuildupofsurfacefilmandalsoto enhancewatercirculation.

3.Weuseastandpipetopreventbuildupofanaerobicsludgeinthedrainsystembut thiscancreatecirculationproblemsinthetankifonlyonepointofaerationisused. Wastestendtobuilduponthesideofthetankoppositetheaeration,ie.inthedead pocketbehindthestandpipe.Thesolutionissimple:distributeaerationevenlyaround thestandpipebyusingtwoormoreairstonesoruseaperforatedairlinering.Airlines canbetiedaroundweights,suchasceramicinsulators,toproducelargebubbles.

315 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Feeding

Artemiawillconsumeandgrowonmanyfoodtypes,butwefindgrowthisbeston YM20,acommercialdiet.Trialshavebeenperformedtocomparedifferent microalgae( Chaetocerous calcitrans , Tetraselmis suecica ,T. Isochrysis ,and Nanochloropsis oculata ) asfoodsourcesforbatchculturesofartemiaandinallcasesgrowthwaspoor comparedtothatonYM20™(Gardner,1996).Artemiaareobligatefilterfeedersso iftheparticledensitybecomestoohigh,thefoodwillpassthroughthegutwithout beingdigested;thisisespeciallynoticeablewithmicroalgaeduetotheirtoughcellwall.

Whilemicroalgaeisapoorfoodsourceforongrowingartemia,wefindthatitcan dramaticallyimproveproductionwhenusedinconjunctionwithYM20.Thereason forthisimprovementisunclear,algaemayprovideadditionalnutritiontotheartemia, compensatingforsomedeficiencyinYM20.

Also,cultureswithmicroalgaepresentstaycleanerastheYM20clumpslessand remainsinsuspensionlonger.Thisresultsinlessfoulingdetritusandshouldalso enhancefoodavailabilitytotheartemia.Again,it'sunclearhowthepresenceof microalgaereducesclumpingofYM20,butwesuspectthatbacterialproliferationmay bereducedfromutilisationofnitrogenouswastesbythemicroalgae.We'vetried differentalgaespeciesbutfindthatthegreenalgae, Nanochloropsis oculata ,ismost suitable.Itseemstosurvivetheturbulentandturbidconditionsintheartemiacultures betterthandiatoms.

Asmicroalgaeareonlyaddedtoconditionthewater,concentrationisnotcritical,but weaimforabout10,000cells/ml.Culturesshouldbeilluminatedwithcontinuous andreasonablybrightlighting(1000lux)topromotealgalgrowth.Artemiawillstrip algaefromtheculturesfasterthanitcanreproducesoalgaeshouldbeaddeddaily.

YM20isblendedinwaterfor1minutethenscreened(50 µm)toremovelumps beforebeingaddedtothecultures.TheconcentrationofYM20ismeasuredby turbidityandchangedduringdevelopmenttosuitdemand.Sorgeloosetal.(1983) recommendedthatturbidityshouldbe20cmseccidepthuptoday4,and25cm thereafter.Weadjustthisregimeslightly,foreaseofhusbandryratherthanfor biologicalreasons.Feeddensityuptoday4isreducedto30cmseccidepth (comparedwith20cm)toreducetheamountofuneatenfeedformingdetritus.

316 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Sorgeloosetal.(1983)arguedthatthefeeddensityshouldbereducedastheartemia becomelarger.Thisisbecausetheartemiadevelopmoreappendagesforfilterfeeding andsobecomemoreefficientatfilteringanddigestingfoodparticles(Fig.4).While thismaybeusefulforproducingoptimumgrowth,wefindthatartemiarapidlyremove particlesfromsuspensionsothattheyneedtobefedseveraltimeseachday.To reduceworkload,weincreasethefeeddensityto15cmseccidepthpastday4sothat theartemiarequirefeedingonlytwicedaily.

Itcanbedesirabletoretardthegrowthofartemiaoncethey'vereachedanappropriate size.Thiscanbedoneseveralways:reductionoffooddensity;discontinuefeeding YM20andsupplymicroalgaeonly;andloweringtemperaturetoaslowas20°C.We slowgrowthbyonlysupplying Nanochloropsis oculata inslightlycooledwater(22°C), thisproducescleanculturesofhealthyartemiawhichcanremainsuitableforfeeding foranadditional5days.

Figure 4. Ongrown, adult artemia. Artemia develop additional feeding appendages with each moult which results in improved feeding ability. (after Planko and O’Sullivan, 1993).

General Maintenance

Stocking Density :Initialstockingdensityshouldbe12artemia/ml.Thisisrelatively highsothatsomeartemiacanbediscardedinwaterchangesandduringcleaning.By day6,densityshouldbereducedtoapproximately8artemia/ml.Westartharvesting

317 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner atthisstagesothatdensityisreduceddaily.Densityshouldbenomorethan1.5/ml forlargeartemiagreaterthan10mminlength.

