Molecular Systematics of the Marine Dothideomycetes

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Systematics of the Marine Dothideomycetes available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora. Few marine species are reported from the Dothideomycetidae (e.g. Mycosphaerellaceae, Capnodiales), a group poorly studied at the molecular level. New marine lineages include the Testudinaceae and Manglicola guatemalensis in the Jahnulales. Significantly, most marine Dothideomycetes are intertidal tropical species with only a few from temperate regions on salt marsh plants (Spartina species and Juncus roemerianus), and rarely totally submerged (e.g. Halotthia posidoniae and Pontoporeia biturbinata on the seagrasses Posidonia oceanica and Cymodocea nodosum). Specific attention is given to the adaptation of theDothideomycetes to the marine milieu, new lineages of marine fungi and their host specificity. Key words: Dothideomycetes, ecology, marine fungi, multi-locus, new genera, systematics. Taxonomic novelties: Aigialaceae Suetrong, Sakayaroj, E.B.G. Jones, Kohlm., Volkm.-Kohlm. & Schoch, fam. nov., Halomassarina Suetrong, Sakayaroj, E.B.G. Jones, Kohlm., Volkm.-Kohlm. & Schoch, gen. nov., Halomassarina thalassiae (Kohlm. & Volkm.-Kohlm.), Suetrong, Sakayaroj, E.B.G. Jones, Kohlm., Volkm.-Kohlm. & Schoch, comb. nov., Suetrong, Sakayaroj, E.B.G. Jones, Kohlm., Volkm.-Kohlm.,comb. nov., Clade V. Morosphaeriaceae Suetrong, Sakayaroj, E.B.G. Jones, & Schoch, fam. nov., Morosphaeria velataspora (K.D. Hyde & Borse) Suetrong,. Sakayaroj, E.B.G. Jones & Schoch, comb. nov., Morosphaeria ramunculicola (K.D. Hyde) Suetrong,. Sakayaroj, E.B.G. Jones & Schoch, comb. nov., Rimora Kohlm., Volkm-Kohlm., Suetrong, Sakayaroj, E.B.G. Jones, gen. nov., Rimora mangrovei (Kohlm. & Vittal) Kohlm.,Volkm-Kohlm., Suetrong, Sakayaroj, E.B.G. Jones, comb. nov. INTRODUCTION Scolecosporiella typhae, Stemphylium triglochinicola and Phialophora cf. olivacea and molecular data indicates that the Most marine Dothideomycetes are intertidal, primarily from teleomorphs of Amorosia littoralis, Dendryphiella salina and D. mangrove habitats and rely on the active discharge of their arenaria may be in the Pleosporales (Mantle et al. 2006, Jones ascospores. They are frequently found as saprobes of decaying et al. 2008). This paucity of marine anamorphic fungi is in marked woody materials in the marine environment. The species that contrast to freshwater fungi and terrestrial genera of the class (Cai occur completely submerged in the sea are mostly parasites et al. 2006, Shenoy et al. 2007, Shearer et al. 2009; this volume). or symbionts of seagrasses or marine algae. It is not clear how Marine Dothideomycetes occur on a wide range of substrata: ascospore discharge occurs in these species as their hosts are mangrove wood, twigs and leaves; sea and marsh grasses often submerged for most of the time. Jones et al. (2009) list 64 (especially Spartina spp. and Juncus roemerianus) (Kohlmeyer et genera and ca. 108 species of marine Dothideomycetes that fall into al. 1995a–c, 1996, 1997a–b). Culms and leaves of sea and marsh three accepted orders (Capnodiales, Dothideales, Pleosporales), grasses are ideal substrata for saprobic fungi because they may three orders incertae sedis (Hysteriales, Patellariales, Jahnulales) remain standing for several years during and after senescence and 23 genera not assigned with confidence to any order. Most (Christian et al. 1990, Kohlmeyer & Volkmann-Kohlmeyer 2001). of these higher order taxa are represented by a single genus or Other species are found on brown and red seaweeds, e.g. Lautitia species while most are members of the Pleosporales with 25 danica and Pleospora gracilariae (Schatz 1984, Simmons & Schatz genera and 61 species (+ 13 genera, 20 species, incertae sedis). 