Associations Between Known Genetic Risk Variants and CKD Stage and Etiology in the GCKD Study” Handelt Es Sich Um Meine Eigenständig Erbrachte Leistung

Total Page:16

File Type:pdf, Size:1020Kb

Associations Between Known Genetic Risk Variants and CKD Stage and Etiology in the GCKD Study” Handelt Es Sich Um Meine Eigenständig Erbrachte Leistung Aus dem Department für Biometrie, Epidemiologie und Medizinische Bioinformatik Institut für Genetische Epidemiologie des Universitätsklinikums Freiburg im Breisgau Associations between Known Genetic Risk Variants and CKD Stage and Etiology in the GCKD Study INAUGURAL - DISSERTATION zur Erlangung des Medizinischen Doktorgrades der Medizinischen Fakultät der Albert-Ludwigs-Universität Freiburg im Breisgau Vorgelegt 2017 von Sebastian Wunnenburger, geboren in Leipzig - 1 - Dekanin: Prof. Dr. Kerstin Krieglstein Erste Gutachterin: Prof. Dr. Anna Köttgen, M.P.H. Zweiter Gutachter: Prof. Dr. Wolfgang Kühn Jahr der Promotion: 2018 - 2 - Table of contents List of Abbreviations ........................................................................................................................... - 5 - List of Tables ....................................................................................................................................... - 6 - 1 Introduction ................................................................................................................................. - 8 - 1.1 Chronic kidney disease (CKD) – definition, epidemiology, clinical presentation, diagnosis and treatment .............................................................................................................................................. - 8 - 1.2 Specific etiologies of CKD .................................................................................................... - 12 - 1.2.1 Introduction ....................................................................................................................... - 12 - 1.2.2 Glomerular diseases .......................................................................................................... - 13 - 1.2.3 IgA nephropathy ................................................................................................................ - 13 - 1.2.4 Membranous nephropathy (MN) ....................................................................................... - 15 - 1.2.5 Systemic lupus erythematosus (SLE) and lupus nephritis ................................................. - 15 - 1.2.6 Granulomatosis with polyangiitis (GPA) .......................................................................... - 17 - 1.2.7 Diabetes mellitus ............................................................................................................... - 17 - 1.2.8 Hypertensive chronic kidney disease ................................................................................ - 20 - 1.3 Genetic epidemiology: Genome-wide association studies and SNP associations ................. - 21 - 1.4 Aims of the thesis .................................................................................................................. - 25 - 2 Methods ..................................................................................................................................... - 27 - 2.1 Study populations .................................................................................................................. - 27 - 2.2 Exposure ................................................................................................................................ - 29 - 2.2.1 Genotyping and sequencing .............................................................................................. - 29 - 2.2.2 Quality control and filtering .............................................................................................. - 29 - 2.2.3 Imputation ......................................................................................................................... - 30 - 2.3 Outcome ................................................................................................................................ - 30 - 2.3.1 eGFR/UACR ..................................................................................................................... - 30 - 2.3.2 Case and control groups .................................................................................................... - 30 - 2.3.2.1 Case groups ....................................................................................................................... - 31 - 2.3.2.2 Control groups ................................................................................................................... - 31 - 2.3.3 Covariates .......................................................................................................................... - 33 - 2.4 Statistical analyses ................................................................................................................. - 33 - 2.4.1 Literature search for previously reported SNPs associated with kidney function and disease .. ........................................................................................................................................... - 33 - 2.4.2 Descriptive statistics .......................................................................................................... - 37 - 2.4.3 Regression analyses ........................................................................................................... - 37 - 2.4.4 Covariates .......................................................................................................................... - 37 - - 3 - 2.4.5 Sensitivity and conditional analyses .................................................................................. - 38 - 2.4.6 Statistical significance ....................................................................................................... - 38 - 2.4.7 Software............................................................................................................................. - 38 - 3 Results ....................................................................................................................................... - 39 - 3.1 Demographic data and baseline characteristics ..................................................................... - 39 - 3.2 CKD etiologies ...................................................................................................................... - 40 - 3.3 GFR/UACR as kidney function measures ............................................................................. - 40 - 3.4 Hardy-Weinberg equilibrium test .......................................................................................... - 41 - 3.5 Genetic associations .............................................................................................................. - 42 - 3.5.1 Associations of SNPs identified in population-based studies with advanced CKD .......... - 42 - 3.5.2 Associations of SNPs identified in population-based studies with hypertensive and diabetic kidney disease.................................................................................................................................... - 43 - 3.5.3 Associations of SNPs with specific CKD etiologies ......................................................... - 44 - 3.5.3.1 Associations of CKD etiology-specific risk variants with the previously reported CKD etiology ........................................................................................................................................... - 44 - 3.5.3.2 Associations of CKD etiology-specific risk variants across different CKD etiologies ..... - 46 - 3.5.3.3 Conditional analysis of independence of CKD etiology specific SNPs ............................ - 49 - 3.5.3.4 Conditional analysis to assess independence of risk variants or T1DM-attributed CKD and T1DM ........................................................................................................................................... - 51 - 3.5.3.5 Linkage disequilibrium calculations .................................................................................. - 52 - 4 Discussion ................................................................................................................................. - 53 - 4.1 Summary of results ................................................................................................................ - 53 - 4.2 Interpretation in the context of the literature ......................................................................... - 54 - 4.3 Clinical interpretation ............................................................................................................ - 57 - 4.4 Strengths and limitations ....................................................................................................... - 59 - 4.5 Conclusion ............................................................................................................................. - 60 - 5 Abstract (English) ...................................................................................................................... - 61 - 6 Abstract (German) ..................................................................................................................... - 62 - 7 Acknowledgement ..................................................................................................................... - 63 - 8 Eidesstaatliche Versicherung..................................................................................................... - 64 - 9 Supplementary Tables ............................................................................................................... - 65 - 10 Bibliography .........................................................................................................................
