GENERAL VIDEO GAME ARTIFICIAL INTELLIGENCE MORGAN & CLAYPOOL Series ISSN: 2573-6485 ISSN: Series Synthesis

Total Page:16

File Type:pdf, Size:1020Kb

GENERAL VIDEO GAME ARTIFICIAL INTELLIGENCE MORGAN & CLAYPOOL Series ISSN: 2573-6485 ISSN: Series Synthesis LIÉBANA • ET AL ET • LIÉBANA Series ISSN: 2573-6485 Synthesis Lectures on Games and Computational Intelligence Series Editor: Daniel Ashlock, University of Guelph General Video Game Artificial Intelligence General Video Diego Pérez Liébana, Queen Mary University of London Simon M. Lucas, Queen Mary University of London GENERAL VIDEO GAME ARTIFICIAL INTELLIGENCE ARTIFICIAL VIDEO GAME GENERAL Raluca D. Gaina, Queen Mary University of London Julian Togelius, New York University Ahmed Khalifa, New York University Game Artificial Jialin Liu, Southern University of Science and Technology Research on general video game playing aims at designing agents or content generators that can perform well in multiple video games, possibly without knowing the game in advance and with little to no specific domain knowledge. The general video game AI framework and competition propose a Intelligence challenge in which researchers can test their favorite AI methods with a potentially infinite number of games created using the Video Game Description Language. The open-source framework has been used since 2014 for running a challenge. Competitors around the globe submit their best approaches that aim to generalize well across games. Additionally, the framework has been used in AI modules by many higher-education institutions as assignments, or as proposed projects for final year (undergraduate and Master’s) students and Ph.D. candidates. Diego Pérez Liébana The present book, written by the developers and organizers of the framework, presents the most interesting highlights of the research performed by the authors during these years in this domain. It Simon M. Lucas showcases work on methods to play the games, generators of content, and video game optimization. It also outlines potential further work in an area that offers multiple research directions for the future. Raluca D. Gaina ABOUT SYNTHESIS Julian Togelius This volume is a printed version of a work that appears in theSynthesis Digital Library of Engineering and Computer Science. Synthesis lectures Ahmed Khalifa provide concise original presentations of important research and development topics, published quickly in digital and print formats. For Jialin Liu more information, visit our website: http://store.morganclaypool.com CLAYPOOL & MORGAN Synthesis Lectures on Games and Computational Intelligence store.morganclaypool.com Series Editor: Daniel Ashlock, University of Guelph General Video Game Artificial Intelligence Synthesis Lectures on Games and Computational Intelligence Editor Daniel Ashlock, University of Guelph Synthesis Lectures on Games & Computational Intelligence is an innovative resource consisting of 75-150 page books on topics pertaining to digital games, including game playing and game solving algorithms; game design techniques; artificial and computational intelligence techniques for game design, play, and analysis; classical game theory in a digital environment, and automatic content generation for games. The scope includes the topics relevant to conferences like IEEE-CIG, AAAI-AIIDE, DIGRA, and FDG conferences as well as the games special sessions of the WCCI and GECCO conferences. General Video Game Artificial Intelligence Diego Pérez Liébana, Simon M. Lucas, Raluca D. Gaina, Julian Togelius, Ahmed Khalifa, and Jialin Liu 2019 On the Study of Human Cooperation via Computer Simulation: Why Existing Computer Models Fail to Tell Us Much of Anything Garrison W. Greenwood 2019 Exploring Representation in Evolutionary Level Design Daniel Ashlock 2018 On the Design of Game-Playing Agents Eun-Youn Kim and Daniel Ashlock 2017 Game Theory: A Classical Introduction, Mathematical Games, and the Tournament Andrew McEachern 2017 Copyright © 2020 by Morgan & Claypool All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in printed reviews, without the prior permission of the publisher. General Video Game Artificial Intelligence Diego Pérez Liébana, Simon M. Lucas, Raluca D. Gaina, Julian Togelius, Ahmed Khalifa, and Jialin Liu www.morganclaypool.com ISBN: 9781681736440 paperback ISBN: 9781681736457 ebook ISBN: 9781681736464 hardcover DOI 10.2200/S00944ED1V01Y201908GCI005 A Publication in the Morgan & Claypool Publishers series SYNTHESIS LECTURES ON GAMES AND COMPUTATIONAL INTELLIGENCE Lecture #5 Series Editor: Daniel Ashlock, University of Guelph Series ISSN Print 2573-6485 