1989), on wood associated with sand e.g. Caryospora australiensis Taxa that can not be assigned with confidence to either an order and Decaisnella formosa (Abdel-Wahab & Jones 2003) or on or family include Aigialus, Halotthia, Lautospora, Manglicola, the brackish water palm Nypa fruticans, e.g. Carinispora nypae, Mauritiana, Passeriniella, Pontoporeia, and Tirisporella. A notable Herpotrichia nypicola, Tirisporella beccariana and Helicascus feature of the marine Dothideomycetes is how few anamorphs nypae (Jones et al. 1996, Hyde & Alias 2000). Few marine are known. Examples include Amarenographium metableticum, Dothideomycetes produce elaborate appendaged ascospores, and Copyright 2009 CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. You are free to share - to copy, distribute and transmit the work, under the following conditions: Attribution: You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work). Non-commercial: You may not use this work for commercial purposes. No derivative works: You may not alter, transform, or build upon this work. For any reuse or distribution, you must make clear to others the license terms of this work, which can be found at http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode. Any of the above conditions can be waived if you get permission from the copyright holder. Nothing in this license impairs or restricts the author’s moral rights. 155 Suetrong et al. most possess gelatinous sheaths that swell in water when released The DNA was resuspended in 50 mL TE buffer and checked for from the asci (Massarina velataspora and Tremateia halophila). quantity and quality by 1 % agarose gel electrophoresis. Genera with appendaged ascospores, although generally The following four genes were chosen for this study: small (18S) modifications of a gelatinous sheath, include: Carinispora nypae, and large subunit (28S) of the nuclear ribosomal DNA (SSU, LSU) Decorospora gaudefroyi and Falciformispora lignatilis. plus the gene fragments from the second largest subunit of RNA The main objective of this study is to provide information on polymerase (RPB2) and the translation elongation factor 1-alpha the taxa that are unique to the marine milieu, e.g. Aigialus spp., (TEF1) gene. The rDNA was amplified with Taq DNA polymerase Manglicola guatemalensis, Halotthia posidoniae and Pontoporeia from FERMENTAS (Cat.No. MBDOEPO402) using PCR Model biturbinata and confirm the taxonomic assignment of other marine MJ Research DYAD ALD ALD 1244 thermocycler (MJ Research, ascomycetes within the context of a well sampled analysis with Waltham, MA). Primers used for amplification include the SSU, LSU, other related fungi. RPB2 and TEF1 (White et al. 1990, Bunyard et al. 1994, Liu et al. 1999, Rehner 2001, respectively). The PCR products were purified using a NucleoSpin Extraction Kit (Macherey-Nagel, Germany), MATERIAL AND METHODS following the manufacturer’s instructions. The characterisation of PCR products was performed via agarose gel electrophoresis Collection of fungi on 1 % agarose gel containing ethidium bromide as the staining Drift and attached wood, culms and leaves of marsh plants, agent. PCR products were directly sequenced by Macrogen Inc., seagrasses and seaweeds were collected from a variety of habitats Korea. The sequencing primers used for as the different regions and geographical locations, placed in clean plastic bags and are SSU: NS1, NS3, NS4, NS6 (White et al. 1990); LSU: JS1, JS8, returned to the laboratory. After washing with freshwater to remove LROR and LR7 (Bunyard et al. 1994); TEF1: 983F, 2218R, CEFF2 sediments, the samples were examined for fungi. Samples were and CEFR2 (Rehner 2001); RPB2: 5F1, 5F2, 7cR and 7R (Liu kept moist by spraying with sterilised distilled water.
