Neurophysiology

Total Page:16

File Type:pdf, Size:1020Kb

Neurophysiology CHAPTER 2 Neurophysiology AUTONOMIC NERVOUS SYSTEM What are the two structural divisions 1. Central nervous system of the human nervous system? 2. Peripheral nervous system What are the two f1111ctio11al divisions 1. Somatic nervous system of the human nervous system? 2. Autonomic nervous system (ANS) What is the function of the somatic Innervates skeletal muscle; largely nervous system? under voluntary control What is the function of the ANS? Maintenance of homeostasis through involuntary coordination of glandular, cardiac, and smooth muscle activity throughout the body What are the constituent parts of Enteric nervous system, sympathetic the ANS? nervous system (SNS), and parasympathetic nervous system (PNS) Generally speaking, what is the function of each part of the ANS? Enteric nervous system Coordination of various gut functions (motility, secretion, etc) (see Chap. 6) Sympathetic nervous system "Fight or flight" response. Coordinates the body's response to stressors. Parasympathetic nervous system "Rest and digest" response. Coordinates the process of energy conservation and replenishment. Where is the anatomic origin of SNS? lntermediolateral cell column of the spinal cord between segments. Tl to L3) (e.g., thoracolumbar) - ,\. · 11 Where is the anatomic origin Nuclei of cranial nerves (CN) III, VII, of the PNS? IX, and X aiici ~f>!nal cord segments S2 to S4 (e.g.,(sraniosacral spinal cord) 23 24 Deja Review: Physiology What type(s) of neurotransmitter(s) PNS and SNS preganglionic neurons and receptors are present in the use ACh as the neurotransmitter and pregn11glio11ic fibers of the PNS nicotinic receptors for transmission and SNS? Is the neurotransmitter/receptor No, while these receptors are nAChR combination used at the preganglionic (nicotinic Acetylcholine receptors) synapse the same as that used at the they differ from those at the NMJ. neuromuscular junction (NMJ)? The nicotinic subunits here have a different subunit makeup allowing for differences in pharmacologic influences Describe the axon length for the PNS and SNS in the following locations: PNS SNS Preganglionic nerve axon Long Short Postganglionic nerve axon Short Long Anatomically, where do most Either at the paravertebral chain preganglionic sympathetic fibers ganglion, or at collateral ganglia that synapse? follow large vessels in the abdomen (celiac, superior mesenteric, etc) Anatomically, where do most In microscopic ganglia associated with preganglionic parasympathetic the target organs fibers synapse? What receptor types are primarily used PNS: all receptors are muscarinic and at the effector organs of the PNS and ACh is the neurotransmitter SNS? What are their respective SNS: a 1, a2, /3 1, or /3 2; the primary neurotransmitters? neurotransmitter is norepinephrine (NE) There is an exception to the above Sweat glands have muscarinic receptors. rule regarding the SNS. What is it? The associated postganglionic SNS neurons release ACh. What is unique about the adrenal It is a specialized SNS ganglion where medulla? preganglionic fibers synapse directly with the effector organ (chromaffin cells) What does SNS stimulation of Secretion of epinephrine (Epi; 80'1\,) and chromaffin cells induce? NE (20%) into the circulation What is the purpose of releasing These substances activate organs that adrenal hormones into the circulation? receive little innervation (fat cells, hepatocytes etc) allowing them to assist in the stress response Neurophysiology 25 What are the SNS receptor types in the following locations and what are their effects? Heart SA node {3 1: increased pacemaker activity AV node {3 1: increased conduction velocity Myocardium {3 1: increased contractility Vascular smooth muscle Skin and splanchnic circuits Skeletal muscle and pulmonary circuits Peripheral veins c:x 1: constriction f32: dilation Eye Ciliary muscle fJ,y.relaxes muscle (for far vision) 2.. Radial muscle (Vt1i \\~\kl M\nffi'm) c:x 1: muscle contraction~ dilates pupil Bladder Detrusor muscle Bladder sphincter C:X 1: constricts Bronchioles Bronchial muscle {3 2: dilates smooth muscle Bronchial glands c:x 1: inhibits secretion {3 2: stimulates secretion Gastrointestinal tract Sphincters c:x 1: constricts Secretion c:x2: inhibition Motility c:x 1, c:x2, {32: decrease Kidney {3 1: increase renin secretion Male sex organs c:x 1: ejaculation Sweat glands Muscarinic: increase sweat production Adipose tissue {3 1, {33: increase lipolysis For which of the above SNS locations Vascular smooth muscle, kidney, sweat is there no corresponding PNS glands, fat cells, and liver innervation? 