Temperature :Aimfor27°Cintheearlystagesforoptimalgrowth.Thiscanbe decreasedtoaslowas20°Ctodelaygrowthoncetheartemiahavereachedan appropriatesizeforfeedingout.

Cleaning :Changethewatereverythreedaysbydrainingartemiathroughascreen thenwashintoanewtankwithpreheatedwater.

Ifartemiaarerequiredforextendedperiodsitmaybeworthconstructingaplate separatorandfilterscreentoautomaticallyscreenwastes(Fig.3).

Removing Sediment :Detritusshouldberemoveddailybyswirlingthetank,allowing tosettle,andthendrainingthesedimentthroughthebottomdrain.Healthyartemia becometrappedinthissludgeandthelossofthesecanseverelyaffectdensity. Culturesareinitiallystockedathighdensitytocompensateforthelossofsomeartemia inthesediment.Afterdayfourwetrytorecoverartemiafromthedetritusbywashing thedetritusthrougha100 µm screen.Ifalargeamountofdetritusisretainedonthis screenthenthedetritusandartemiacanbefurtherseparatedbywashingintoabucket, allowingdetritustosettle,andthendecantingoffartemia.

Hygiene :Aswithalllivefeedproduction,highstandardsofhygieneshouldbe maintained:washalltanks,heaters,standpipesandairlineswithchlorine(200ppm); filterculturewater;andwashhandsfrequently.Wipestandpipes,heaters,andairlines daily.

Other Ideas

We'vetriedincreasingthesalinityinculturetanksto45pptinanattempttoreduce bacterialproliferation.Whiletheartemiasurvivedandgrew,thehighersalinity appearedtokillthealgaepresent.Euryhalinespeciessuchas Dunaliella salina maybe bettersuited.

References

318 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Gardner,D.,1996.ManualforHatcheryScaleCultureofArtemiaattheMarineResearchLaboratories. InternalReportno.31.MarineResourcesDivision,MarineResearchLabs.DPI&F,Tasmania.17pp.

Sorgeloos,P.,Bossuyt,E.,Lavens,P.,Leger,P.,Vanhaecke,P.andVersichele,D.,1983.Theuseof brineshrimp Artemia incrustaceanhatcheriesandnurseries.CRCHandbookofMariculture:Vol.1, CrustaceanAquaculture(Ed.J.P.McVey).CRCPress,Florida.

Planko,D.andO’Sullivan,D.,1993.SimpleMethodsforsmallscaleuseofbrineshrimp(Artemia) naupliidecapsulation,hatching&enrichment.AquacultureSourcebook4.UniversityofTasmania. 21pp.

319 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Appendix 5.

Comparisonofmegalopasofspeciesin thesubfamilyOziinae.

Summary

Themegalopasof Pseudocarcinus gigas werecomparedwithmegalopasofotherspeciesin thesubfamilyOziinae(Xanthoidea)byfeaturesdescribedbyMartin(1988). Pseudocarcinus appearedtolieintermediatebetweenthegenus Ozius (4zoealstages)and aclustercontainingthegenera Menippe (5zoealstages)and Baptozius (4zoealstages).

Table 1. Characters examined for determining phenetic relationships of megalopa (from Martin, 1988).

1.Carapace: Presence(yes)orabsence(no)ofacuteanterolateral projections(yes=0;no=1).

2.Antennule: Numberandarrangementofsetaeonthedistalsegmentof endopod(5ormore=0;4orfewer=1).

3.Mandible: Numberofspinesandsetaeonthedistalsegmentofpalp (11ormore=0;10orfewer=1).

4.Maxilla: Numberofplumosesetaefringingthescaphognathite(60 ormore=0;59orless=1).

5.Maxilliped1: Numberoflongsmoothsetaeonepipod(12ormore=0; 11orfewer=1).

320 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

6.Maxilliped2: Numberoflongsmoothsetaeonepipod(8ormore=0;7 orfewer=1).

7.Maxilliped3: Numberoflongsmoothsetaeonepipod(15ormore=0; 14orfewer=1).

8.Cheliped: Presenceorabsenceoflargerecurvedhooklikespineon ischium(no=0;yes=1).

9.Pereiopod24: Numberofstout,usuallyserrate,spinesonventralborder ofdactylus(average4ormore=0;lessthan4=1).

10.Pleopod1: Numberofplumosesetaeondistalsegmentofexopod(20 ormore=0;19orfewer=1).

11.Pleopod1: Numberofhooklikesetaeonendopod(4ormore=0;3 orfewer=1).

12.Pleopod3: Numberofplumosesetaeondistalsegmentofexopod(18 ormore=0;17orless=1).