Recommended publications
  • Development and Evaluation of Rrna Targeted in Situ Probes and Phylogenetic Relationships of Freshwater Fungi
    Development and evaluation of rRNA targeted in situ probes and phylogenetic relationships of freshwater fungi vorgelegt von Diplom-Biologin Christiane Baschien aus Berlin Von der Fakultät III - Prozesswissenschaften der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. sc. techn. Lutz-Günter Fleischer Berichter: Prof. Dr. rer. nat. Ulrich Szewzyk Berichter: Prof. Dr. rer. nat. Felix Bärlocher Berichter: Dr. habil. Werner Manz Tag der wissenschaftlichen Aussprache: 19.05.2003 Berlin 2003 D83 Table of contents INTRODUCTION ..................................................................................................................................... 1 MATERIAL AND METHODS .................................................................................................................. 8 1. Used organisms ............................................................................................................................. 8 2. Media, culture conditions, maintenance of cultures and harvest procedure.................................. 9 2.1. Culture media........................................................................................................................... 9 2.2. Culture conditions .................................................................................................................. 10 2.3. Maintenance of cultures.........................................................................................................10
    [Show full text]
  • Phaeoseptaceae, Pleosporales) from China
    Mycosphere 10(1): 757–775 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/17 Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China Liu NG1,2,3,4,5, Hyde KD4,5, Bhat DJ6, Jumpathong J3 and Liu JK1*,2 1 School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, P.R. China 2 Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, P.R. China 3 Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand 4 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 5 Mushroom Research Foundation, Chiang Rai 57100, Thailand 6 No. 128/1-J, Azad Housing Society, Curca, P.O., Goa Velha 403108, India Liu NG, Hyde KD, Bhat DJ, Jumpathong J, Liu JK 2019 – Morphological and phylogenetic studies of Pleopunctum gen. nov. (Phaeoseptaceae, Pleosporales) from China. Mycosphere 10(1), 757–775, Doi 10.5943/mycosphere/10/1/17 Abstract A new hyphomycete genus, Pleopunctum, is introduced to accommodate two new species, P. ellipsoideum sp. nov. (type species) and P. pseudoellipsoideum sp. nov., collected from decaying wood in Guizhou Province, China. The genus is characterized by macronematous, mononematous conidiophores, monoblastic conidiogenous cells and muriform, oval to ellipsoidal conidia often with a hyaline, elliptical to globose basal cell. Phylogenetic analyses of combined LSU, SSU, ITS and TEF1α sequence data of 55 taxa were carried out to infer their phylogenetic relationships. The new taxa formed a well-supported subclade in the family Phaeoseptaceae and basal to Lignosphaeria and Thyridaria macrostomoides.
    [Show full text]
  • Phylogeny and Morphology of Premilcurensis Gen
    Phytotaxa 236 (1): 040–052 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.236.1.3 Phylogeny and morphology of Premilcurensis gen. nov. (Pleosporales) from stems of Senecio in Italy SAOWALUCK TIBPROMMA1,2,3,4,5, ITTHAYAKORN PROMPUTTHA6, RUNGTIWA PHOOKAMSAK1,2,3,4, SARANYAPHAT BOONMEE2, ERIO CAMPORESI7, JUN-BO YANG1,2, ALI H. BHAKALI8, ERIC H. C. MCKENZIE9 & KEVIN D. HYDE1,2,4,5,8 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, People’s Republic of China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4World Agroforestry Centre, East and Central Asia, Kunming 650201, Yunnan, P. R. China 5Mushroom Research Foundation, 128 M.3 Ban Pa Deng T. Pa Pae, A. Mae Taeng, Chiang Mai 50150, Thailand 6Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand 7A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy; A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314, Brescia, Italy; Società per gli Studi Naturalistici della Romagna, C.P. 144, Bagnacavallo (RA), Italy 8Botany and Microbiology Department, College of Science, King Saud University, Riyadh, KSA 11442, Saudi Arabia 9Manaaki Whenua Landcare Research, Private Bag 92170, Auckland, New Zealand *Corresponding author: Dr. Itthayakorn Promputtha, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
