Remote Access and SSH
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Many Slides Borrowed from Ben Zhao, Christo Wilson, & Others
12. Network Attacks Blase Ur and David Cash (many slides borrowed from Ben Zhao, Christo Wilson, & others) February 7th, 2020 CMSC 23200 / 33250 Network threat model • Network scanning • Attacks on confidentiality (e.g., eavesdropping) • Attacks on integrity (e.g., spoofing, packet injection) • Attacks on availability (e.g., denial of service (DoS)) Scanning and observing networks Network Scanning: Ping • Essential, low-level network utility • Sends a “ping” ICMP message to a host on the internet $ ping 66.66.0.255 PING 66.66.0.255 (66.66.0.255) 56(84) bytes of data. 64 bytes from 66.66.0.255: icmp_seq=1 ttl=58 time=41.2 ms • Destination host is supposed to respond with a “pong” – Indicating that it can receive packets • By default, ping messages are 56 bytes long (+ some header bytes) – Maximum size 65535 bytes • What if you send a ping that is >65535 bytes long? Ping of Death • $ ping –s 65535 66.66.0.255 – Attack identified in 1997 – IPv6 version identified/fixed in 2013 Network Scanning: Traceroute • traceroute — hops between me and host – Sends repeated ICMP reqs w/ increasing TTL Port Scanning • What services are running on a server? Nmap • 5 seconds to scan a single machine!! SYN scan Only send SYN Responses: • SYN-ACK — port open • RST — port closed • Nothing — filtered (e.g., firewall) Port Scanning on Steroids • How do you speed up scans for all IPv4? – Don’t wait for responses; pipeline – Parallelize: divide & conquer IPv4 ranges – Randomize permutations w/o collisions • Result: the zmap tool – Scan all of IPv4 in 45mins (w/ GigE cxn) – IPv4 in 5 mins w/ 10GigE Eavesdropping Tools: Wireshark, tcpdump, Bro, … Steps: 1. -
Chapter 3: Processes
Chapter 3: Processes Operating System Concepts – 9th Edition Silberschatz, Galvin and Gagne ©2013 Chapter 3: Processes Process Concept Process Scheduling Operations on Processes Interprocess Communication Examples of IPC Systems Communication in Client-Server Systems Operating System Concepts – 9th Edition 3.2 Silberschatz, Galvin and Gagne ©2013 Objectives To introduce the notion of a process -- a program in execution, which forms the basis of all computation To describe the various features of processes, including scheduling, creation and termination, and communication To explore interprocess communication using shared memory and message passing To describe communication in client-server systems Operating System Concepts – 9th Edition 3.3 Silberschatz, Galvin and Gagne ©2013 Process Concept An operating system executes a variety of programs: Batch system – jobs Time-shared systems – user programs or tasks Textbook uses the terms job and process almost interchangeably Process – a program in execution; process execution must progress in sequential fashion Multiple parts The program code, also called text section Current activity including program counter, processor registers Stack containing temporary data Function parameters, return addresses, local variables Data section containing global variables Heap containing memory dynamically allocated during run time Operating System Concepts – 9th Edition 3.4 Silberschatz, Galvin and Gagne ©2013 Process Concept (Cont.) Program is passive entity stored on disk (executable -
Blue Coat SGOS Command Line Interface Reference, Version 4.2.3
Blue Coat® Systems ProxySG™ Command Line Interface Reference Version SGOS 4.2.3 Blue Coat ProxySG Command Line Interface Reference Contact Information Blue Coat Systems Inc. 420 North Mary Ave Sunnyvale, CA 94085-4121 http://www.bluecoat.com/support/contact.html [email protected] http://www.bluecoat.com For concerns or feedback about the documentation: [email protected] Copyright© 1999-2006 Blue Coat Systems, Inc. All rights reserved worldwide. No part of this document may be reproduced by any means nor modified, decompiled, disassembled, published or distributed, in whole or in part, or translated to any electronic medium or other means without the written consent of Blue Coat Systems, Inc. All right, title and interest in and to the Software and documentation are and shall remain the exclusive property of Blue Coat Systems, Inc. and its licensors. ProxySG™, ProxyAV™, CacheOS™, SGOS™, Spyware Interceptor™, Scope™, RA Connector™, RA Manager™, Remote Access™ are trademarks of Blue Coat Systems, Inc. and CacheFlow®, Blue Coat®, Accelerating The Internet®, WinProxy®, AccessNow®, Ositis®, Powering Internet Management®, The Ultimate Internet Sharing Solution®, Permeo®, Permeo Technologies, Inc.®, and the Permeo logo are registered trademarks of Blue Coat Systems, Inc. All other trademarks contained in this document and in the Software are the property of their respective owners. BLUE COAT SYSTEMS, INC. DISCLAIMS ALL WARRANTIES, CONDITIONS OR OTHER TERMS, EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, ON SOFTWARE AND DOCUMENTATION FURNISHED HEREUNDER INCLUDING WITHOUT LIMITATION THE WARRANTIES OF DESIGN, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL BLUE COAT SYSTEMS, INC., ITS SUPPLIERS OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES, WHETHER ARISING IN TORT, CONTRACT OR ANY OTHER LEGAL THEORY EVEN IF BLUE COAT SYSTEMS, INC. -