13.Pleopod3: Numberofhooklikesetaeonendopod(4ormore=0;3 orfewer=1).

14.Uropods: Numberofplumosesetaeondistalsegmentofexopod(10 ormore=0;9orfewer=1).

321 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Table 2. Comparison of characters of megalopa in Oziinae.

Species Characternumber References

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Baptozius vinosus no 1+4 14 9093 11 13 29 no 3 25 5 23 5 13 Sabaetal.(1978a)

Epixanthus dentatus no 1+1+2 12 50 10 2 10 no 3 22 5 45 1011 Sabaetal.(1978b)

Ozius rugulosus no 1+1+3 9 51 6 0 15 yes 2 19 19 10 KakatiandNayak (1977)

Ozius truncatus no 45 10 8 14 yes 3 22 4 22 12 Wear(1968)

Menippe adina no 1+1+2 1114 7078 2223 910 18 no 5 2122 34 1214 Martinetal.(1988) +3

322 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Menippe mercenaria no 45 1112 Kurata (unpublished) a

Menippe nodifrons no 1+2+5 1013 66 1220 <10 18 no 5 2021 3 2021 3 11 Scotto(1979)

Menippe rumphii no 1+1+2 9 65 18 8 22 no 20 18 12 Kakati(1977) +3

Pseudocarcinus gigas no 1+1+4 1923 8088 2026 2122 3953 yes 710 3234 67 2931 5 1920

a CitedbyMartin(1988)

323 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Martin(1988)usedcharacters1,4,13,14,15,16,23,and27listedaboveto constructaphenogramandtheprocesswasrepeatedherewiththeinclusionof Pseudocarcinus gigas .SpecieswereclusteredbyWard’shierarchicaltechnique (Milligan,1980)whichshowsprogressivedissimilaritytoaninitialclusterformed bythetwomostsimilarspecies.Martin(1988)concludedthattheuseofmegalopa characterstodeterminephylogeneticrelationshipsmaybeoflimitedvaluesothe resultsofthisanalysismaynotrepresentphylogeny.

Figure 1. Phenetic relationships between megalopas of the subfamily Oziinae.

Baptozius vinosus Menippe adina Menippe nodifrons Menippe rumphii Pseudocarcinus gigas Ozius truncatus Ozius rugulosus Epixanthus dentatus

References

Kakati,V.S.(1977)Larvaldevelopmentofthecrab Menippe rumphii (Fabricius)as observedintheLaboratory . Proc. Symp. Warm Water Plankton, Spec. Publ. Nat. Inst. Oceanogr .,60a ,634641.

Kakati,V.S.andNayak,V.N.(1977)Larvaldevelopmentofthexanthidcrab, Ozius rugulosus rugulosus Stimpson(Decapoda,Brachyura)underlaboratory conditions. Indian J. Mar. Sci .,6,2630.

324 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Martin,J.W.(1988).Phylogeneticsignificanceofthebrachyuranmegalopa: evidencefromtheXanthidae. Symp. Zool. Soc. Lond .,59 ,69102.

Milligan,G.W.(1980).Anexaminationoftheeffectofsixtypesoferror perturbationonfifteenclusteringalgorithms. Psychometrika , 45 ,325342.

Saba,M.,Takeda,M.,andNakasone,Y.(1978a)Larvaldevelopmentof Baptozius vinosus (H.MilneEdwards). Proc. Jap. Soc. Syst. Zool .,14 ,2538.

Saba,M.,Takeda,M.,andNakasone,Y.(1978b)Larvaldevelopmentof Epixanthus dentatus (White)(Brachyura,Xanthidae). Bull. Nat. Sci. Mus. Tokyo (Zool.) , 4,151161.

Scotto,L.E.(1979)LarvaldevelopmentoftheCubanstonecrab, Menippe nodifrons (Brachyura,Xanthidae)underlaboratoryconditionswithnotesonthestatusof thefamilyMenippidae. Fish. Bull. U.S ., 77 ,359386.

Wear,R.G.(1968)LifehistorystudiesonNewZealandBrachyura.2.Family Xanthidae.Larvaeof Heterozius rotundifrons A.MilneEdwards,1867, Ozius truncatus H.MilneEdwards,1834,and Heteropanope ( Pilumnopeus ) serratifrons (Kinahan,1856). N.Z. J. Mar. Freshwat. Res .,2,293332.

325 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Appendix6

AdditionaldatafromChapter6

InformationpresentedinthisappendixwassummarisedinChapter6.

Figure 1. Percent survival and moulting of larvae cultured at different temperatures. X axis is days.