Recommended publications
  • ZCWPW1 Is Recruited to Recombination Hotspots by PRDM9
    RESEARCH ARTICLE ZCWPW1 is recruited to recombination hotspots by PRDM9 and is essential for meiotic double strand break repair Daniel Wells1,2†*, Emmanuelle Bitoun1,2†*, Daniela Moralli1, Gang Zhang1, Anjali Hinch1, Julia Jankowska1, Peter Donnelly1,2, Catherine Green1, Simon R Myers1,2* 1The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford, United Kingdom; 2Department of Statistics, University of Oxford, Oxford, United Kingdom Abstract During meiosis, homologous chromosomes pair and recombine, enabling balanced segregation and generating genetic diversity. In many vertebrates, double-strand breaks (DSBs) initiate recombination within hotspots where PRDM9 binds, and deposits H3K4me3 and H3K36me3. However, no protein(s) recognising this unique combination of histone marks have been identified. We identified Zcwpw1, containing H3K4me3 and H3K36me3 recognition domains, as having highly correlated expression with Prdm9. Here, we show that ZCWPW1 has co-evolved with PRDM9 and, in human cells, is strongly and specifically recruited to PRDM9 binding sites, with higher affinity than sites possessing H3K4me3 alone. Surprisingly, ZCWPW1 also recognises CpG dinucleotides. Male Zcwpw1 knockout mice show completely normal DSB positioning, but persistent DMC1 foci, severe DSB repair and synapsis defects, and downstream sterility. Our findings suggest ZCWPW1 recognition of PRDM9-bound sites at DSB hotspots is critical for *For correspondence: synapsis, and hence fertility. [email protected] (DW); [email protected] (EB); [email protected] (SRM) †These authors contributed Introduction equally to this work Meiosis is a specialised cell division, producing haploid gametes essential for reproduction. Uniquely, during this process homologous maternal and paternal chromosomes pair and exchange Competing interests: The DNA (recombine) before undergoing balanced independent segregation.
    [Show full text]
  • This Is an Author Version of the Contribution Published On
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institutional Research Information System University of Turin This is an author version of the contribution published on: Questa è la versione dell’autore dell’opera: Gharavi AG, Kiryluk K, Choi M, Li Y, Hou P, Xie J, Sanna-Cherchi S, Men CJ, Julian BA, Wyatt RJ, Novak J, He JC, Wang H, Lv J, Zhu L, Wang W, Wang Z, Yasuno K, Gunel M, Mane S, Umlauf S, Tikhonova I, Beerman I, Savoldi S, Magistroni R, Ghiggeri GM, Bodria M, Lugani F, Ravani P, Ponticelli C, Allegri L, Boscutti G, Frasca G, Amore A, Peruzzi L, Coppo R, Izzi C, Viola BF, Prati E, Salvadori M, Mignani R, Gesualdo L, Bertinetto F, Mesiano P, Amoroso A, Scolari F, Chen N, Zhang H, Lifton RP. Genome- wide association study identifies susceptibility loci for IgA nephropathy. Nat Genet. 2011, Mar 13;43(4):321-7. doi: 10.1038/ng.787. The definitive version is available at: La versione definitiva è disponibile alla URL: [http://www.nature.com/ng/journal/v43/n4/full/ng.787.html] NIH Public Access Author Manuscript Nat Genet. Author manuscript; available in PMC 2012 August 06. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Nat Genet. ; 43(4): 321–327. doi:10.1038/ng.787. Genome-wide Association Study Identifies Susceptibility Loci for IgA Nephropathy Ali G. Gharavi1, Krzysztof Kiryluk1, Murim Choi2, Yifu Li1, Ping Hou1,3, Jingyuan Xie1,4, Simone Sanna-Cherchi1, Clara J.