Electronic 2573-6493 General Video Game Artificial Intelligence Diego Pérez Liébana, Simon M. Lucas, and Raluca D. Gaina Queen Mary University of London Julian Togelius and Ahmed Khalifa New York University Jialin Liu Southern University of Science and Technology SYNTHESIS LECTURES ON GAMES AND COMPUTATIONAL INTELLIGENCE #5 M &C Morgan & cLaypool publishers ABSTRACT Research on general video game playing aims at designing agents or content generators that can perform well in multiple video games, possibly without knowing the game in advance and with little to no specific domain knowledge. The general video game AI framework and competition propose a challenge in which researchers can test their favorite AI methods with a potentially in- finite number of games created using the Video Game Description Language. The open-source framework has been used since 2014 for running a challenge. Competitors around the globe submit their best approaches that aim to generalize well across games. Additionally, the frame- work has been used in AI modules by many higher-education institutions as assignments, or as proposed projects for final year (undergraduate and Master’s) students and Ph.D. candidates. The present book, written by the developers and organizers of the framework, presents the most interesting highlights of the research performed by the authors during these years in this domain. It showcases work on methods to play the games, generators of content, and video game optimization. It also outlines potential further work in an area that offers multiple research directions for the future. KEYWORDS computational intelligence, artificial intelligence, video games, general video game playing, GVGAI, video game description language, reinforcement learning, Monte Carlo tree search, rolling horizon evolutionary algorithms, procedural content gen- eration vii Contents Preface ........................................................... xi Acknowledgments ................................................ xiii 1 Introduction ....................................................... 1 Diego Pérez Liébana 1.1 A Historical View: From Chess to GVGAI . 3 1.2 GVGAI in Education . 7 1.3 GVGAI and the Games Industry . 9 2 VGDL and the GVGAI Framework ................................... 13 Diego Pérez Liébana 2.1 Introduction . 13 2.2 The Video Game Description Language . 14 2.2.1 Continuous Physics . 19 2.2.2 2-Player Games . 20 2.2.3 The Future of VGDL . 22 2.3 The General Video Game AI Framework . 22 2.3.1 API for 2-Player Games . 24 2.3.2 GVGAI as a Multi-Track Challenge . 25 2.4 The GVGAI Competition . 26 2.5 Exercises . 28 3 Planning in GVGAI ................................................ 31 Diego Pérez Liébana and Raluca D. Gaina 3.1 Introduction . 31 3.2 Monte Carlo Tree Search . 32 3.3 Knowledge-Based Fast Evolutionary MCTS . 36 3.3.1 Fast Evolution in MCTS . 36 3.3.2 Learning Domain Knowledge . 37 3.3.3 Experimental Work . 39 viii 3.4 Multi-Objective MCTS for GVGAI . 40 3.4.1 Multi-Objective Optimization . 41 3.4.2 Multi-Objective MCTS . 42 3.4.3 Experimental Work . 44 3.5 Rolling Horizon Evolutionary Algorithms . 49 3.5.1 Vanilla RHEA . 49 3.5.2 RHEA Enhancements . 52 3.6 Exercises . 58 4 Frontiers of GVGAI Planning ....................................... 61 Diego Pérez Liébana and Raluca D. Gaina 4.1 Introduction . 61 4.2 State of the Art in GVGAI Planning . 62 4.2.1 OLETS (adrienctx) . 62 4.2.2 ToVo2 . 62 4.2.3 YOLOBOT . 64 4.3 Current Problems in GVGAI Planning . 65 4.4 General Win Prediction in GVGAI . 67 4.4.1 Game Playing Agents and Features . 67 4.4.2 Predictive Models . 71 4.5 Exercises . 77 5 Learning in GVGAI ................................................ 79 Jialin Liu 5.1 Challenges of Learning in GVGAI . 79 5.2 Framework . 80 5.2.1 GVGAI Learning Framework . 81 5.2.2 GVGAI Learning Environment . 81 5.2.3 GVGAI Gym Environment . 83 5.2.4 Comparing to Other Learning Frameworks . 84 5.3 GVGAI Learning Competitions . 85 5.3.1 Competition Using the GVGAI Learning Environment . 85 5.3.2 Competition Using the GVGAI Gym . 88 5.4 Competition Entries . 90 5.4.1 Random Agent (Sample Agents) . 91 5.4.2 DRL Algorithms (Sample Agents) . 91 ix 5.4.3 Multi-Armed Bandit Algorithm . 91 5.4.4 Sarsa . 91 5.4.5 Q-Learning . 92 5.4.6 Tree Search Methods . 92 5.4.7 Other Learning Agents . 92 5.4.8 Discussion . 93 5.5 Summary . 94 5.6 Exercises . 94 6 Procedural Content Generation in GVGAI............................. 97 Ahmed Khalifa and Julian Togelius 6.1 Level Generation in GVGAI. 98 6.1.1 Sample Generators . 100 6.1.2 Competition and Other Generators . 104 6.1.3 Discussion . ..