326 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

100 80 a. 10.5°C 60 40 20 0 0 10 20 30 40 50 60 70 80 90 100 100 80 b. 11.7°C 60 40 20 0 0 10 20 30 40 50 60 70 80 90 100 100 80 c. 12.8°C 60 40 20 0 0 10 20 30 40 50 60 70 80 90 100 100 80 d. 13.8°C 60 40 20 0 0 10 20 30 40 50 60 70 80 90 100 100 80 e. 14.8°C 60 40 20 0 0 10 20 30 40 50 60 70 80 90 100 Days

M Z6 Z5 Z4 Z3 Z2 Z1

Figure 2. Percent survival and moulting of larvae cultured at different temperatures. X axis is days.

327 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

100 80 f. 15.8°C 60 40 20 0 0 10 20 30 40 50 60 70 80 90 100 100 80 g. 16.8°C 60 40 20 0 0 10 20 30 40 50 60 70 80 90 100 100 80 h. 17.8°C 60 40 20 0 0 10 20 30 40 50 60 70 80 90 100 100 80 i. 18.6°C 60 40 20 0 0 10 20 30 40 50 60 70 80 90 100 100 80 j. 19.4°C 60 40 20 0 0 10 20 30 40 50 60 70 80 90 100 Days

100 80 k. 20.2°C 60 40 20 0 0 10 20 30 40 50 60 70 80 90 100 100 80 l. 21.1°C 60 40 20 0 0 10 20 30 40 50 60 70 80 90 100 Days

M Z6 Z5 Z4 Z3 Z2 Z1

328 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Appendix9

AdditionaldatafromChapter8

Informationpresentedinthisappendixwassummarisedinchapter8.

Figure 1. Percent survival and moulting of larvae in control (no chemical treatment; upper) and starvation (lower) treatments in relation to time (days).

100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110 100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110

Z1 Z2 Z3 Z4 Z5 Z6 M C

329 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 2. Percent survival and moulting of larvae in oxytetracycline treatments, in relation to time. All replicates are combined (n=4). Concentrations from upper graph to lower graph are 10, 25, 50, 100, and 200 mg -1/l.

100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110 100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110 100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110 100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110

100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110

Z1 Z2 Z3 Z4 Z5 Z6 M C

330 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 3. Percent survival and moulting of larvae in carbendazim treatments, in relation to time (days). All replicates are combined (n=4). Concentrations from upper graph to lower graph are 0.001, 0.003, 0.01, 0.03, and 0.1 mg -1/l.

100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110 100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110

100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110 100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110

100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110

Z1 Z2 Z3 Z4 Z5 Z6 M C

331 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 4. Percent survival and moulting of larvae in trifluralin treatments, in relation to time (days). All replicates are combined (n=4). Concentrations from upper graph to lower graph are 0.001, 0.003, 0.01, 0.03, and 0.1 mg -1/l.

100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110 100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110 100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110

100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110 100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110

Z1 Z2 Z3 Z4 Z5 Z6 M C

332 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 5. Percent survival and moulting of larvae in malachite green treatments, in relation to time (days). All replicates are combined (n=4). Concentrations from upper graph to lower graph are 0.001, 0.003, 0.01, 0.03, and 0.1 mg -1/l.

100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110 100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110

100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110

100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110

100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110

Z1-5 Z2 Z3 Z4 Z5 Z6 M C

333 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 6. Percent survival and moulting of larvae in formalin treatments, in relation to time (days). All replicates are combined (n=4). Concentrations from upper graph to lower graph are 2.5, 5, 10, 20, and 40 mg -1/l.

100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110

100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110 100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110 100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110 100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110

Z1 Z2 Z3 Z4 Z5 Z6 M C

334 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 7. Percent survival and moulting of larvae in copper oxychloride treatments, in relation to time (days). All replicates are combined (n=4). Concentrations from upper graph to lower graph are 0.025, 0.05, 0.1, 0.2, and 0.4 mg -1/l.

100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110 100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110

100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110 100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110

100 90 80 70 60 50 40 30 20 10 0 0 10 20 30 40 50 60 70 80 90 100 110

Z1-5 Z2 Z3 Z4 Z5 Z6 M C

335 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

FIGURE 8. The effect of treatment concentration on the timing of moults. Lines connect means of different treatment concentrations for the moult to each successive zoeal stage (commencing with the moult from Z1 to Z2 at left). Shift towards the right suggests that the treatment has delayed the development of the larvae relative to other concentrations. Points plotted for moults stages more advanced than the moult to zoea stage 4 should be interpreted with caution as replication was frequently reduced in these later samples to less than 4. Treatment concentrations from upper row of points to lower row are: Oxytetracycline - 0.0, 25, 50, 100 mg -1/l; Carbendazim - 0.0, 0.001, 0.003, 0.01, 0.03, 0.1 mg -1/l; Trifluralin - 0.0, 0.001, 0.003, 0.01, 0.03, 0.1 mg -1/l.

