<<

arXiv:astro-ph/0007362v1 25 Jul 2000 o.Nt .Ato.Soc. Astron. R. Not. Mon. pcrm(CM,adteohrwt h aepwrspec- power power CDM same standard the with the other with the one and 1, (SCDM), = spectrum Ω with models two tutr omto nfu omlgclmdl:afltmode Ω flat a with models: cosmological follow four They in (CDM). formation th matter structure of dark simulations cold of high-resolution evolution of clustering number large for a data. out the papers ried of of use list made a already have give which ar we journals we and refereed that available datasets of publicly description making brief sho a this provide sim- In we 1996. out article since of carrying supercomputers been simulations parallel have collaboration on cosmological We ulations structure. large international of perform formation an to the is is aim consortium whose Virgo The INTRODUCTION 1 ΛD) noe oe lowt Ω with also model open an (ΛCDM); .S Frenk, S. C. by data related and consortium. simulation Virgo the N-body of Release Public .E Evrard, E. A. 5Otbr2018 October 25 10 8 7 5 6 4 3 2 1 Pearce, R. F. c srnm eteCE,Uiest fSse,Fle,Brig Falmer, Sussex, of EH9 University Edinburgh, Centre,CPES, Astronomy, MI-48109- Astronomy of Arbor, 10016 Institute Ann NY Observatory, Michigan, York, Royal of 6F,New University Apt. Physics, Avenue, OHA Dept Lexington CB3 105 Cambridge at Road, Now Madingley University, Astronomy, McMaster of Astronomy, Institute and D-85 Physics Munich, of Garching, Department Astrophysics, 3LE. for DH1 Inst. Durham, Max-Planck Road, South Physics, Dept http://star-www.dur.ac.uk/ 00RAS 2000 vrteps e er,teVrocnotu a car- has consortium Virgo the years, few past the Over 0 0 = . n omlgclcntn,Λ constant, cosmological and 3 1 1 .M Colberg, M. J. 5 .A Thomas, A. P. .Jenkins, A. 000 ∼ – 20)Pitd2 coe 08(NL (MN 2018 October 25 Printed (2000) 1–4 , frazerp/virgo/ ABSTRACT -oysmltoscridotb h ig osrimadrltdg related th and from data consortium cluster Virgo and lightcone the time-slice, by (i) out includes: currently carried simulations N-body in f4dffrn oddr atrcsooia oeswt 256 with models cosmological matter dark dat cold time-slice different (ii) 4 1998; of Evrard tions by described simulations volume Hubble h aa h aacnb cesdfrom: accessed softwar gala be Basic and can 1999. trees data al et merger The Kauffmann catalogs, data. by halo the described Dark project (iii) GIF 1998; the al et Jenkins by eaemkn vial nteWWaslcino h rhvddt fro data archived the of selection a WWW the on available making are We http://www.mpa-garching.mpg.de/Virgo/data 0 TeVroConsortium) Virgo (The 0 = 1 . .J MacFarland, J. T. 2 OD) and (OCDM); 3 8 .M .Couchman, P. M. H. / .D .White M. D. S. 3 H 0 2 0 = rt . 4,. 740, 7 e e 3HJ tn N 9QJ BN1 hton, l 1120. aitn nai,LS41 4M1, L8S Ontario, Hamilton, rma h Ω the as trum ilsi h le iuain saot1 ilo,wt the h with 240 million, to 17 85 from about ranging is sizes simulations box older the in ticles atcems rm68 o22.7 to 6.86 from mass particle h ubecntn nuiso 0 ms km 100 of units in constant Hubble the inllnigpoete fcutr Bremn ta 199 al gravita- et strong (Bartelmann 1998, clusters the al of of properties et analyses lensing Canavezes tional 1998); 1998, Sharpe al & et Canavezes recent topology (Springel with the comparison surveys a of galaxy and description distribution novel matter dark a ha- the 1999); of cluster al al galaxy et et of (Colberg (Colberg environment los large-scale distributions the structure velocity and internal 1998), 2000) the al of Springel et analyses Juskiewicz, (Thomas detailed 1998, 1999); al et Durrer (Jenkins & matter stati dark clustering the the of of investigations include These data. ait fsuishv encridotuigthese using out carried been have studies of variety A 6 2 .Moore, B. n .Yoshida. N. and 10 A 3 T E 0 .Efstathiou, G. tl l v1.4) file style X 0 = . oes( models 3 download.html 1 .A Peacock, A. J. τ × D) h ubro par- of number The CDM). 2 10 − 1 10 4 p weehdenotes h (where Mpc h ssple oread to supplied is e 3 − atce analysed particles − w 10 two e 1 M yctlg from catalogs xy 1 Mpc ⊙ rmsimula- from a . op.This roups. 7 − 1 9 n the and ) -particle stics 8); m 2 C. S. Frenk et al.