Recommended publications
  • Ai12-General-Game-Playing-Pre-Handout
    Introduction GDL GGP Alpha Zero Conclusion References Artificial Intelligence 12. General Game Playing One AI to Play All Games and Win Them All Jana Koehler Alvaro´ Torralba Summer Term 2019 Thanks to Dr. Peter Kissmann for slide sources Koehler and Torralba Artificial Intelligence Chapter 12: GGP 1/53 Introduction GDL GGP Alpha Zero Conclusion References Agenda 1 Introduction 2 The Game Description Language (GDL) 3 Playing General Games 4 Learning Evaluation Functions: Alpha Zero 5 Conclusion Koehler and Torralba Artificial Intelligence Chapter 12: GGP 2/53 Introduction GDL GGP Alpha Zero Conclusion References Deep Blue Versus Garry Kasparov (1997) Koehler and Torralba Artificial Intelligence Chapter 12: GGP 4/53 Introduction GDL GGP Alpha Zero Conclusion References Games That Deep Blue Can Play 1 Chess Koehler and Torralba Artificial Intelligence Chapter 12: GGP 5/53 Introduction GDL GGP Alpha Zero Conclusion References Chinook Versus Marion Tinsley (1992) Koehler and Torralba Artificial Intelligence Chapter 12: GGP 6/53 Introduction GDL GGP Alpha Zero Conclusion References Games That Chinook Can Play 1 Checkers Koehler and Torralba Artificial Intelligence Chapter 12: GGP 7/53 Introduction GDL GGP Alpha Zero Conclusion References Games That a General Game Player Can Play 1 Chess 2 Checkers 3 Chinese Checkers 4 Connect Four 5 Tic-Tac-Toe 6 ... Koehler and Torralba Artificial Intelligence Chapter 12: GGP 8/53 Introduction GDL GGP Alpha Zero Conclusion References Games That a General Game Player Can Play (Ctd.) 5 ... 18 Zhadu 6 Othello 19 Pancakes 7 Nine Men's Morris 20 Quarto 8 15-Puzzle 21 Knight's Tour 9 Nim 22 n-Queens 10 Sudoku 23 Blob Wars 11 Pentago 24 Bomberman (simplified) 12 Blocker 25 Catch a Mouse 13 Breakthrough 26 Chomp 14 Lights Out 27 Gomoku 15 Amazons 28 Hex 16 Knightazons 29 Cubicup 17 Blocksworld 30 ..
    [Show full text]
  • Towards General Game-Playing Robots: Models, Architecture and Game Controller
    Towards General Game-Playing Robots: Models, Architecture and Game Controller David Rajaratnam and Michael Thielscher The University of New South Wales, Sydney, NSW 2052, Australia fdaver,[email protected] Abstract. General Game Playing aims at AI systems that can understand the rules of new games and learn to play them effectively without human interven- tion. Our paper takes the first step towards general game-playing robots, which extend this capability to AI systems that play games in the real world. We develop a formal model for general games in physical environments and provide a sys- tems architecture that allows the embedding of existing general game players as the “brain” and suitable robotic systems as the “body” of a general game-playing robot. We also report on an initial robot prototype that can understand the rules of arbitrary games and learns to play them in a fixed physical game environment. 1 Introduction General game playing is the attempt to create a new generation of AI systems that can understand the rules of new games and then learn to play these games without human intervention [5]. Unlike specialised systems such as the chess program Deep Blue, a general game player cannot rely on algorithms that have been designed in advance for specific games. Rather, it requires a form of general intelligence that enables the player to autonomously adapt to new and possibly radically different problems. General game- playing systems therefore are a quintessential example of a new generation of software that end users can customise for their own specific tasks and special needs.