336 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

FIGURE9.Theeffectoftreatmentconcentrationonthetimingofmoults. Linesconnectmeansofdifferenttreatmentconcentrationsforthemoulttoeach successivezoealstage(commencingwiththemoultfromZ1toZ2atleft).Shift towardstherightsuggeststhatthetreatmenthasdelayedthedevelopmentofthe larvaerelativetootherconcentrations.Pointsplottedformoultsstagesmore advancedthanthemoulttozoeastage4shouldbeinterpretedwithcautionas replicationwasfrequentlyreducedintheselatersamplestolessthan4.Treatment concentrationsfromupperrowofpointstolowerroware:MalachiteGreen0.0, 0.001,0.003,0.01,0.03,0.1mg 1/l;Formalin0.0,2.5,5,10,20,40mg 1/l; CopperOxychloride0.0,0.025,0.05,0.1,0.2,0.4mg 1/l.

337 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

338 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 10. Effect of treatment concentration (x-axis: mg-1/l) on cause of mortality (y axis: mean % ± SE, n=4). Where no obvious cause was apparent, larvae were scored as “normal”; larvae which died during ecdysis were scored as “moulting”; and larvae which appeared to have died as a result of fouling or deformity were scored appropriately.

100 ● ❍ ● a. OXYTETRACYCLINE 80

60 ● ❍ ■ ▲ 40 ● ▲ ● 20 ■ ● ■ ❍ ■▲ 0 ▲■ ▲ ❍ ❍ ❍■▲ 0 10 25 50 100 200 80 70 ● ● b. CARBENDAZIM 60 ● ● 50 ❍ ● ❍ 40 ❍ ● ❍ 30 ■ 20 ❍ ❍ ■ ■ ■ ■ 10 ■ ▲ ▲ ▲ ▲ 0 ▲ ▲ 0.0 0.001 0.003 0.01 0.03 0.1 80 70 c. TRIFLURALIN 60 ● ● ● ● ● ● 50 ❍ 40 ❍ ❍ 30 ❍ ■ ❍ ■ 20 ❍ 10 ■ ■ ■ ▲ ■ ▲ ▲ ▲ ▲ 0 ▲ 0.0 0.001 0.003 0.01 0.03 0.1

● Normal ❍ Fouled ■ Moulting ▲ Deformed

339 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 11. Effect of treatment concentration (x-axis: mg-1/l) on cause of mortality (y axis: mean % ± SE, n=4). Where no obvious cause was apparent, larvae were scored as “normal”; larvae which died during ecdysis were scored as “moulting”; and larvae which appeared to have died as a result of fouling or deformity were scored appropriately.

90 d. MALACHITE 80 ● GREEN 70 ● 60 ● 50 ● ● ❍ ●❍ 40 30 ❍ ❍ ■ ■ ■ 20 ❍ ❍ 10 ■ ■ ■ ▲ ▲ 0 ▲ ▲ ▲ ▲ 0.0 0.001 0.003 0.01 0.03 0.1

100 ● ● e. FORMALIN 80

60 ● ● ❍ ●❍ ❍ 40 ● ❍ ■ ■ 20 ■ ▲ ■ ▲ 0 ▲ ▲ ❍■▲ 0.0 2.5 5.0 10.0 20.0 40.0

70 ● f. COPPER 60 OXYCHLORIDE ● ● ● ● ● 50 ❍ 40 ❍ 30 ❍ ❍■ ❍ ■ 20 ❍■ ■ ■ 10 ■ ▲ ▲ ▲ ▲ ▲ 0 ▲ 0.0 0.025 0.05 0.1 0.2 0.4

● Normal ❍ Fouled ■ Moulting ▲ Deformed

340 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 12. Pattern of mean percentage survival ( ± SE, n=4) in control and survival treatments of larvae to each stage.

100 st

s s CONTROL 80

60 t STARVE

40

20 s

s 0 t t s s s Z1 Z2 Z3 Z4 Z5 M C

341 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 13. Effect of oxytetracycline and carbendazim concentration on mean percentage survival ( ± SE, n=4) of larvae to each stage. Survival plotted for larval stages past zoea 4 should be interpreted with caution as replication in these later stages was frequently reduced to less than 4. Z1...Z5 = zoea 1 ...zoea 5; M = megalopa; C = crab 1. Mean survival for each concentration is the mean number of instars that larvae survived to, eg. mean survival of 2.9 implies that most larvae survived to Z3. Superscripts denote significantly different pairs of means (statistical analysis as per chapter: Use of Prophylactic Treatments for Larval Rearing of Giant Crabs Pseudocarcinus gigas (Lamarck)).