Table 1. N-body simulation parameters. The Hubble volume data, with -hub suffix, includes lightcone outputs as well as time-slices (see Evrard 1998). The N = 2563 simulations were first analysed by Jenkins et al (1998). The simulations with the -gif suffix were designed to allow galaxy formation to be followed directly and were first fully presented (including the available halo and galaxy catalogs and merger trees) by Kauffmann et al (1999).

−1 −1 −1 Run Ω0 Λ0 Γ σ8 Npart Lbox/h Mpc mparticle/h M⊙ rsoft/h kpc τCDM-hub 1.0 0.0 0.21 0.60 1 000 000 000 2000.0 2.22 × 1012 100 ΛCDM-hub 0.3 0.7 0.21 0.90 1 000 000 000 3000.0 2.25 × 1012 100 SCDM-virgo 1.0 0.0 0.5 0.60 16 777 216 239.5 2.27 × 1011 30 τCDM-virgo 1.0 0.0 0.21 0.60 16 777 216 239.5 2.27 × 1011 30 ΛCDM-virgo 0.3 0.7 0.21 0.90 16 777 216 239.5 6.86 × 1010 30 OCDM-virgo 0.3 0.0 0.21 0.85 16 777 216 239.5 6.86 × 1010 30 SCDM-gif 1.0 0.0 0.5 0.60 16 777 216 84.5 1.00 × 1010 30 τCDM-gif 1.0 0.0 0.21 0.60 16 777 216 84.5 1.00 × 1010 30 ΛCDM-gif 0.3 0.7 0.21 0.90 16 777 216 141.3 1.40 × 1010 30 OCDM-gif 0.3 0.0 0.21 0.85 16 777 216 141.3 1.40 × 1010 30 ray-tracing simulations and statistical analysis of the shear substantial light travel time across the region. In addition to fields produced by weak lensing (Reblinsky & Bartelmann storing a number of standard “snapshots” of the mass dis- 1999, Reblinsky et al 1999, Jain, Seljak & White 2000, Jain tribution, we therefore created surveys along the past light & van Waerbecke 2000, Munshi & Jain 2000a,b); studies of cones of hypothetical observers. the Sunyaev-Zel’dovich signatures imprinted on the CMB The Hubble volume simulations contain several tens of (Diaferio, Sunyaev & Nusser 2000); tests of analytic models thousands of rich clusters and are so large that they can be both for the abundance and clustering of dark halos (Sheth used to investigate the behaviour of clustering diagnostics, & Tormen 1999; Sheth, Mo & Tormen 2000) and for the bias including high order statistics, with unprecedented accuracy. of the galaxy population (Peacock & Smith 2000). The first papers analyzing Hubble volume data (Szapudi et For the higher resolution simulations the relation be- al 2000, Colombi et al 2000) present the probability dis- tween the galaxy and mass distributions has been studied tribution of fundamental statistics such as the distribution both by inserting “semi-analytic” galaxy populations into of counts-in-cells, together with a full analysis of sampling the simulated dark halos at various times (Benson et al uncertainties for estimates constructed from surveys of re- 2000a,b) and by using similar “recipes” for baryonic pro- alistic (finite) size. Analysis of the two-point correlations of cesses to follow the formation of galaxies directly in the sim- clusters is presented in Colberg et al (2000). Data from the ulations (the GIF project: Kauffmann et al 1999ab, Diaferio Hubble volume simulations, together with a wide range of et al 1999, 2000; Somerville et al 2000). Galaxy populations other Virgo data, has been used to study the mass function constructed with the first technique have also been applied of halos over more than four orders of mag- to the study of cosmic reionization (Benson et al 2000c) and nitude in mass (Jenkins et al 2000). Mock-galaxy catalogs in making predictions of clustering and higher order correla- constructed from the Hubble Volume simulations are used tions which are compared to measurements from the PSCz to assess the uncertainties in observational power spectrum survey (Szapudi et al 2000). The GIF galaxy, mass and halo estimates by Hoyle et al (1999). catalogs have been used by others for