    [Show full text]
  • HORMAD2 (C-18): Sc-82192
    SAN TA C RUZ BI OTEC HNOL OG Y, INC . HORMAD2 (C-18): sc-82192 BACKGROUND SOURCE HORMAD2 (HORMA domain containing 2) is a 307 amino acid protein that HORMAD2 (C-18) is an affinity purified rabbit polyclonal antibody raised contains one HORMA domain and is expressed in brain, testis and liver with against a peptide mapping within an internal region of HORMAD2 of human lower levels present in kidney. The gene encoding HORMAD2 maps to human origin. chromosome 22, which houses over 500 genes and is the second smallest human chromosome. Mutations in several of the genes that map to chromo - PRODUCT some 22 are involved in the development of Phelan-McDermid syndrome, Each vial contains 100 µg IgG in 1.0 ml of PBS with < 0.1% sodium azide Neurofibromatosis type 2, autism and schizophrenia. Additionally, translo - and 0.1% gelatin. cations between chromosomes 9 and 22 may lead to the formation of the Philadelphia Chromosome and the subsequent production of the novel fusion Blocking peptide available for competition studies, sc-82192 P, (100 µg protein Bcr-Abl, a potent cell proliferation activator found in several types of peptide in 0.5 ml PBS containing < 0.1% sodium azide and 0.2% BSA). leukemias. APPLICATIONS REFERENCES HORMAD2 (C-18) is recommended for detection of HORMAD2 of mouse and 1. Gilbert, F. 1998. Disease genes and chromosomes: disease maps of the human origin by Western Blotting (starting dilution 1:200, dilution range human genome. Chromosome 22. Genet. Test. 2: 89-97. 1:100-1:1000), immunofluorescence (starting dilution 1:50, dilution range 1:50-1:500) and solid phase ELISA (starting dilution 1:30, dilution range 2.
    [Show full text]
  • Genetic Investigation in Non-Obstructive Azoospermia: from the X Chromosome to The
    DOTTORATO DI RICERCA IN SCIENZE BIOMEDICHE CICLO XXIX COORDINATORE Prof. Persio dello Sbarba Genetic investigation in non-obstructive azoospermia: from the X chromosome to the whole exome Settore Scientifico Disciplinare MED/13 Dottorando Tutore Dott. Antoni Riera-Escamilla Prof. Csilla Gabriella Krausz _______________________________ _____________________________ (firma) (firma) Coordinatore Prof. Carlo Maria Rotella _______________________________ (firma) Anni 2014/2016 A la meva família Agraïments El resultat d’aquesta tesis és fruit d’un esforç i treball continu però no hauria estat el mateix sense la col·laboració i l’ajuda de molta gent. Segurament em deixaré molta gent a qui donar les gràcies però aquest són els que em venen a la ment ara mateix. En primer lloc voldria agrair a la Dra. Csilla Krausz por haberme acogido con los brazos abiertos desde el primer día que llegué a Florencia, por enseñarme, por su incansable ayuda y por contagiarme de esta pasión por la investigación que nunca se le apaga. Voldria agrair també al Dr. Rafael Oliva per haver fet possible el REPROTRAIN, per haver-me ensenyat moltíssim durant l’època del màster i per acceptar revisar aquesta tesis. Alhora voldria agrair a la Dra. Willy Baarends, thank you for your priceless help and for reviewing this thesis. També voldria donar les gràcies a la Dra. Elisabet Ars per acollir-me al seu laboratori a Barcelona, per ajudar-me sempre que en tot el què li he demanat i fer-me tocar de peus a terra. Ringrazio a tutto il gruppo di Firenze, che dal primo giorno mi sono trovato come a casa.
    [Show full text]
  • BMC Bioinformatics Biomed Central
    BMC Bioinformatics BioMed Central Research article Open Access Correlated fragile site expression allows the identification of candidate fragile genes involved in immunity and associated with carcinogenesis Angela Re*1, Davide Cora1,4, Alda Maria Puliti2,3, Michele Caselle1,4 and Isabella Sbrana2 Address: 1Dipartimento di Fisica Teorica dell'Università degli Studi di Torino e INFN, Via P. Giuria 1 – I 10125 Torino, Italy, 2Dipartimento di Biologia dell'Università degli Studi di Pisa, Via San Giuseppe 22 – I 56126 Pisa, Italy, 3Laboratorio di Genetica Molecolare, Istituto G.Gaslini, L.go Gaslini 5 – I 16147 Genova, Italy and 4Centro Interdipartimentale Sistemi Complessi in Biologia e Medicina Molecolare, Via Accademia Albertina 13 – I 10123 Torino, Italy Email: Angela Re* - [email protected]; Davide Cora - [email protected]; Alda Maria Puliti - [email protected]; Michele Caselle - [email protected]; Isabella Sbrana - [email protected] * Corresponding author Published: 18 September 2006 Received: 27 March 2006 Accepted: 18 September 2006 BMC Bioinformatics 2006, 7:413 doi:10.1186/1471-2105-7-413 This article is available from: http://www.biomedcentral.com/1471-2105/7/413 © 2006 Re et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Common fragile sites (cfs) are specific regions in the human genome that are particularly prone to genomic instability under conditions of replicative stress. Several investigations support the view that common fragile sites play a role in carcinogenesis.