26 Deja Review: Physiology What is the mechanism of action for the following receptor types? Inositol 1,4,5-triphosphate (IP3) formation and increased intracellular [Ca2+] Adenylate cyclase inhibition and decreased cyclic adenosine monophosphate (cAMP) Adenylate cyclase activation and increased cAMP Adenylate cyclase activation and increased cAMP Nicotinic Ion channel for Na+ and K+ Muscarinic Heart (sinoatrial [SA] node): adenylate cyclase inhibition Smooth muscle and glands: IP3 formation and increased intracellular [Ca2+] What is the effect on the ANS of the following pharmacologic agents? A Ch Nicotinic and muscarinic agonist Albuterol /32 Agonist Atropine Muscarinic antagonist Butoxamine /32 Antagonist Carbachol Nicotinic and muscarinic agonist Cioni dine <Xz Agonist Curare Nicotinic antagonist Dobutamine /31 Agonist Hexamethonium Nicotinic antagonist (ganglion only) Isoproterenol /31 and /32 agonist Metoprolol (at therapeutic doses) /3 1 Antagonist Muscarine Muscarinic agonist Nicotine Nicotinic agonist NE a1 and /31 agonist Phenoxybenzamine a1, 2 Antagonist Phentolamine a 1, 2 Antagonist Phenylephrine a1 Agonist Prazosin a1 Antagonist Propranolol /31 and /32 antagonist Yohimbine <Xz Antagonist Neurophysiology 27 What autonomic centers are located in the following areas? Medulla Respiratory; swallowing, coughing, and vomiting; and vasomotor Pons Pneumotaxic Midbrain Micturition Hypothalamus Regulation of food and liquid intake and temperature regulation SENSORY SYSTEMS What four qualities of sensation must 1. Modality be encoded for effective transmission? 2. Location 3. Intensity 4. Duration What is a sensory receptor? A specialized cell that transduces physical environmental stimuli into neural signals What types of cells are usually Specialized epithelial and neuronal cells sensory receptors? What is meant by "receptive field"? Area on the body that changes the firing rate of its sensory neuron when stimulated What is the field called if it increases Excitatory the firing rate? What is the field called if it decreases Inhibitory the firing rate? A sensory receptor must transmit The receptors are simple transducers, its findings back to the CNS for each converting a different type of interpretation. How does the CNS energy into electrical impulses. These differentiate between an AP (action impulses follow defined pathways potential) from a retinal cell and an into the CNS and relay on specific AP from a somatosensory cell? nuclei. These pathways define how sensory perception is recognized. For an example of this, think about rubbing your eyes. That pressure is always perceived as flashes of light. How are afferent neurons of the By diameter (roman numerals I-IV) sensory systems classified? and conduction velocity (A and C) 28 Deja Review: Physiology Give the relative size of the following sensory neuron classifications: Largest II Medium III Small IV Smallest Give the relative conduction velocity of the following sensory neuron classifications: Aa Fastest A/J Medium Ao Medium c Slowest Describe the series of events that occur in sensory transduction. Sti111ulus acts on sensory receptor If an adcqm1tc stimulus intensity is achieved bAThre>h<>l<I D Receptor transduces this stimuli into Fails Succeeds a graded generator potential If graded potential Dexceeds threshold A train of action potentials is triggered. Low High Stimulus intensity is encoded by AP frequency and population coding. Figure 2.1 Sensory transduction sequence. What effect does intensity of the Larger stimuli create larger graded stimulus have on the receptor potentials (e.g., receptor potential) potential generated? What direction does the current Positive inward flow, depolarizing usually flow when sensory receptor the cell channels open? What is an exception to this flow Photoreceptors: stimulation decreases direction? inward current and hyperpolarizes the membrane Neurophysiology 29 As seen in Fig. 2.1, how does the Primarily with frequency coding; greater body encode intensity changes intensity leads to a higher frequency. in sensory stimuli? Also with population coding; a greater number of receptors will be triggered by a stimulus of increasing intensity. What is sensory adaptation? The dynamic change in the frequency of triggered AP's with a static stimuli; this occurs at the level of the receptor What types of adaptation do sensory Tonic (slowly adapting) and phasic receptors exhibit? (rapidly adapting) Which type of sensory adaptation detects Phasic the beginning of (onset) and the end of (offset) of a stimulus? What type of sensory adaptation responds Tonic consistently to prolonged stimuli? What type of sensory adaptation detects Tonic steady stimuli? What happens to action potential Decreases frequency in phasic receptors with constant stimulation? Label the three types of adaptation seen below: 2 Stimuli _J L Generator potential Action ---'11.1.1111 J.J.J.J..111111.J...J...LII I _,__I _--1.LLllI _._._II _,_I ----11-11--L-I__