    [Show full text]
  • Molecular Systematics of the Marine Dothideomycetes
    available online at www.studiesinmycology.org StudieS in Mycology 64: 155–173. 2009. doi:10.3114/sim.2009.64.09 Molecular systematics of the marine Dothideomycetes S. Suetrong1, 2, C.L. Schoch3, J.W. Spatafora4, J. Kohlmeyer5, B. Volkmann-Kohlmeyer5, J. Sakayaroj2, S. Phongpaichit1, K. Tanaka6, K. Hirayama6 and E.B.G. Jones2* 1Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; 2Bioresources Technology Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Paholyothin Road, Khlong 1, Khlong Luang, Pathum Thani, 12120, Thailand; 3National Center for Biothechnology Information, National Library of Medicine, National Institutes of Health, 45 Center Drive, MSC 6510, Bethesda, Maryland 20892-6510, U.S.A.; 4Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, 97331, U.S.A.; 5Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City, North Carolina 28557, U.S.A.; 6Faculty of Agriculture & Life Sciences, Hirosaki University, Bunkyo-cho 3, Hirosaki, Aomori 036-8561, Japan *Correspondence: E.B. Gareth Jones, [email protected] Abstract: Phylogenetic analyses of four nuclear genes, namely the large and small subunits of the nuclear ribosomal RNA, transcription elongation factor 1-alpha and the second largest RNA polymerase II subunit, established that the ecological group of marine bitunicate ascomycetes has representatives in the orders Capnodiales, Hysteriales, Jahnulales, Mytilinidiales, Patellariales and Pleosporales. Most of the fungi sequenced were intertidal mangrove taxa and belong to members of 12 families in the Pleosporales: Aigialaceae, Didymellaceae, Leptosphaeriaceae, Lenthitheciaceae, Lophiostomataceae, Massarinaceae, Montagnulaceae, Morosphaeriaceae, Phaeosphaeriaceae, Pleosporaceae, Testudinaceae and Trematosphaeriaceae. Two new families are described: Aigialaceae and Morosphaeriaceae, and three new genera proposed: Halomassarina, Morosphaeria and Rimora.
    [Show full text]
  • Two Pleosporalean Root-Colonizing Fungi, Fuscosphaeria Hungarica Gen
    Mycological Progress (2021) 20:39–50 https://doi.org/10.1007/s11557-020-01655-8 ORIGINAL ARTICLE Two pleosporalean root-colonizing fungi, Fuscosphaeria hungarica gen. et sp. nov. and Delitschia chaetomioides, from a semiarid grassland in Hungary Alexandra Pintye1 & Dániel G. Knapp2 Received: 15 May 2020 /Revised: 14 November 2020 /Accepted: 29 November 2020 # The Author(s) 2020 Abstract In this study, we investigated two unidentified lineages of root-colonizing fungi belonging to the order Pleosporales (Dothideomycetes), which were isolated from Festuca vaginata (Poaceae), a dominant grass species in the semiarid sandy grass- lands of Hungary. For molecular phylogenetic studies, seven loci (internal transcribed spacer, partial large subunit and small subunit region of nrRNA, partial transcription elongation factor 1-α, RNA polymerase II largest subunit, RNA polymerase II second largest subunit, and ß-tubulin genes) were amplified and sequenced. Based on morphology and multilocus phylogenetic analyses, we found that one lineage belonged to Delitschia chaetomioides P. Karst. (Delitschiaceae), and the isolates of the other lineage represented a novel monotypic genus in the family Trematosphaeriaceae (suborder Massarineae). For this lineage, we proposed a new genus, Fuscosphaeria, represented by a single species, F. hungarica. In both lineages, only immature and degenerated sporocarps could be induced. These were sterile, black, globose, or depressed globose structures with numerous mycelioid appendages submerged in culture media or on the