    [Show full text]
  • Artificial General Intelligence in Games: Where Play Meets Design and User Experience
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The IT University of Copenhagen's Repository ISSN 2186-7437 NII Shonan Meeting Report No.130 Artificial General Intelligence in Games: Where Play Meets Design and User Experience Ruck Thawonmas Julian Togelius Georgios N. Yannakakis March 18{21, 2019 National Institute of Informatics 2-1-2 Hitotsubashi, Chiyoda-Ku, Tokyo, Japan Artificial General Intelligence in Games: Where Play Meets Design and User Experience Organizers: Ruck Thawonmas (Ritsumeikan University, Japan) Julian Togelius (New York University, USA) Georgios N. Yannakakis (University of Malta, Malta) March 18{21, 2019 Plain English summary (lay summary): Arguably the grand goal of artificial intelligence (AI) research is to pro- duce machines that can solve multiple problems, not just one. Until recently, almost all research projects in the game AI field, however, have been very specific in that they focus on one particular way in which intelligence can be applied to video games. Most published work describes a particu- lar method|or a comparison of two or more methods|for performing a single task in a single game. If an AI approach is only tested on a single task for a single game, how can we argue that such a practice advances the scientific study of AI? And how can we argue that it is a useful method for a game designer or developer, who is likely working on a completely different game than the method was tested on? This Shonan meeting aims to discuss three aspects on how to generalize AI in games: how to play any games, how to model any game players, and how to generate any games, plus their potential applications.
    [Show full text]
  • PAI2013 Popularize Artificial Intelligence
    Matteo Baldoni Federico Chesani Paola Mello Marco Montali (Eds.) PAI2013 Popularize Artificial Intelligence AI*IA National Workshop “Popularize Artificial Intelligence” Held in conjunction with AI*IA 2013 Turin, Italy, December 5, 2013 Proceedings PAI 2013 Home Page: http://aixia2013.i-learn.unito.it/course/view.php?id=4 Copyright c 2013 for the individual papers by the papers’ authors. Copying permitted for private and academic purposes. Re-publication of material from this volume requires permission by the copyright owners. Sponsoring Institutions Associazione Italiana per l’Intelligenza Artificiale Editors’ addresses: University of Turin DI - Dipartimento di Informatica Corso Svizzera, 185 10149 Torino, ITALY [email protected] University of Bologna DISI - Dipartimento di Informatica - Scienza e Ingegneria Viale Risorgimento, 2 40136 Bologna, Italy [email protected] [email protected] Free University of Bozen-Bolzano Piazza Domenicani, 3 39100 Bolzano, Italy [email protected] Preface The 2nd Workshop on Popularize Artificial Intelligence (PAI 2013) follows the successful experience of the 1st edition, held in Rome 2012 to celebrate the 100th anniversary of Alan Turing’s birth. It is organized as part of the XIII Conference of the Italian Association for Artificial Intelligence (AI*IA), to celebrate another important event, namely the 25th anniversary of AI*IA. In the same spirit of the first edition, PAI 2013 aims at divulging the practical uses of Artificial Intelligence among researchers, practitioners, teachers and stu- dents. 13 contributions were submitted, and accepted after a reviewing process that produced from 2 to 3 reviews per paper. Papers have been grouped into three main categories: student experiences inside AI courses (8 contributions), research and academic experiences (4 contributions), and industrial experiences (1 contribution).