Recommended publications
  • Thresholds of Audibility for Bone-Conduction Headsets
    Proceedings of ICAD 05-Eleventh Meeting of the International Conference on Auditory Display, Limerick, Ireland, July 6-9, 2005 THRESHOLDS OF AUDIBILITY FOR BONE-CONDUCTION HEADSETS Bruce N. Walker and Raymond M. Stanley Sonification Lab, School of Psychology Georgia Institute of Technology 654 Cherry Street Atlanta, Georgia USA 30332. [email protected], [email protected] ABSTRACT input jack, these newer “bonephones” are now suitable for implementation in auditory displays. The transducers of the Despite advantages of using headphones, including privacy and bonephones rest on the mastoid, which is the raised portion of portability, headphones have one essential drawback: they cover the temporal bone located directly behind the ear. The mastoid the ears of the listener, thus deteriorating detection and is a preferable transducer location relative to the forehead or localization of ambient sounds. Bone-conduction headsets leave temple because it contains the inner ear, is relatively immune to the ears uncovered, yet maintain portability and privacy. An the interference associated with muscle tissue operating the jaw, initial step in establishing guidelines for using these and allows stereo presentation of sounds. “bonephones” is taken in the present research. The input into the bonephones necessary to reach a 71% detection threshold is measured at critical band centers ranging from 150 Hz to 13500 1.2. The Need For Bone-conduction Research Hz. These thresholds were measured with an open ear canal, a plugged ear canal, and a masking noise. Results were consistent Most of psychoacoustics research and all of the human factors with other bone-conduction threshold measurements. The utility research on auditory displays that the authors are aware of has of this information in the context of equalization for the audio focused on the conduction of sound through air, and thus has presented through the bonephones is discussed.
    [Show full text]
  • Use of High-Frequency and Muscle Vibration in the Treatment of Tinnitus
    International Tinnitus Journal, Vol. 9, No.1, 32-36 (2003) Use of High-Frequency and Muscle Vibration in the Treatment of Tinnitus Martin L. Lenhardt,1,2 Barbara A. Goldstein,2,3 Abraham Shulman,2,3 and Robert Guinta2,3 IProgram in Biomedical Engineering, Virginia Commonwealth University, Richmond, VA; 2Sound Technique Systems, LLC; and 3Martha Entenmann Tinnitus Research Center, State University of New York, Brooklyn, NY Abstract: Although tinnitus is defined as an internal auditory sensation, external auditory stimuli can mask tinnitus under some circumstances. High-frequency vibration delivered as bone conduction stimulation is effective in masking high-pitched tinnitus. In this preliminary report, somatosensory stimulation in the form of low-frequency muscle vibration can also mask high-frequency tinnitus. Somatosensory stimulation provides fast, immediate relief, whereas high-frequency vibration provides longer-lasting benefit. Either modality can stand alone or can be used in conjunction for tinnitus treatment. A clinically feasible technique has been iden­ tified for more wide-scale evaluation. Key Words: hallucinations; high-frequency vibration; somatosensory; tinnitus; tinnitus model n a we\l-known experiment, von Bekesy [1] can­ only partially overlap with their tinnitus pitch , appar­ I celed the perception of an air-conducted pure tone ently masking can be effective regardless of whether with a second tone of the same frequency pre­ the masker contains the tinnitus frequencies [9]. sented simultaneously to the ear by bone conduction. This outcome is just the opposite in cochlear mask­ The trick was to alter the phase, canceling the stimula­ ing. The more a masker is frequency-separated from tion in the cochlea.