    [Show full text]
  • Fungal Diversity Driven by Bark Features Affects Phorophyte
    www.nature.com/scientificreports OPEN Fungal diversity driven by bark features afects phorophyte preference in epiphytic orchids from southern China Lorenzo Pecoraro1*, Hanne N. Rasmussen2, Sofa I. F. Gomes3, Xiao Wang1, Vincent S. F. T. Merckx3, Lei Cai4 & Finn N. Rasmussen5 Epiphytic orchids exhibit varying degrees of phorophyte tree specifcity. We performed a pilot study to investigate why epiphytic orchids prefer or avoid certain trees. We selected two orchid species, Panisea unifora and Bulbophyllum odoratissimum co-occurring in a forest habitat in southern China, where they showed a specifc association with Quercus yiwuensis and Pistacia weinmannifolia trees, respectively. We analysed a number of environmental factors potentially infuencing the relationship between orchids and trees. Diference in bark features, such as water holding capacity and pH were recorded between Q. yiwuensis and P. weinmannifolia, which could infuence both orchid seed germination and fungal diversity on the two phorophytes. Morphological and molecular culture-based methods, combined with metabarcoding analyses, were used to assess fungal communities associated with studied orchids and trees. A total of 162 fungal species in 74 genera were isolated from bark samples. Only two genera, Acremonium and Verticillium, were shared by the two phorophyte species. Metabarcoding analysis confrmed the presence of signifcantly diferent fungal communities on the investigated tree and orchid species, with considerable similarity between each orchid species and its host tree, suggesting that the orchid-host tree association is infuenced by the fungal communities of the host tree bark. Epiphytism is one of the most common examples of commensalism occurring in terrestrial environments, which provides advantages, such as less competition and increased access to light, protection from terrestrial herbivores, and better fower exposure to pollinators and seed dispersal 1,2.
    [Show full text]
  • A Conspectus of the Filamentous Marine Fungi of Sweden
    Botanica Marina 2020; 63(2): 141–153 Sanja Tibell*, Leif Tibell, Ka-Lai Pang and E.B. Gareth Jones A conspectus of the filamentous marine fungi of Sweden https://doi.org/10.1515/bot-2018-0114 mostly based on morphological studies, however often the Received 16 December, 2018; accepted 8 May, 2019; online first 2 very small size of these organisms and/or the insufficient July, 2019 morphological distinctive features limit considerably the census of the biodiversity of this component. For marine Abstract: Marine filamentous fungi have been little stud- fungi, the recent application of molecular approaches ied in Sweden, which is remarkable given the depth and offers a useful tool for the census of their biodiversity, width of mycological studies in the country since the time where a wealth of hidden biodiversity is still to be uncov- of Elias Fries. Seventy-four marine fungi are listed for ered. However, there are still different shortcomings and Sweden based on historical records and recent collections, downsides that prevent the extensive use of molecular data of which 16 are new records for the country. New records without the support of classical taxonomic identification. for the country are based on morphological identification Marine wood long remained the main focus for studies of species mainly from marine wood, and most of them of marine filamentous fungi (MFF), however studies by from the Swedish West Coast. In some instances, the iden- Zuccaro et al. (2008), and Suryanarayanan (2012) have tifications have been made by comparisons of sequences shown a rich diversity of these fungi also associated with obtained from cultures with reference sequences in Gen- marine algae (Jones et al.
    [Show full text]
  • The Phylogeny of Plant and Animal Pathogens in the Ascomycota
    Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus.