    [Show full text]
  • Building a Poker Playing Agent Based on Game Logs Using Supervised Learning
    FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Building a Poker Playing Agent based on Game Logs using Supervised Learning Luís Filipe Guimarães Teófilo Mestrado Integrado em Engenharia Informática e Computação Orientador: Professor Doutor Luís Paulo Reis 26 de Julho de 2010 Building a Poker Playing Agent based on Game Logs using Supervised Learning Luís Filipe Guimarães Teófilo Mestrado Integrado em Engenharia Informática e Computação Aprovado em provas públicas pelo Júri: Presidente: Professor Doutor António Augusto de Sousa Vogal Externo: Professor Doutor José Torres Orientador: Professor Doutor Luís Paulo Reis ____________________________________________________ 26 de Julho de 2010 iv Resumo O desenvolvimento de agentes artificiais que jogam jogos de estratégia provou ser um domínio relevante de investigação, sendo que investigadores importantes na área das ciências de computadores dedicaram o seu tempo a estudar jogos como o Xadrez e as Damas, obtendo resultados notáveis onde o jogador artificial venceu os melhores jogadores humanos. No entanto, os jogos estocásticos com informação incompleta trazem novos desafios. Neste tipo de jogos, o agente tem de lidar com problemas como a gestão de risco ou o tratamento de informação não fiável, o que torna essencial modelar adversários, para conseguir obter bons resultados. Nos últimos anos, o Poker tornou-se um fenómeno de massas, sendo que a sua popularidade continua a aumentar. Na Web, o número de jogadores aumentou bastante, assim como o número de casinos online, tornando o Poker numa indústria bastante rentável. Além disso, devido à sua natureza estocástica de informação imperfeita, o Poker provou ser um problema desafiante para a inteligência artificial. Várias abordagens foram seguidas para criar um jogador artificial perfeito, sendo que já foram feitos progressos nesse sentido, como o melhoramento das técnicas de modelação de oponentes.
    [Show full text]
  • Arxiv:2002.10433V1 [Cs.AI] 24 Feb 2020 on Game AI Was in a Niche, Largely Unrecognized by Have Certainly Changed in the Last 10 to 15 Years
    From Chess and Atari to StarCraft and Beyond: How Game AI is Driving the World of AI Sebastian Risi and Mike Preuss Abstract This paper reviews the field of Game AI, strengthening it (e.g. [45]). The main arguments have which not only deals with creating agents that can play been these: a certain game, but also with areas as diverse as cre- ating game content automatically, game analytics, or { By tackling game problems as comparably cheap, player modelling. While Game AI was for a long time simplified representatives of real world tasks, we can not very well recognized by the larger scientific com- improve AI algorithms much easier than by model- munity, it has established itself as a research area for ing reality ourselves. developing and testing the most advanced forms of AI { Games resemble formalized (hugely simplified) mod- algorithms and articles covering advances in mastering els of reality and by solving problems on these we video games such as StarCraft 2 and Quake III appear learn how to solve problems in reality. in the most prestigious journals. Because of the growth of the field, a single review cannot cover it completely. Therefore, we put a focus on important recent develop- Both arguments have at first nothing to do with ments, including that advances in Game AI are start- games themselves but see them as a modeling / bench- ing to be extended to areas outside of games, such as marking tools. In our view, they are more valid than robotics or the synthesis of chemicals. In this article, ever.
    [Show full text]
  • Conference Program
    AAAI-07 / IAAI-07 Based on an original photograph courtesy, Tourism Vancouver. Conference Program Twenty-Second AAAI Conference on Artificial Intelligence (AAAI-07) Nineteenth Conference on Innovative Applications of Artificial Intelligence (IAAI-07) July 22 – 26, 2007 Hyatt Regency Vancouver Vancouver, British Columbia, Canada Sponsored by the Association for the Advancement of Artificial Intelligence Cosponsored by the National Science Foundation, Microsoft Research, Michael Genesereth, Google, Inc., NASA Ames Research Center, Yahoo! Research Labs, Intel, USC/Information Sciences Institute, AICML/University of Alberta, ACM/SIGART, The Boeing Company, IISI/Cornell University, IBM Research, and the University of British Columbia Tutorial Forum Cochairs Awards Contents Carla Gomes (Cornell University) Andrea Danyluk (Williams College) All AAAI-07, IAAI-07, AAAI Special Awards, Acknowledgments / 2 Workshop Cochairs and the IJCAI-JAIR Best Paper Prize will be AI Video Competition / 18 Bob Givan (Purdue University) presented Tuesday, July 24, 8:30–9:00 AM, Simon Parsons (Brooklyn College, CUNY) Awards / 2–3 in the Regency Ballroom on the Convention Competitions / 18–19 Doctoral Consortium Chair and Cochair Level. Computer Poker Competition / 18 Terran Lane (The University of New Mexico) Conference at a Glance / 5 Colleen van Lent (California State University Doctoral Consortium / 4 Long Beach) AAAI-07 Awards Exhibition / 16 Student Abstract and Poster Cochairs Presented by Robert C. Holte and Adele General Game Playing Competition / 18 Mehran Sahami (Google Inc.) Howe, AAAI-07 program chairs. General Information / 19–20 Kiri Wagstaff (Jet Propulsion Laboratory) AAAI-07 Outstanding Paper Awards IAAI-07 Program / 8–13 Matt Gaston (University of Maryland, PLOW: A Collaborative Task Learning Agent Intelligent Systems Demos / 17 Baltimore County) James Allen, Nathanael Chambers, Invited Talks / 3, 7 Intelligent Systems Demonstrations George Ferguson, Lucian Galescu, Hyuckchul Man vs.