studies of the statis- The numerical data from all the original N = 2563 tics of the galaxy distribution (Seljak 2000, Scoccimarro et Virgo simulations are now publically available, as are a va- al 2000), of lensing effects due to individual galaxies (Guzik riety of data products from the Hubble Volume simulations & Seljak 2000), of infall patterns onto galaxy clusters (Di- (“snap-shots”, light-cone output and cluster catalogs)and aferio 1999) and for comparison with the topology of the from the galaxy formation modelling of the GIF project local galaxy distribution (Schmalzing & Diaferio 2000). (halo catalogs, merger trees and galaxy catalogs). They may Several years ago we completed the two largest N-body be found at: http://www.mpa-garching.mpg.de/ simulations ever attempted using a specially designed code Virgo/data download.html (MacFarland et al 1999). These “Hubble volume” simula- We anticipate making further data available from this site tions follow a billion particles each – almost one order of as our projects progress. Smaller data volumes can be down- magnitude more than the largest previous simulations – in loaded directly over the net. Many of our datasets are too the τCDM and ΛCDM cosmologies. The simulated regions large, however, for this to be practicable. Such data can be have linear, comoving dimensions of 2000-3000 h−1 Mpc so obtained on tape after payment of a nominal fee; we impose that, for Ω = 1, the diagonal of the simulation cube ex- this to avoid frivolous requests imposing unnecessary work tends to a redshift z = 4.6, nearly the size of the “ob- on our archive manager. Images of many of these simulations served” . The total mass in the Ω = 1 volume is can be down-loaded from the related websites: 21 −1 2.2×10 h M⊙, and so a cluster as rich as Coma has about http://www.mpa-garching.mpg.de/NumCos 500 particles within an Abell radius. The comoving gravi- http://star-www.dur.ac.uk/∼frazerp/virgo/ tational softening, 0.1h−1Mpc, is sufficiently small to pro- http://www.physics.lsa.umich.edu/hubble-volume/ vide reliable cluster velocity dispersions and gross assembly We would appreciate an appropriate credit if these data histories. Particles masses and softenings are similar in the are used in published work. This should include the rele- ΛCDM simulation. Such large volumes require the applica- vant reference as detailed below, as well as a mention in tion of new analysis techniques that take into account the the acknowledgements that the data were obtained from

c 2000 RAS, MNRAS 000, 1–4 Public release of data 3 the Virgo consortium. The N = 2563 simulations in Table clustering of galaxy clusters in CDM , MNRAS, in 1 were first presented in Jenkins et al (1998). The origi- press (astro-ph/0005259) nal motivation for the set-up of the -gif simulations and the Colombi, S., Szapudi, I., Jenkins, A. & Colberg, J. M. 2000. Ex- additional analysis involved in constructing halo catalogs, perimental Cosmic Statistics I: Variance, MNRAS, 313, 711 merger trees and galaxy catalogs are described in Kauff- Diaferio, A., Kauffmann, G., Colberg, J. M., White, S. D. M., mann et al (1999a). The Hubble Volume simulations are 1999, Clustering of Surveys, MNRAS, 307, 537 Diaferio, A., 1999, Mass estimation in the outer regions of galaxy outlined in Evrard (1998) and a detailed description is in clusters, MNRAS, 309, 610 preparation (Evrard etal 2000). We would like to keep an Diaferio, A., Sunyaev, R.A. & Nusser, A., 2000, Large scale mo- up-to-date record of all published papers using our data and tions in superclusters: their imprint in the CMB, ApJ, 533, so we would appreciate your help in notifying us by email L71 (to [email protected]) of new papers making use of Diaferio, A., Kauffmann, G., Balogh, M.L., White, S.D.M., Virgo data. Schade, D. & Ellingson, E., 2000, The Spatial and Kine- matic Distributions of Cluster Galaxies in a LCDM Universe – Comparison with Observations, MNRAS, submitted (astro- ph/0005485) ACKNOWLEDGEMENTS Evrard, A., 1998, Simulating Large-Scale Structure, in Evolution of large scale structure : from recombination to Garching, CSF acknowledges a PPARC Senior Research Fellowship edited by A. J. Banday, R. K. Sheth, L. N. da Costa. Garch- and a Leverhulme Research Fellowship. PAT is a PPARC ing, Germany : European Southern Observatory, [1999] (”Pro- Lecturer Fellow. AEE’s participation was supported in ceedings of the MPA- ESO cosmology conference, Garching, France by the CIES and CNRS and in the US by NSF Germany, 2-7 August 1998”.), p.249, (astro-ph/9812377) AST98-03199 and by the NASA Astrophysics Theory Pro- Evrard, A., MacFarland, T. J., Couchman, H. M. P., Colberg, J. M., Yoshida, N., White, S. D. M., Jenkins, A., Frenk, C. S., gram. The simulation data were generated using supercom- Pearce, F. R., Efstathiou, G., Peacock, J. A. & Thomas, P. puters at the Computer Centre of the Max-Planck Society A., 2000, In preparation. (the Rechenzentrum, Garching) and at the Edinburgh Paral- Guzik, J. & Seljak, U., 2000, Galaxy-dark matter correlations lel Computing Centre. We particularly wish to thank Jacob applied to galaxy-galaxy lensing: predictions from the semi- Pichlmeier (SGI/Cray, RZG) for his support. We thank the analytic galaxy formation models, MNRAS, submitted (astro- Max-Planck-Institute for Astrophysics for hosting our down- ph/0007067). load site and, in particular, Norbert Gruener for acting as Hoyle, F., Baugh, C. M., Shanks, T. & Ratcliffe, A., The site administrator. Durham/UKST Galaxy Redshift Survey - VI. Power spec- trum analysis of clustering, MNRAS, 309, 659 Jain, B., Seljak, U. & White, S. D. M., 2000, Ray Tracing Simu- lations of Weak Lensing by Large-scale Structure, ApJ, 530, REFERENCES 547 Jain, B. & van Waerbeke, L., 2000, Statistics of dark matter halos Bartelmann, M., Huss, A., Colberg, J. M., Jenkins, A. R., & from gravitational lensing, ApJ, 530, L1 Pearce, F. R., 1998, Arc statistics with realistic cluster po- Jenkins, A., Frenk, C. S., Pearce, F. R., Thomas, P. A., Colberg, tentials. IV. Clusters in different cosmologies, A&A, 330, 1. J. M., White, S. D. M., Couchman, H. M. P., Peacock, J. A., Benson, A. J., Cole, S., Frenk, C. S., Baugh, C. & Lacey, C. 2000a. Efstathiou, G., & Nelson, A. H. 1998. Evolution of structure The Nature of Galaxy Bias and Clustering, MNRAS, 311, 793 in cold dark matter universes, ApJ, 499, 20. Benson, A. J., Baugh, C., Cole, S., Frenk, C. S. & Lacey, C. 2000b. Jenkins, A., Frenk, C. S., White, S. D. M., Colberg, J. M., Cole, The dependence of of Velocity and Clustering Statistics on S., Evrard, A. E., & Yoshida, N., 2000. The mass function of Galaxy properties, MNRAS, 316, 107 dark matter halos, MNRAS, submitted (astro-ph/0005260) Benson, A. J., Nusser, A., Sugiyama, N. & Lacey, C.G., 2000c, Juszkiewicz, R., Springel, V. & Durrer, R., Dynamics of Pairwise Non-uniform reionization by galaxies and its effect on the Motions, 1999, ApJ, 518, L25 cosmic microwave background, MNRAS, submitted (astro- Kauffmann, G., Colberg, J. M., Diaferio, A. & White, S. D. M. ph/0002457) 1999a. Clustering of Galaxies in a Hierarchical Uinverse I: Canavezes, A. Springel, V., Oliver, J., Rowan-Robinson, M., Kee- Methods and Results at z=0, MNRAS, 303, 188. ble, O. White, S. D. M., Saunders, W., Efstathiou, G., Frenk, Kauffmann G., Colberg J. M., Diaferio A., White S. D. M., 