    [Show full text]
  • Bone Conduction Hearing: a Natural Pathway to Hearing
    BoneBone ConductionConduction Hearing:Hearing: A Natural Pathway to Hearing George Cire, Au.D [email protected] Donna Sorkin, M.A. [email protected] GeorgeGeorge Cire,Cire, Au.D.Au.D. • Fellow, American Academy of Audiology • Member and CCC/A, ASHA • Clinical Manager, Bone Anchored Solutions, Cochlear Americas • Award for Continuing Education, ASHA • Previously, Member of TX Board of Examiners in Speech Pathology & Audiology • Thirty years serving as an Audiologist in both private practice and industry DonnaDonna Sorkin,Sorkin, M.A.M.A. • Vice President, Consumer Affairs, Cochlear Americas • Manage Cochlear Americas HOPE program • Address public policy issues impacting our recipient community • Previously, Executive Director of HLAA and AG Bell • Advocate for consumers and families PresentationPresentation topicstopics z How the Ear works z Types of Hearing Loss z Audiogram Patterns z Possible causes for each type of Hearing loss z Treatment Options z Bone Conduction Hearing Devices z Case Studies z How Early Intervention can help a child who may be a candidate for bone conduction hearing MajorMajor DivisionsDivisions ofof thethe EarEar z Outer Ear (Pinna and Ear Canal) z Middle Ear (Eardrum, Ossicular Chain) z Inner Ear (Cochlea) TheThe EarEar TypesTypes ofof HearingHearing lossloss z Conductive z Sensorineural z Mixed TheThe EarEar TheThe HearingHearing EvaluationEvaluation z A primary goal of the clinical evaluation of hearing is to identify the type and severity of the hearing loss z Done by testing both the air conduction and
    [Show full text]
  • Speech Reception Via Bone Conduction
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 1989 Speech reception via bone conduction Sherry G. Morris Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Speech and Hearing Science Commons Let us know how access to this document benefits ou.y Recommended Citation Morris, Sherry G., "Speech reception via bone conduction" (1989). Dissertations and Theses. Paper 3908. https://doi.org/10.15760/etd.5792 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. AN ABSTRACT OF THE THESIS OF Sherry G. Morris for the Master of Science in Speech Communication presented May 5, 1989. Title: Speech Reception via Bone Conduction. APPROVED BY THE MEMBERS OF THE THESIS COMMITTEE: Tb6mas D~n, Chair _/ ~ '!'he purpose of this investigation was to determine if the performance-intensity function for spondees deli- vere~ via bone conduction (using the Radioear E-72 and Pracitronic KH-70) differed from the performance-intensity function for air conduction (using TDH-39 earphones). A secondary consideration addressed in this study was the comparison ~= the discrimination sccrcs using the three transdu;::ers. Performance-intensity funC"tions for spondee thresho:ds were calculated on 12 normal hearing subjects 2 using two bone conduction vibrators, the Radioear B-72 and Pracitronic KH-70, and TDH-39 earphones. Results indicated that there was no significant difference between the performance-intensity function of speech via bone conduction as compared to speech via air conduction.