a. OXYTETRACYCLINE a a b c d d Conc. 10 200 100 0 25 50 ▲ Mean Surv. 1.0 1.0 1.5 2.1 4.1 CONTROL ▲▼✖❍■✧ ❍ 100 ❍ 4.9 ▼ ❍ 10 ppm ▲ ❍ ✖ 80 ✖ 25 ppm ✖ ✖ ✖ ❍ 50 ppm 60 ■ 100 ppm

✧ 200 ppm 40

✖ 20 ▲ ■ ❍ ■ ✖ ▲ ■ ❍ 0 ▼ ✧ ▲ ▲ ■ ▲ ■ Z1 Z2 Z3 Z4 Z5 M C b. CARBENDAZIM a a a a a b 100 ▲▼✖❍■✧ Conc. 0.03 0 0.1 0.003 0.01 0.001 ▼ ▲ ❍ Mean Surv. 1.9 2.1 2.5 2.7 2.9 3.8 CONTROL ▲✖ ▼ 80 0.001 ppm ■✧ ✖ 0.003 ppm

▼ ❍ 60 ▼ 0.01 ppm ▼ ■ 0.03 ppm

40 ✧ 0.1 ppm ✖❍ ❍ ❍ ✖ ✖ ✧ ✧ ✧ 20 ▲ ▼ ✖✧ ■ ❍ ■ ▲ ■ ✖ 0 ▲ ▲ ■ ▲▼❍✧ Z1 Z2 Z3 Z4 Z5 M C

342 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 14. Effect of trifluralin and malachite green concentration on mean percentage survival ( ± SE, n=4) of larvae to each stage. Survival plotted for larval stages past zoea 4 should be interpreted with caution as replication in these later stages was frequently reduced to less than 4. Z1...Z5 = zoea 1 ...zoea 5; M = megalopa; C = crab 1. Mean survival for each concentration is the mean number of instars that larvae survived to, eg. mean survival of 2.9 implies that most larvae survived to Z3. Superscripts denote significantly different pairs of means (statistical analysis as per chapter: Use of Prophylactic Treatments for Larval Rearing of Giant Crabs Pseudocarcinus gigas (Lamarck)).

c. TRIFLURALIN 100 ▲▼✖❍■✧ a ab b b b b ■ Conc. 0 0.001 0.01 0.03 0.003 0.1 ▲ ✖✧ Mean Surv. 2.1 2.9 3.1 3.3 3.3 CONTROL ▲ 3.5 ❍ ▼ 0.001 ppm 80 ✧ ▼ ✖ 0.003 ppm ✖❍ ❍ 0.01 ppm 60 ■ ■ 0.03 ppm ✖✧ ■ 40 ❍ ✧ 0.1 ppm ▼ ▼ ▼

✖✧ ❍■ 20 ▲ ▼

■✧ ▲ ✖ 0 ▲ ▲❍ ▲▼✖■✧ Z1 Z2 Z3 Z4 Z5 M C d. MALACHITE GREEN a a a b b b 100 ▲▼✖❍■✧ Conc. 0 0.003 0.01 0.001 0.1 0.03 ▲ ▼ Mean Surv. 2.1 2.1 2.1 2.9 3.2 CONTROL ▲ ■ ✧ 3.4 ▼ 0.001 ppm 80 ✖ ❍ ✖ 0.003 ppm

✧ ❍ 60 ■ 0.01 ppm ▼ ■ 0.03 ppm ▼■ ■ 40 ✧ ✧ 0.1 ppm ✧ ❍

✖ ■ 20 ▲ ▼ ✧ ✖ ❍ ❍ ▲ ✖ 0 ▲ ▲▼✖❍ ▲ ■✧ Z1 Z2 Z3 Z4 Z5 M C

343 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Figure 14. Effect of formalin and copper oxychloride concentration on mean percentage survival ( ± SE, n=4) of larvae to each stage. Survival plotted for larval stages past zoea 4 should be interpreted with caution as replication in these later stages was frequently reduced to less than 4. Z1...Z5 = zoea 1 ...zoea 5; M = megalopa; C = crab 1. Mean survival for each concentration is the mean number of instars that larvae survived to, eg. mean survival of 2.9 implies that most larvae survived to Z3. Superscripts denote significantly different pairs of means (statistical analysis as per chapter: Use of Prophylactic Treatments for Larval Rearing of Giant Crabs Pseudocarcinus gigas (Lamarck)).

e. FORMALIN 100 ▲▼✖❍■✧ a b c c d d Conc. 40 20 0 5 2.5 10 ▲ Mean Surv. 1.0 1.1 2.1 2.2 2.9 CONTROL ▲ 3.2 ▼ ▼ 2.5 ppm 80 ✖ ✖ ❍ 5 ppm ❍ 60 10 ppm ❍ ■ ❍ 20 ppm ▼ ❍ 40 ▼ ✧ 40 ppm