Unix / Linux Processes Management
UUNNIIXX // LLIINNUUXX -- PPRROOCCEESSSSEESS MMAANNAAGGEEMMEENNTT http://www.tutorialspoint.com/unix/unix-processes.htm Copyright © tutorialspoint.com Advertisements In this chapter, we will discuss in detail about process management in Unix. When you execute a program on your Unix system, the system creates a special environment for that program. This environment contains everything needed for the system to run the program as if no other program were running on the system. Whenever you issue a command in Unix, it creates, or starts, a new process. When you tried out the ls command to list the directory contents, you started a process. A process, in simple terms, is an instance of a running program. The operating system tracks processes through a five-digit ID number known as the pid or the process ID. Each process in the system has a unique pid. Pids eventually repeat because all the possible numbers are used up and the next pid rolls or starts over. At any point of time, no two processes with the same pid exist in the system because it is the pid that Unix uses to track each process. Starting a Process When you start a process (run a command), there are two ways you can run it − Foreground Processes Background Processes Foreground Processes By default, every process that you start runs in the foreground. It gets its input from the keyboard and sends its output to the screen. You can see this happen with the ls command. If you wish to list all the files in your current directory, you can use the following command − $ls ch*.doc This would display all the files, the names of which start with ch and end with .doc − ch01-1.doc ch010.doc ch02.doc ch03-2.doc ch04-1.doc ch040.doc ch05.doc ch06-2.doc ch01-2.doc ch02-1.doc The process runs in the foreground, the output is directed to my screen, and if the ls command wants any input (which it does not), it waits for it from the keyboard. -
Secrets of Powershell Remoting
Secrets of PowerShell Remoting The DevOps Collective, Inc. This book is for sale at http://leanpub.com/secretsofpowershellremoting This version was published on 2018-10-28 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do. © 2016 - 2018 The DevOps Collective, Inc. Also By The DevOps Collective, Inc. Creating HTML Reports in Windows PowerShell A Unix Person’s Guide to PowerShell The Big Book of PowerShell Error Handling DevOps: The Ops Perspective Ditch Excel: Making Historical and Trend Reports in PowerShell The Big Book of PowerShell Gotchas The Monad Manifesto, Annotated Why PowerShell? Windows PowerShell Networking Guide The PowerShell + DevOps Global Summit Manual for Summiteers Why PowerShell? (Spanish) Secrets of PowerShell Remoting (Spanish) DevOps: The Ops Perspective (Spanish) The Monad Manifesto: Annotated (Spanish) Creating HTML Reports in PowerShell (Spanish) The Big Book of PowerShell Gotchas (Spanish) The Big Book of PowerShell Error Handling (Spanish) DevOps: WTF? PowerShell.org: History of a Community Contents Secrets of PowerShell Remoting ..................................... 1 Remoting Basics ................................................ 3 What is Remoting? ............................................ 3 Examining Remoting Architecture .................................. 3 Enabling -
The Evolution of Gandcrab Ransomware
The Evolution of GandCrab Ransomware Tamas Boczan @tamas_boczan Sr. Threat Analyst Why? Why? Why? Business Model: RaaS Panel for Affiliates Mass Delivery Methods • Email attachments - Javascript - Doc - Encrypted doc • Drive- by download Delivery: RDP, Exploits Payload: Starting Point Data collection • System Info • External IP • AV? Payload: Starting Point Data collection Connect Home • System Info • nslookup • External IP • AV? Payload: Starting Point Data collection Connect Home Preparation • System Info • nslookup • Kill Processes • External IP • AV? Payload: Starting Point Data collection Connect Home Preparation Encryption • System Info • nslookup • Kill Processes • AES • External IP • *.GDCB • AV? Payload: Starting Point Data collection Connect Home Preparation Encryption Post-Infection • System Info • nslookup • Kill Processes • AES • Shadow Copies • External IP • *.GDCB • AV? Feb 28: Europol decryptor Data collection Connect Home Preparation Encryption Post-Infection • System Info • nslookup • Kill Processes • AES • Shadow Copies • External IP • *.GDCB • AV? 7 days later: v2 Data collection Connect Home Preparation Encryption Post-Infection • System Info • nslookup • Kill Processes • AES • Shadow Copies • External IP • *.CRAB • AV? • Kernel-AV 7 weeks later: v3 Post-Infection • Shadow Copies • Wallpaper v4 Data collection Connect Home Preparation Encryption Post-Infection • System Info • nslookup • Kill Processes • AES • Shadow Copies • External IP • Salsa • Wallpaper • AV? • *.KRAB • Self-removal • SMB shares v4.1 Data collection -