    [Show full text]
  • Genetic Diversity and Population Structure of Corollospora Maritima Sensu Lato: New Insights from Population Genetics
    Botanica Marina 2016; 59(5): 307–320 Patricia Veleza,*, Jaime Gasca-Pinedab, Akira Nakagiri, Richard T. Hanlin and María C. González Genetic diversity and population structure of Corollospora maritima sensu lato: new insights from population genetics DOI 10.1515/bot-2016-0058 Received 22 June, 2016; accepted 24 August, 2016; online first proven to decrease genetic diversity, a conservation genet- 26 September, 2016 ics approach to assess this matter is urgent. Our results revealed the occurrence of five genetic lineages with dis- Abstract: The study of genetic variation in fungi has been tinctive environmental preferences and an overlapping poor since the development of the theoretical underpin- geographical distribution, agreeing with previous studies nings of population genetics, specifically in marine taxa. reporting physiological races within this species. Corollospora maritima sensu lato is an abundant cosmo- Keywords: dispersal; gene flow; ITS rDNA; marine Asco- politan marine fungus, playing a crucial ecological role in mycota; molecular ecology. the intertidal environment. We evaluated the extent and distribution of the genetic diversity in the nuclear riboso- mal internal transcribed spacer region of 110 isolates of this ascomycete from 19 locations in the Gulf of Mexico, Introduction Caribbean Sea and Pacific Ocean. The diversity estimates Sandy beach ecosystems harbor a unique biodiversity, demonstrated that C. maritima sensu lato possesses a high which is highly adapted to endure dynamic and extreme genetic diversity compared to other cosmopolitan fungi, conditions. This biodiversity performs critical habitat with the highest levels of variability in the Caribbean Sea. functions, providing a range of ecological services not Globally, we registered 28 haplotypes, out of which 11 available through other ecosystems (McLachlan and were specific to the Caribbean Sea, implying these popu- Brown 2006, Schlacher and Connolly 2009).
    [Show full text]
  • Botryosphaeriaceae Asociadas a La Muerte De Ramas En Plantaciones De Eucalyptus Globulus Labill
    Universidad de Concepción Dirección de Postgrado Facultad de Ciencias Forestales Programa de Magister en Ciencias Forestales – Universidad de Concepción Máster Universitario en Biotecnología Aplicada a la Conservación y Gestión Sostenible de Recursos Vegetales – Universidad de Oviedo “Botryosphaeriaceae asociadas a la muerte de ramas en plantaciones de Eucalyptus globulus Labill. en la región del Biobío y de La Araucania (Chile)”. Tesis para optar a los Grados de Magister en Ciencias Forestales y Máster Universitario en Biotecnología Aplicada a la Conservación y Gestión Sostenible de Recursos Vegetales GRACIELA SUAREZ PEREZ CONCEPCIÓN-CHILE 2016 Profesor Guía: Eugenio Sanfuentes Von Stowasser Dpto. de Silvicultura, Facultad de Ciencias Forestales Universidad de Concepción Profesora Guía: Abelardo Casares Sánchez Dpto. de Biología de Organismos y Sistemas, Facultad de Biología Universidad de Oviedo 1 Botryosphaeriaceae asociadas a la muerte de ramas en plantaciones de Eucalyptus globulus Labill. en la región del Biobío y de La Araucania (Chile) Comisión Evaluadora: Eugenio Sanfuentes Von Stowasser (Profesor guía) Ingeniero Forestal, Dr. en Fitopatología ___________________________ Rodrigo Hasbún Zaror (Profesor co-guía) Ingeniero Forestal, Dr. en Biología ___________________________ Abelardo Casares Sánchez (Co-guía externo) Licenciado en Biología, Dr. en Biología ___________________________ Miguel Castillo Salazar (Comisión de evaluación) Ingeniero Forestal. Magister en Ciencias Forestales ____________________________ Director de Postgrado: Regis Teixeira Mendonça Ingeniero Químico, Dr. en Tecnología Química _____________________________ Decano Facultad de Ciencias Forestales: Manuel Sánchez Olate. Ingeniero Forestal, Dr. en Biología _____________________________ 2 3 Agradecimientos Quiero agradecer cada párrafo, cada letra de este trabajo a personas y entidades que han permitido de algún modo que se haya realizado, pero no sin antes comenzar agradeciendo a los verdaderos artífices de esto, mis padres.