✖ ▼ 20 ▲ ■ ✖ ✖ ▼ ▲ ❍ 0 ✧ ■ ▲ ▲✖ ▲▼❍ Z1 Z2 Z3 Z4 Z5 M C f. COPPER OXYCHLORIDE ▲▼✖❍■✧ a ab abc bc c c 100 Conc. 0 0.1 0.2 0.4 0.025 0.05 ▼ ▲ ✖✧ Mean Surv. 2.1 2.5 2.7 2.9 3.2 CONTROL ▲ 3.2 ▼ 80 0.025 ppm ✖ 0.05 ppm ❍■ ▼ ❍ 0.1 ppm 60 ✖ ✧ ■ 0.2 ppm ■ 40 ✧ ▼■ 0.4 ppm ❍ ❍ ✖✧ ✖ ▼ ✧ ✖ 20 ▲ ■ ❍ ▼ ▲ ❍■✧ ▼✖✧ 0 ▲ ▲ ▲❍■ Z1 Z2 Z3 Z4 Z5 M C

344 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Appendix10

Biochemical methodology

Method used for the quantification of protein in tissues and eggs

1. Sample preparation

Sampleswerestoredforupto12monthsbeforeanalysisinsealedbagsat60°C indarkness.Twosamplesofthetissuewashomogenisedwithamortarand pestleandthendilutedwithdistilledwaterataratioof5mg/ml.Wherethe proteinconcentrationofthetwosamplesdifferedbymorethan10%,theanalysis wasrepeated.

2. Procedure

ProteinwasassayedbyamodifiedLowryprocedure(Peterson,1977)with reagentsfromacommercialkit(SigmaDiagnostics™,proteinassaykit#5656).

• Standards(50400g/ml)werepreparedwithbovineserumalbuminand blanksweremadebysubstitutingdistilledwaterforsample.

• 0.25mlofsampleswereaddedtocentrifugetubesanddilutedwith0.75mlof distilledwatertoproduceaproteinconcentrationwithintherangeofthe standards.1.0mlofstandardsandblankswerealsoaddedtotubes.

• 0.1mlof1.5mg/mlsodiumdeoxycholate(DOC)wasthenaddedtoalltubes, whichweremixedandlefttostandfor10minatroomtemperature.

• 0.1mlof72%w/vtrichloroaceticacid(TCA)wasthenaddedtoalltubes andmixed.

345 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

• Tubeswerethencentrifugedfor10minat5000rpmandthesupernatantthen discarded.

• Thepelletwasthendissolvedin1.0mlLowrysreagentand1mlwater,then leftfor20min.

• 0.5mlFolinandCiocalteu’sphenolreagentworkingsolutionwasthenadded toeachtubewithimmediateandrepeatedmixing.

3. Measurement and quantification of protein concentration.

After30min,theabsorbanceat600nmwasreadin1cmcuvetteswitha Unicam™spectrophotometer.Concentrationofsampleswasdeterminedusinga 2°polynomialregressionfittothestandardcurve(Fig.1.).Concentrationof proteinineggandtissuesampleswasthencalculatedbycorrectingfordilutions. Newstandardcurveswerecalculateddaily.

Figure 1. Calibration curve obtained from standards.

400 y = 664.821x 2 + 71.198x + 37.271

300

200

100

Concentration (µg/ml) Concentration 0 0.2 0.4 0.6 absorbance

Application of the Folch et al. (1957) method for the measurement of total lipid.

Method

Homogenise3gramsoftissuewithapestleandmortar,thenadd12ml chloroformand10mlmethanol.Tothemixture,add6mlofdistilledwater.

346 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Themixtureisthentransferredtocentrifugetubesandspunfor10minutesat 5,000rpmtoseparateintotwophaseswiththesolidtissuecompressedintoapad betweenthelayers.

Thelowerphaseisremovedbypassingalong,stainlesssteelhypodermicneedle throughtheupperlayerandpadoftissueintothelowerphase.Thisisthen drawnoffandthechloroformevaporatedinpreweighedvesselsinafume cabinetfor3h.

Analyseswereduplicatedforeachsampleandthevaluespresentedinthisthesis arethemeans.Analyseswererepeatedwherethedifferencebetweenthetwo originalmeasuresindicatedexcessiveerror.

Note: Chloroform poses a human health risk due to its hepatotoxicity and should be used cautiously.

The extraction, identification and quantification of carotenoid pigments from tissues and eggs.

"The real wonder of the world is really these carotenoids" Miriam Rothschild 1994.

1. Sample preparation

Sampleswerestoredforupto12monthsbeforeanalysisinsealedbagsat60°C indarkness(Clarke,1977).Tissuetobeanalysedwashomogenisedwithamortar andpestleandthendilutedwithdistilledwaterataratioof5mg/ml.