    [Show full text]
  • Cochlear Implants and Osseointegrated Bone Conduction Devices Policy
    Manual: IU Health Plans Department: Utilization Management Policy # UMPA030.1 Effective Date: 12/19/2019 Supersedes Policy # UMPA030.0/or Last update or issue date: 05/01/2018 Page(s) Including attachments: 8 Medicare Advantage X Commercial Cochlear Implants and Osseointegrated Bone Conduction Devices Policy I. Purpose Indiana University Health Plans (IU Health Plans) considers clinical indications when making a medical necessity determination for Cochlear Implants and Osseointegrated Bone Conduction Devices. II. Scope All Utilization Management (UM) staff conducting physical and behavioral health UM review. III. Exceptions Variations A. Those with cochlear implants may be at a particularly increased risk for pneumococcal meningitis. Cochlear implant recipients and all potential implant recipients must be up-to-date with age appropriate recommended vaccinations according to the CDC/Advisory Committee on Immunization Practices (ACIP) to prevent pneumoccocal infections. B. Cochlear implantation may be covered for treatment of bilateral pre- or post-linguistic, sensorineural, moderate-to-profound hearing loss in individuals who demonstrate limited benefit from amplification. C. The replacement of existing external components with upgraded components when done solely to improve appearance or to treat psychological symptomatology or complaints because it is considered not medically necessary and will not covered. IV. Definitions None V. Policy Statements A. IU Health Plans considers Cochlear implants and Osseointegrated Bone Conduction Devices medically necessary for one or more of the following indications: 1. Coverage is provided only for those patients who meet all of the following selection guidelines based on their appropriate age bracket: a. One or more of the following based on the member’s age bracket: 1) Adults (ages 18 and over) must meet all of the following: a) Diagnosis of bilateral moderate-to-profound sensorineural hearing impairment with limited benefit from appropriate hearing (or vibrotactile) aids.
    [Show full text]
  • Cochlear Implants, Bone Anchored Hearing Aids (BAHA), Auditory Brainstem Implants, and Other Hearing Assistive Devices Medical Policy
    Cochlear Implants, Bone Anchored Hearing Aids (BAHA), Auditory Brainstem Implants, and Other Hearing Assistive Devices Medical Policy Service: Cochlear Implants, Bone Anchored Hearing Aids (BAHA), Auditory Brainstem Implants, and Other Hearing Assistive Devices PUM 250-0014 Medical Policy Committee Approval 07/29/2021 Effective Date 12/01/2021 Prior Authorization Needed Yes Description: Sensorineural hearing loss occurs with damage to the inner ear/cochlea or in the pathways of the nerves from the inner ear to the brain. Conductive hearing loss occurs due to dampening of sound before it reaches the cochlea and may be caused by blockage or damage along the outer ear, ear canal, or middle ear. Mixed hearing loss is a combination of both conductive and sensorineural hearing loss. Conventional hearing aids amplify the sound output into the ear canal. These may be “an exclusion of the health plan”. A cochlear implant is an implantable prosthetic device that processes sounds electronically then transmits electronic stimulation to the cochlea (auditory part of the inner ear) resulting in a sense of sound to individuals with hearing loss. All cochlear implant devices consist of internal and external hardware. External components are worn either behind the ear or on the body. They include a microphone, a sound processor, batteries, and a transmitter that send coded electrical information and power to the internal parts. The internal components are placed surgically underneath the skin and include a receiver and an electrode array within the cochlea. A bone-anchored hearing aid (BAHA) is a type of hearing aid that provides sound conduction through a titanium implant in one of the bones of the skull.
    [Show full text]
  • Audition CLINICAL VIGNETTE Case History Sabina Ketter Is a 51 Year
    721 Audition Clinical Vignette CLINICAL VIGNETTE Case History Sabina Ketter is a 51 year-old female who complains of decreased hearing in her right ear. She says it has been getting progressively worse over the past two years so that she now has to use her left ear when talking on the telephone. She also notes an occasional high pitched ringing (tinnitus) in her ear. For several years, she has suffered from headaches, which had recently become worse and which occasionally awaken her from sleep. Her speech is normal, and she denies problems with dizziness, swallowing or vision. She had no recollection of ever having an ear infection. Past Medical History There are no previous neurologic problems or serious illnesses. She is not taking any medications other than an occasional aspirin or ibuprofen for pain. She has no allergies. Social History Mrs. Ketter is married and works with her husband and 3 children on the family farm. She does not smoke and drinks moderate amounts of alcohol. Family History There is no family history of hearing loss. A brother was diagnosed recently with Parkinson’s disease. Her father and a maternal aunt have glaucoma. Physical Examination General: This is an alert person in no distress. Vital signs: Temperature = 97.8°F Blood Pressure = 125/77 Pulse = 67 and regular Respiration = 13 Height = 5’6” Weight = 152 lbs. Neurologic: Fundoscopy revealed normal optic nerves. Visual acuity and visual fields, determined by confrontation, are normal. There was no response in either eye when the right cornea was stimulated. Both eyes blinked upon stimulation of the left cornea.