    [Show full text]
  • The Mathematical Analysis of Games, Focusing on Variance
    The Mathematical Analysis of Games, Focusing on Variance Dr. ir. Tom Verhoeff, TU Eindhoven Last November, I gave a lunch talk on game analysis for W.I.S.V. Mathematically interesting questions are: Given the game's state, `Christiaan Huygens'. If you missed it, you can catch up here. how do you decide your best move? Which player can force the best Games, Mathematics, and Decisions outcome from the start? What is the (long-term) optimum result? Games have always been loved by mathematicians. Because of their A Strategic Coin Game (usually) well-defined rules, games admit a formal analysis, sometimes Let us dive into a simple strategic coin game. The two players, with surprising results. It is impossible to provide comprehensive Alice and Bob, simultaneously and secretly each choose 0 (head) or coverage in this article. Instead, I will give an overview and focus on 1 (tail)1. After committing their choices, the payoff is determined by the role of variance, which is often overlooked. the matrix in Figure 2. Alice receives e 2 from Bob when the choices J¨orgBewersdorff wrote a nice book on applying mathematics to the Bob chooses analysis of games [2]. I recommend it to the mathematically inclined reader. It classifies games according to the sources of uncertainty 0 1 that confront the players, also see Figure 1. m m Combinatorial Games generate uncertainty by the many ways in which 0 " 1 2 moves can be combined, in spite of the fact that the players have Alice chooses m open access to all information.
    [Show full text]
  • Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm
    Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm David Silver,1∗ Thomas Hubert,1∗ Julian Schrittwieser,1∗ Ioannis Antonoglou,1 Matthew Lai,1 Arthur Guez,1 Marc Lanctot,1 Laurent Sifre,1 Dharshan Kumaran,1 Thore Graepel,1 Timothy Lillicrap,1 Karen Simonyan,1 Demis Hassabis1 1DeepMind, 6 Pancras Square, London N1C 4AG. ∗These authors contributed equally to this work. Abstract The game of chess is the most widely-studied domain in the history of artificial intel- ligence. The strongest programs are based on a combination of sophisticated search tech- niques, domain-specific adaptations, and handcrafted evaluation functions that have been refined by human experts over several decades. In contrast, the AlphaGo Zero program recently achieved superhuman performance in the game of Go by tabula rasa reinforce- ment learning from games of self-play. In this paper, we generalise this approach into a single AlphaZero algorithm that can achieve, tabula rasa, superhuman performance in many challenging games. Starting from random play, and given no domain knowledge ex- cept the game rules, AlphaZero achieved within 24 hours a superhuman level of play in the games of chess and shogi (Japanese chess) as well as Go, and convincingly defeated a world-champion program in each case. The study of computer chess is as old as computer science itself. Babbage, Turing, Shan- non, and von Neumann devised hardware, algorithms and theory to analyse and play the game of chess. Chess subsequently became the grand challenge task for a generation of artificial intel- ligence researchers, culminating in high-performance computer chess programs that perform at superhuman level (9, 14).