    [Show full text]
  • Thesis for Word XP
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publications from Karolinska Institutet From THE DEPARTMENT OF CLINICAL NEUROSCIENCE Karolinska Institutet, Stockholm, Sweden GENETIC ANALYSIS OF CANDIDATE SUSCEPTIBILITY GENES FOR TYPE 1 DIABETES Samina Asad Stockholm 2012 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by Larserics Digital Print AB, Sweden © Samina Asad, 2012 ISBN 978-91-7457-842-3 ABSTRACT Type 1 diabetes (T1D) is a complex disease where the pancreatic β-cells are destroyed in an autoimmune attack. For the patients, this leads to lifelong daily insulin treatment and increased risk for various kinds of complications. It is thought that both environmental as well as genetic factors act in concert to cause T1D. The Human Leukocyte Antigen (HLA) region located on chromosome 6 accounts for about 50% of the genetic risk to develop T1D. Several other genes are also known to contribute to disease risk. Paper I. Previous publications indicate that the programmed cell death 1 (PDCD1) gene (chr.2) is associated to various autoimmune diseases. PDCD1 is involved in maintaining self tolerance. The aim of our study was to test the involvement of the PDCD1 gene in T1D susceptibility. However, when two separate Swedish cohorts were analyzed no association or linkage was found between T1D and the PDCD1 gene. Nor did we observe any association in a meta-analysis with a previous study reporting association between PDCD1 and T1D. Paper II. We have in a previous study observed suggestive linkage to the chromosome 5p13-q13 region in Scandinavian T1D families.
    [Show full text]
  • Feichtinger Phd 2012.Pdf
    Bangor University DOCTOR OF PHILOSOPHY Development of bioinfirmatic analytical approach to identify novel human cancer testis gene candidates Feichtinger, Julia Award date: 2012 Awarding institution: Bangor University Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Development of a Bioinformatic Analytical Approach to Identify Novel Human Cancer Testis Gene Candidates A thesis submitted to Bangor University in candidature for the degree of Doctor of Philosophy in Cancer Studies Julia Feichtinger North West Cancer Research Fund Institute, Bangor University, Bangor, Gwynedd LL57 2UW, UK December 2012 Summary The identification of tumour antigens (TAs) represents an ongoing challenge to the de- velopment of novel cancer diagnostic, prognostic and therapeutic strategies. A group of proteins, the cancer testis (CT) antigens are promising targets for such clinical ap- plications. Their encoding genes show expression restricted to the immunologically privileged testes but their expression is also found in cells with a cancerous phenotype.
    [Show full text]
  • ZCWPW1 Is Recruited to Recombination Hotspots by PRDM9
    bioRxiv preprint doi: https://doi.org/10.1101/821678; this version posted October 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. ZCWPW1 is recruited to recombination hotspots by PRDM9, and is essential for meiotic double strand break repair Authors: Daniel Wells1,2,†, Emmanuelle Bitoun1,2,†, Daniela Moralli1, Gang Zhang1, Anjali Gupta Hinch1, Peter Donnelly1,2, Catherine Green1, Simon R Myers1,2,*. 1The Wellcome Centre for Human Genetics, Roosevelt Drive, University of Oxford, Oxford OX3 7BN, UK. 2Department of Statistics, University of Oxford, Oxford OX1 3LB, UK. †These authors contributed equally to this work. *Corresponding author. Email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/821678; this version posted October 30, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract During meiosis, homologous chromosomes pair (synapse) and recombine, enabling balanced segregation and generating genetic diversity. In many vertebrates, recombination initiates with double-strand breaks (DSBs) within hotspots where PRDM9 binds, and deposits H3K4me3 and H3K36me3. However, no protein(s) recognising this unique combination of histone marks have yet been identified. We identified Zcwpw1, which possesses H3K4me3 and H3K36me3 recognition domains, as highly co-expressed with Prdm9. Here, we show that ZCWPW1 has co-evolved with PRDM9 and, in human cells, is strongly and specifically recruited to PRDM9 binding sites, with higher affinity than sites possessing H3K4me3 alone.
    [Show full text]