    [Show full text]
  • Review of Bone Conduction Hearing Devices
    Review Review of Bone Conduction Hearing Devices Susan E. Ellsperman *, Emily M. Nairn and Emily Z. Stucken Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, MI 48109, USA; [email protected] (E.M.N.); [email protected] (E.Z.S.) * Correspondence: [email protected] Abstract: Bone conduction is an efficient pathway of sound transmission which can be harnessed to provide hearing amplification. Bone conduction hearing devices may be indicated when ear canal pathology precludes the use of a conventional hearing aid, as well as in cases of single-sided deafness. Several different technologies exist which transmit sound via bone conduction. Here, we will review the physiology of bone conduction, the indications for bone conduction amplification, and the specifics of currently available devices. Keywords: bone conduction; bone-anchored hearing aid; osseointegrated implant; transcutaneous bone conduction; percutaneous bone conduction 1. Introduction The concept of bone conduction hearing, the phenomenon through which a vibrating object can transmit sound, was first described in writing in the 1500s and credited to Girolamo Cardano [1]. Rudimentary devices such as a rod or spear were initially utilized as assistive devices for those with hearing loss by providing a route for vibrations to reach the listener. As technology advanced and the carbon microphone was developed in the early Citation: Ellsperman, S.E.; Nairn, 1900s, bone conduction devices designed to convert sounds into mechanical signals that E.M.; Stucken, E.Z. Review of Bone vibrate the mastoid bone were created. Early devices were held in place with a headband Conduction Hearing Devices.
    [Show full text]
  • Evolution of Mammalian Sound Localization Circuits: a Developmental Perspective
    Progress in Neurobiology 141 (2016) 1–24 Contents lists available at ScienceDirect Progress in Neurobiology journal homepage: www.elsevier.com/locate/pneurobio Review article Evolution of mammalian sound localization circuits: A developmental perspective a,b, Hans Gerd Nothwang * a Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany b Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany A R T I C L E I N F O A B S T R A C T Article history: Localization of sound sources is a central aspect of auditory processing. A unique feature of mammals is Received 29 May 2015 the smooth, tonotopically organized extension of the hearing range to high frequencies (HF) above Received in revised form 27 February 2016 10 kHz, which likely induced positive selection for novel mechanisms of sound localization. How this Accepted 27 February 2016 change in the auditory periphery is accompanied by changes in the central auditory system is unresolved. Available online 28 March 2016 + I will argue that the major VGlut2 excitatory projection neurons of sound localization circuits (dorsal cochlear nucleus (DCN), lateral and medial superior olive (LSO and MSO)) represent serial homologs with Keywords: modifications, thus being paramorphs. This assumption is based on common embryonic origin from an Brainstem + + Atoh1 /Wnt1 cell lineage in the rhombic lip of r5, same cell birth, a fusiform cell morphology, shared Evolution Homology genetic components such as Lhx2 and Lhx9 transcription factors, and similar projection patterns. Such a Innovation parsimonious evolutionary mechanism likely accelerated the emergence of neurons for sound Rhombomere localization in all three dimensions.