    [Show full text]
  • General Game Playing and the Game Description Language
    General Game Playing and the Game Description Language Abdallah Saffidine In Artificial Intelligence (AI), General Game Playing (GGP) consists in constructing artificial agents that are able to act rationally in previously unseen environments. Typically, an agent is presented with a description of a new environment and is requested to select an action among a given set of legal actions. Since the programmers do not have prior access to the description of the environment, they cannot encode domain specific knowledge in the agent, and the artificial agent must be able to infer, reason, and learn about its environment on its own. The class of environments an agent may face is called Multi-Agent Environments (MAEs), it features many interacting agents in a deterministic and discrete setting. The agents can take turns or act syn- chronously and can cooperate or have conflicting objectives. For instance, the Travelling Salesman Problem, Chess, the Prisoner’s Dilemma, and six-player Chinese Checkers all fall within the MAE framework. The environment is described to the agents in the Game Description Language (GDL), a declarative and rule based language, related to DATALOG. A state of the MAE corresponds to a set of ground terms and some distinguished predicates allow to compute the legal actions for each agents, the transition function through the effect of the actions, or the rewards each agent is awarded when a final state has been reached. State of the art GGP players currently process GDL through a reduction to PROLOG and using a PROLOG interpreter. As a result, the raw speed of GGP engines is several order of magnitudes slower than that of an engine specialised to one type of environments (e.g.
    [Show full text]
  • Rolling Horizon NEAT for General Video Game Playing
    Rolling Horizon NEAT for General Video Game Playing Diego Perez-Liebana Muhammad Sajid Alam Raluca D. Gaina Queen Mary University of London Queen Mary University of London Queen Mary University of London Game AI Group Game AI Group Game AI Group London, UK London, UK London, UK [email protected] [email protected] [email protected] Abstract—This paper presents a new Statistical Forward present rhNEAT, an algorithm that takes concepts from the Planning (SFP) method, Rolling Horizon NeuroEvolution of existing NeuroEvolution of Augmenting Topologies (NEAT) Augmenting Topologies (rhNEAT). Unlike traditional Rolling and RHEA. We analyze different variants of the algorithm and Horizon Evolution, where an evolutionary algorithm is in charge of evolving a sequence of actions, rhNEAT evolves weights and compare its performance with state of the art results. A second connections of a neural network in real-time, planning several contribution of this paper is to start opening a line of research steps ahead before returning an action to execute in the game. that explores alternative representations for Rolling Horizon Different versions of the algorithm are explored in a collection Evolutionary Algorithms: while traditionally RHEA evolves a of 20 GVGAI games, and compared with other SFP methods sequence of actions, rhNEAT evolves neural network weights and state of the art results. Although results are overall not better than other SFP methods, the nature of rhNEAT to adapt and configurations, which in turn generate action sequences to changing game features has allowed to establish new state of used to evaluate individual fitness.
    [Show full text]
  • Automatic Construction of a Heuristic Search Function for General Game Playing
    Automatic Construction of a Heuristic Search Function for General Game Playing Stephan Schiffel and Michael Thielscher Department of Computer Science Dresden University of Technology {stephan.schiffel,mit}@inf.tu-dresden.de Student Paper Abstract tic search. Our focus is on techniques for constructing a search heuristics by the automated analysis of game speci- General Game Playing (GGP) is the art of design- fications. More specifically, we describe the following func- ing programs that are capable of playing previously tionalities of a complete General Game Player: unknown games of a wide variety by being told nothing but the rules of the game. This is in con- 1. Determining legal moves and their effects from a formal trast to traditional computer game players like Deep game description requires reasoning about actions. We Blue, which are designed for a particular game and use the Fluent Calculus and its Prolog-based implemen- can’t adapt automatically to modifications of the tation FLUX [Thielscher, 2005]. rules, let alone play completely different games. General Game Playing is intended to foster the de- 2. To search a game tree, we use non-uniform depth- velopment of integrated cognitive information pro- first search with iterative deepening and general pruning cessing technology. In this article we present an techniques. approach to General Game Playing using a novel 3. Games which cannot be fully searched require auto- way of automatically constructing a search heuris- matically constructing evaluation functions from formal tics from a formal game description. Our system is game specifications. We give the details of a method being tested with a wide range of different games.
    [Show full text]