Shells and Processes
Shells and Processes Bryce Boe 2012/08/08 CS32, Summer 2012 B Outline • Operang Systems and Linux Review • Shells • Project 1 Part 1 Overview • Processes • Overview For Monday (Sor>ng Presentaons) OS Review • Operang systems – Manages system resources: cpu, memory, I/O – Types: single/mul>-user and single/mul>-process – Provides Fairness, security Self Check Quesons • What is the primary benefit oF a mul>-process OS over a single process OS? How is this accomplished? • Explain the difference between mul>programming and mul>tasking Self Check Answers • What is the primary benefit oF a mul>-process OS over a single process OS? How is this accomplished? – Increased resource u>lizaon (primarily oF the CPU) accomplished by scheduling other processes when the currently running process requires I/O SelF Check Answers cont. • Explain the difference between mul>programming and mul>tasking – Mul>programming systems switch the running process when that process requires I/O. – Mul>tasking systems periodically switch the running process aer some (typically minute) period of me Linux Architecture Shells What is a shell? • A shell is a program that provides the interFace between the user and the operang system • Can be used to tell the OS to: – Execute programs (as processes) – Stop, or pause processes – Create, copy, move, remove files – Load or unload device drivers Types of Shells • Command line shells: – Provide a textual input as the user-interFace – Bourne shell (sh), C shell (csh), Bourne-Again shell (bash), cmd.exe • Graphical shells – Provide a point-and-click -
Operating Systems Basics • IOS Architecture Overview • Memory Organization • IOS Processes • IOS Kernel • Packet Buffer Management • Device Drivers
Ch01i.book Page 2 Tuesday, June 13, 2000 2:43 PM This chapter covers the following key topics: • Operating Systems Basics • IOS Architecture Overview • Memory Organization • IOS Processes • IOS Kernel • Packet Buffer Management • Device Drivers Ch01i.book Page 3 Tuesday, June 13, 2000 2:43 PM C H A P T E R 1 Fundamental IOS Software Architecture If you were naming the most popular and widely used computer operating systems, which ones would you choose? Most likely, your list would contain names like UNIX, MS-DOS, Microsoft Windows, or even IBM’s MVS for mainframes. These are all well-known operating systems—you might even be using one on a computer at home. Now, think for a minute; are there any others? Would your list contain Cisco IOS? No, it probably wouldn’t, even though IOS is one of the most widely deployed operating systems in use today. Unlike the general-purpose operating systems just mentioned, many people never encounter IOS directly. Most who use a computer to access the Internet aren’t even aware IOS is behind the scenes. Even those who are aware of IOS, people who use it directly, often don’t consider it to be an operating system but instead just the software that runs Cisco routers. IOS might not run word processors or accounting applications like others on the list but it is still, in fact, an operating system—albeit, one specialized for switching data packets. As you will see, much of the IOS architecture is focused on switching packets as quickly and efficiently as possible. -
Running a Script Without User Intervention 7
,ch02.2190 Page 6 Thursday, April 8, 2004 11:55 AM 2 Chapter 2 Running a Script Without User Intervention 2. We have indicated that scripts can be used to save huge amounts of time by carry- ing out mundane maintenance and configuration tasks automatically. However, it should be pointed out that no matter how sophisticated a script may be, it is never anything more than a text file containing words and symbols that can be under- stood by an interpreter. It is completely powerless to carry out any activities on a workstation unless explicitly executed. If you happen to be sitting in front of a workstation, running a script is trivial: it usually involves typing its name at the command prompt. While it might sound rather painless on the face of it, this inter- active method of running a script is completely impractical if you are attempting to look after a large number of workstations. The reason is simple: visiting each workstation in turn is the time-consuming activity. Unless the maintenance or con- figuration you intend to carry out is extremely complicated, it is likely to take very little additional effort to carry out the task manually. Unfortunately, there is no easy way to start a script remotely short of running a Telnet server on every workstation under your control (and there are many good reasons not to do this). Thankfully, however, there are ways of preinstalling scripts so that they run themselves either at predetermined times or in response to a workstation state. The significance of this is that a maintenance script designed to run regularly has to be installed only once and will require no further interven- tion; a configuration script can be preinstalled and primed so that it will start up by itself when required. -