    [Show full text]
  • Acoustically Responsive Fibers in the Vestibular Nerve of the Cat
    The Journal of Neuroscience, October 1994, 74(10): 6056-6070 Acoustically Responsive Fibers in the Vestibular Nerve of the Cat Michael P. McCue1v2*a and John J. Guinan, Jr.r.2.3-4 ‘Eaton-Peabody Laboratory of Auditory Physiology, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, 2Harvard-MIT Division of Health Science and Technology and Research Laboratory of Electronics, and 3Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and 4Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02115 Recordings were made from single afferent fibers in the and levels within the normal range of human hearing. We inferior vestibular nerve, which innervates the saccule and suggest a number of auditory roles that these fibers may posterior semicircular canal. A substantial portion of the fi- play in the everyday life of mammals. bers with irregular background activity increased their firing [Key words: saccule, otoliths, auditory system, mamma- in response to moderately intense clicks and tones. lian sound reception, middle-ear muscles, cochlear nucleus] In responsive fibers, acoustic clicks evoked action poten- tials with minimum latencies of I 1 .O msec. Fibers fell into The vertebrate inner ear contains several senseorgans involved two classes, with the shortest latency either to condensation in the maintenance of equilibrium and the detection of vibra- clicks (PUSH fibers) or to rarefaction clicks (PULL fibers). tion. The precise sensory role assumedby homologous organs Low-frequency (800 Hz) tone bursts at moderately high sound varies among species.For example, the sacculeis thought to act levels (>80 dB SPL) caused synchronization of spikes to asa linear accelerometerin mammals(Fernindez and Goldberg, preferred phases of the tone cycle.
    [Show full text]
  • Life's Worth Hearing
    Life’s worth hearing Exploring a Cochlear™ Bone Conduction Solution Opening up a new world of sound When you live with hearing loss, you’re not simply missing out on sounds, you could be missing out on life. It’s time to get back what you’ve been missing. If you struggle to hear because of conditions such as draining ears, chronic ear infections, acoustic neuroma or Microtia and Atresia, a bone conduction solution may be what you have been waiting for. 2 “ My hearing loss no longer slows me down. The Baha System keeps up with me and my active lifestyle.” Tiff any – Baha recipient 3 Hope when you need it most Every hearing loss is different and the causes vary from person to person. Your hearing loss may affect one ear or both ears and it may stem from a problem in the inner, middle or outer ear. Depending on the degree of hearing loss and which part of the ear is damaged, a bone conduction solution can help you regain access to the sounds you have been missing. Cochlear™ bone conduction solutions are clinically proven medical treatment options for those with single-sided deafness, conductive hearing loss or mixed hearing loss. Single-sided deafness Conductive hearing loss Mixed hearing loss Sensorineural hearing loss in one When your outer or middle ear is Refers to a combination of ear where you have little or no damaged and prevents sound from conductive and sensorineural hearing in that ear, but normal reaching your inner ear. hearing loss. This means there hearing in the other ear.
    [Show full text]
  • Bone Anchored Hearing Aids (BAHA) (PDF)
    Clinical Policy: Bone-Anchored Hearing Aid Reference Number: CP.MP.93 Coding Implications Date of Last Revision: 08/21 Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description Bone-anchored hearing aids (BAHAs) are an alternative to conventional hearing aids when physical or medical complications prevent adequate functional improvement in hearing. Sound quality of BAHAs is superior to, and pain/discomfort is largely diminished, when compared to traditional air-conduction hearing aids. Policy/Criteria I. It is the policy of health plans affiliated with Centene Corporation® that BAHAs are medically necessary for member/enrollees with all of the following indications: A. Implantable device for age ≥ 5 years; or head band device for age < 5 years or medically unable to have an implant; B. Unilateral or bilateral conductive and/or mixed hearing loss (i.e., conductive and sensorineural hearing loss) or unilateral sensorineural hearing loss ( i.e., sensorineural deafness in one ear and normal hearing in the other ear); C. Pure tone average bone conduction threshold (measured at 0.5, 1, 2, and 3kHz) ≤ 70 dBHL (decibels hearing level) and an unaided speech discrimination score not worse than 60%; D. For bilateral BAHA, there is a mean maximum difference <10 dB between the right bone conduction threshold and left bone conduction threshold; E. For unilateral deafness, the hearing ear should have a bone conduction threshold of < 20dB; F. One of the following indications: 1. Congenital or surgically induced malformations of the ear canal such that it does not exist or cannot accommodate a standard air-conduction hearing aid; 2.
    [Show full text]