1999b. C. S., McMahon, R., Maddox, S., Sutherland, W. & Tadros, Clustering of Galaxies in a Hierarchical Universe: II. Evolu- H. 1998. The topology of the IRAS Point Source Catalogue tion to High Redshift, MNRAS, 307, 529 redshift survey, MNRAS, 297, 777 MacFarland, T, Couchman, H. M. P., Pearce, F. R., Pichlmeier, Canavezes, A. & Sharpe, J.,2000, Recovering the Topology of the J. 1999. A New Parallel P3M Code for Very Large-Scale Cos- Initial Density Fluctuations Using the IRAS Point Source mological Simulations, New Astronomy, 3, 687 Catalogue Redshift Survey, MNRAS, submitted (astro- Munshi, D & Jain, B., 2000a, The Statistics of Weak Lensing ph/0002405) at Small Angular Scales: Probability Distribution Function, Colberg, J. M., White, S. D. M., Jenkins, A. & Pearce, F. R. MNRAS, in press (astro-ph/9911502) 1999a. Linking cluster formation to large-scale structure, MN- Munshi, D & Jain, B., 2000b, Statistics of Weak Lensing at Small RAS, 308, 593 Angular Scales: Analytical Predictions for Lower Order Mo- Colberg, J. M., White, S. D. M., MacFarland, T. J., Jenkins, A., ments, MNRAS, in press (astro-ph/9912330) Pearce, F. R., Frenk, C. S., Thomas, P. A. & Couchman, H. Peacock, J. A. & Smith, R. E., 2000, Halo occupation numbers M. P. 1999b. Peculiar Velocities of Galaxy Clusters, MNRAS, and galaxy bias, MNRAS, in press (astro-ph/0005010) 313, 229 Reblinsky, K. & Bartelmann, M., 1999, Projection effects in mass- Colberg, J. M., White, S. D. M., Yoshida, N., MacFarland, T. selected galaxy samples, A&A, 345, 1 J., Jenkins, A. , Frenk, C. S., Pearce, F. R., Evrard, A. E., Reblinsky, K., Kruse, G., Jain, B. & Schneider, P., 1999, Cos- Couchman, H. M. P., Peacock, J. A. & Thomas, 2000, The mic shear and halo abundances: Analytical versus numerical

c 2000 RAS, MNRAS 000, 1–4 4 C. S. Frenk et al.

results, A&A, 351, 815 Schmalzing, J. & Diaferio, A., 2000, Topology and Geometry of the CfA2 Redshift Survey, MNRAS, 312, 638 Scoccimarro, R., Couchman, H.M.P. & Frieman, J.A., 1999. The bispectrum as a signature of gravitational instability, ApJ, 517, 531. Scoccimarro, R., Sheth, R., Hui, L. & Jain, B., 2000, How Many Galaxies Fit in a Halo? Constraints on Galaxy Formation Efficiency from Spatial Clustering, ApJ, submitted (astro- ph/0006319) Seljak, U., 2000, Analytic model for galaxy and dark matter clus- tering, MNRAS, in press (astro-ph/0001493) Sheth, R. K. & Tormen, G., 1999, Large-scale bias and the peak background split, MNRAS, 308, 119 Sheth, R. K., Mo, H.J. & Tormen, G., 2000, Ellipsoidal col- lapse and an improved model for the number and spatial distribution of dark matter haloes, MNRAS, in press (astro- ph/9907024) Somerville, R., Lemson, G., Sigad, Y., Dekel, A., Kauffmann, G. & White, S.D.M., 2000, Nonlinear stochastic galaxy bi- asing in cosmological simulations, MNRAS, in press (astro- ph/9912073) Springel, V., White, S. D. M., Colberg, J. M., Couchman, H. M. P., Efstathiou, G., Frenk, C. S., Jenkins, A. R., Pearce, F. R., Nelson, A. H., Peacock, J. A. & Thomas, P. A., 1998, Genus statistics of the Virgo N-body simulations and the 1.2Jy red- shift survey, MNRAS, 298, 1169 Szapudi, I., Colombi, S., Jenkins, A. & Colberg, J. M. 1999. Ex- perimental Cosmic Statistics II : Distribution, MNRAS, 313, 725 Szapudi, I., Branchini, E., Frenk, C. S., Maddox, S. & Saunders, W., 2000, The luminosity dependence of clustering and higher order correlations in the PSCz survey, MNRAS, in press. Thomas, P., Couchman, H., Jenkins, A., Pearce, F., Frenk, C. S, White, S. D. M., Colberg, J., Peacock, J., Efstathiou, G. & Nelson, A. 1998. The structure of clusters in different cos- mologies, MNRAS, 296, 1061.

c 2000 RAS, MNRAS 000, 1–4