Freebsd Command Reference
FreeBSD command reference Command structure Each line you type at the Unix shell consists of a command optionally followed by some arguments , e.g. ls -l /etc/passwd | | | cmd arg1 arg2 Almost all commands are just programs in the filesystem, e.g. "ls" is actually /bin/ls. A few are built- in to the shell. All commands and filenames are case-sensitive. Unless told otherwise, the command will run in the "foreground" - that is, you won't be returned to the shell prompt until it has finished. You can press Ctrl + C to terminate it. Colour code command [args...] Command which shows information command [args...] Command which modifies your current session or system settings, but changes will be lost when you exit your shell or reboot command [args...] Command which permanently affects the state of your system Getting out of trouble ^C (Ctrl-C) Terminate the current command ^U (Ctrl-U) Clear to start of line reset Reset terminal settings. If in xterm, try Ctrl+Middle mouse button stty sane and select "Do Full Reset" exit Exit from the shell logout ESC :q! ENTER Quit from vi without saving Finding documentation man cmd Show manual page for command "cmd". If a page with the same man 5 cmd name exists in multiple sections, you can give the section number, man -a cmd or -a to show pages from all sections. man -k str Search for string"str" in the manual index man hier Description of directory structure cd /usr/share/doc; ls Browse system documentation and examples. Note especially cd /usr/share/examples; ls /usr/share/doc/en/books/handbook/index.html cd /usr/local/share/doc; ls Browse package documentation and examples cd /usr/local/share/examples On the web: www.freebsd.org Includes handbook, searchable mailing list archives System status Alt-F1 .. -
System Calls & Signals
CS345 OPERATING SYSTEMS System calls & Signals Panagiotis Papadopoulos [email protected] 1 SYSTEM CALL When a program invokes a system call, it is interrupted and the system switches to Kernel space. The Kernel then saves the process execution context (so that it can resume the program later) and determines what is being requested. The Kernel carefully checks that the request is valid and that the process invoking the system call has enough privilege. For instance some system calls can only be called by a user with superuser privilege (often referred to as root). If everything is good, the Kernel processes the request in Kernel Mode and can access the device drivers in charge of controlling the hardware (e.g. reading a character inputted from the keyboard). The Kernel can read and modify the data of the calling process as it has access to memory in User Space (e.g. it can copy the keyboard character into a buffer that the calling process has access to) When the Kernel is done processing the request, it restores the process execution context that was saved when the system call was invoked, and control returns to the calling program which continues executing. 2 SYSTEM CALLS FORK() 3 THE FORK() SYSTEM CALL (1/2) • A process calling fork()spawns a child process. • The child is almost an identical clone of the parent: • Program Text (segment .text) • Stack (ss) • PCB (eg. registers) • Data (segment .data) #include <sys/types.h> #include <unistd.h> pid_t fork(void); 4 THE FORK() SYSTEM CALL (2/2) • The fork()is one of the those system calls, which is called once, but returns twice! Consider a piece of program • After fork()both the parent and the child are .. -
WIRELURKER: a New Era in Ios and OS X Malware
WIRELURKER: A New Era in iOS and OS X Malware REPORT BY CLAUD XIAO PALO ALTO NETWORKS | 4401 Great America Parkway | Santa Clara, CA 95054 www.paloaltonetworks.com TABLE OF CONTENTS Executive Summary 3 Background 4 User Reporting for this Threat 4 Investigation of the Third Party App Store 5 WireLurker Workflow and Malware Progression 6 WireLurker Versions 7 Analysis of WireLurker OS X Malware 9 Bundle Repackaging and File Hiding 9 Self Update 11 Persistence Mechanisms 13 C2 Server Communication 14 iOS Application Download 15 USB Connection Monitoring 17 Exfiltration of Device Information 17 Installation of Malicious Dynamic Library to an iOS Device 18 Backup of Specific Installed Applications from an iOS Device 19 Trojanizing iOS Applications 20 Installation of Trojanized iOS Applications 20 Analysis of WireLurker iOS Malware 22 Code Injection into System Applications 22 Self Update 23 Exfiltration of User Data 24 Exfiltration of Application Usage and Device Serial Number Information 25 Overall Threat Analysis 26 Use of Repackaging to Trojanize Applications 26 Malicious Use of USB Connections 26 Attacks Against Jailbroken Devices 26 Attacks Against Non-Jailbroken Devices 26 Actor Motivation 27 Prevention, Detection, Containment and Remediation 27 Prevention 27 Detection and Containment 28 Remediation 29 Acknowledgements 29 Appendix 30 SHA-1 Hashes of WireLurker Related Files 30 URLs for C2 Communication 31 Version C Encrypted C2 Communication Code 32 Executive Summary Palo Alto Networks® recently discovered a new family of Apple OS X