    [Show full text]
  • Silver Scurf Begins Belowground on Potatoes in Western Washington
    SILVER SCURF BEGINS BELOWGROUND ON POTATOES IN WESTERN WASHINGTON Debra Ann Inglis, Professor Emerita, WSU Mount Vernon NWREC, Washington State University; and Babette Gundersen, Senior Scientific Assistant, WSU Mount Vernon NWREC, Washington State University TB61E WSU EXTENSION | SILVER SCURF BEGINS BELOWGROUND ON POTATOES IN WESTERN WASHINGTON SILVER SCURF BEGINS BELOWGROUND ON POTATOES IN WESTERN WASHINGTON Abstract In western Washington, which has a mild marine climate where silver scurf can be severe on Photographs of multiple sporulation and infection- susceptible smooth-skinned potato cultivars and cycle events on decaying seed potato pieces, where some of these fungicide evaluations have including the roots, stolons, and progeny tubers of occurred, seed piece fungicides, although helpful, potato plants, indicate that silver scurf caused by have not yet been able to eliminate the disease. Helminthosporium solani is a polycyclic disease, Especially puzzling is that even with a low number belowground, on potatoes in western Washington, of lesions on tubers, sporulation by the fungus can be warranting new approaches for disease control. high, as was shown in a two-year field study at WSU Mount Vernon NWREC (Table 1). Moreover, it has Introduction been established in several areas, including western Washington (Table 2), that extended periods Specialty potato growers in western Washington between vine kill and harvest can lead to increasing seek better measures for controlling silver scurf on levels of silver scurf infections and that, oftentimes, smooth-skinned red, yellow, and white potatoes. progeny tubers may already be infected before going Quality is an important issue for fresh market and into storage. seed potato sales, and smooth-skinned cultivars are thought to be more severely damaged than Russet- Many facets of the silver scurf disease cycle in skinned cultivars.
    [Show full text]
  • Lignicolous Freshwater Ascomycota from Thailand: Phylogenetic And
    A peer-reviewed open-access journal MycoKeys 65: 119–138 (2020) Lignicolous freshwater ascomycota from Thailand 119 doi: 10.3897/mycokeys.65.49769 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research Lignicolous freshwater ascomycota from Thailand: Phylogenetic and morphological characterisation of two new freshwater fungi: Tingoldiago hydei sp. nov. and T. clavata sp. nov. from Eastern Thailand Li Xu1, Dan-Feng Bao2,3,4, Zong-Long Luo2, Xi-Jun Su2, Hong-Wei Shen2,3, Hong-Yan Su2 1 College of Basic Medicine, Dali University, Dali 671003, Yunnan, China 2 College of Agriculture & Biolo- gical Sciences, Dali University, Dali 671003, Yunnan, China 3 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand4 Department of Entomology & Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand Corresponding author: Hong-Yan Su ([email protected]) Academic editor: R. Phookamsak | Received 31 December 2019 | Accepted 6 March 2020 | Published 26 March 2020 Citation: Xu L, Bao D-F, Luo Z-L, Su X-J, Shen H-W, Su H-Y (2020) Lignicolous freshwater ascomycota from Thailand: Phylogenetic and morphological characterisation of two new freshwater fungi: Tingoldiago hydei sp. nov. and T. clavata sp. nov. from Eastern Thailand. MycoKeys 65: 119–138. https://doi.org/10.3897/mycokeys.65.49769 Abstract Lignicolous freshwater fungi represent one of the largest groups of Ascomycota. This taxonomically highly diverse group plays an important role in nutrient and carbon cycling, biological diversity and ecosystem functioning. The diversity of lignicolous freshwater fungi along a north-south latitudinal gradient is cur- rently being studied in Asia.
    [Show full text]