2. Extraction of carotenoid pigments

Fivemlofacetonewasaddedto4mlofdilutedsampletoextractthepigment. Thismixturewasshakenandleftfor5minutes.Thepigmentswerethen transferredtodiethyletherbytheadditionofanequalvolumeofdiethylether(to acetone)andtwentyvolumesof10%(w/v)NaClsolution(vandenEnden,1994). Thisseparatedthesolutionsintotwofractions,theupperconsistedofdiethyl

347 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner etherandcarotenoids.Theupper,diethyletherfractionwasthenremovedwitha pippete,afterleavingthemixturefor10minutestoseparate.

3. Thin Layer Chromatography (TLC)

SamplesforTLCwereextractedinacetoneasdescribedfortotalcarotenoid determination,andconcentratedbyevaporationundergaseousnitrogen.

CarotenoidswereseparatedonC8octylsilicaplates(Merck™)usingthe followingsolvents:methanolandwater(90:10,v/v);petroleumether;diethyl etherandpetroleumether(95:5,v/v);anddiethyletherandmethanol(95:5,v/v). Afterdevelopment,thepositionsofpigmentzoneswererecorded.Thepigment zoneswerethenscrapedfromtheplatesandtheirabsorptionspectrarecordedin eachofthefollowingsolvents:petroleumether,acetone,hexaneanddiethylether.

Thepresenceofesterifiedformsofcarotenoidswasinvestigatedbysaponifying withtheadditionofanequalvolumeof10%methanolicKOHtothediethyl etherextract(Clarke,1977).Themixturewasleftovernightundernitrogenand thenTLCwasrepeatedonthesaponifiedextract,withanuntreatedextractfrom thesamesamplerunningparallel.Allchromatographywasundertakeninlow lightordarknesstoavoidautooxidation(Clarke,1977).

4. Quantification of total carotenoid

Thecalculationoftotalcarotenoidreliedontheresultsofthinlayer chromatography,whichshowedthatastaxanthinwasthemajorcarotenoid present.Consequently,absorptionofthecarotenoidextractswasmeasuredat 472nm,thewavelengthofmaximumabsorbancebyastaxanthin.Absorbance wasmeasuredwithaPyeUnicam™spectrophotometerin1cmcuvettesusing purediethyletherasablank.Theconcentrationoftotalcarotenoidsing/g tissuewasthenderivedusingtheextinctioncoefficientofastaxanthinbythe formula: x=Ey10000 E1% 1cm wherex=concentrationofcarotenoiding/gtissue E=extinctionat472nm

348 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

y=dilutionfactor,and E1% =extinctioncoefficient(astaxanthin=2099,indiethylether;Clarke, 1cm 1977). References

Clarke,A.,1977.Lipidclassandfattyacidcompositionof Chorimus antarcticus (Pfeffer)(Crustacea: Decapoda)atSouthGeorgia.J.Exp.Mar.Biol.Ecol.,28:297314.

Folch,J.,Lees,M.andBloaneStanley,G.H.,1957.Purificationoftotallipidsfromanimaltissues. J.Biol.Chem.,266:497509.

Peterson,G.L.,1977.AsimplificationoftheproteinassaymethodofLowry et al .whichismore generallyapplicable.Anal.Biochem.,83:346356. vandenEnden,R.,1994.TheroleofphytoplanktoninthedietofjuvenileandadultPacific oysters( Crassostrea gigas )culturedatLittleSwanportLagoon.Honoursthesis,BotanyDept. UniversityofTasmania.

349 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

Appendix11

Assessment of scaling unit for female body size in fecundity analyses

Severalmeasuresoffemalebodysizewerecomparedagainstfecundity:whole weight,carapacelength,abdomenwidth,chelalength,andchelaheight.As variationwassimilarforeachmeasureofsize,carapacelengthwasselectedfor useinsubsequentfecundityanalysesasthismeasureofsizeisalreadyusedinthe fisheryfordescribingsizelimits.

Figure 1. Effect of body size on fecundity: comparison of different measures of female size. Fecundity was measured as number of eggs, weight as grams, and length in mm.

15.0

14.5

14.0 Ln Fecundity

13.5 4.8 4.9 5.0 5.1 5.2 5.3 5.4 7.25 7.50 7.75 8.00 8.25 8.50 Ln Carapace length Ln Weight 15.0

14.5

14.0 Ln Fecundity

13.5 4.2 4.4 4.6 4.8 4.7 4.8 4.9 5.0 5.1 5.2 5.3 Ln Abdomen width Ln Chela length 15.0

14.5

14.0 Ln Fecundity

13.5 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 Ln Chela height

350 Larvalandreproductivebiologyofthegiantcrab Pseudocarcinus gigas .PhDThesis.CalebGardner

351