The Proton Radius Puzzle

Total Page:16

File Type:pdf, Size:1020Kb

The Proton Radius Puzzle ! The Proton Radius Puzzle Gerald A. Miller, University of Washington Pohl et al Nature 466, 213 (8 July 2010) Feb. 2014 Pohl, Gilman, Miller, Pachucki muon H rp =0.84184 (67) fm (ARNPS63, 2013) electron H rp =0.8768 (69)fm 2 2 dGE(Q ) electron-p scattering rp =0.875 (10)fm rp 6 ⌘ dQ2 Q2=0 2 PRad at JLab- lower Q 4 % Difference 4 % in radius: why care? • Can’t be calculated to that accuracy • 1/2 cm in radius of a basketball Is the muon-proton interaction the same as the electron-proton interaction? - many possible ramifications Does 4% matter? YES Summary/Outline • If all of the experiments, and their analyses, are correct a new scalar boson of mass ~1 MeV must exist • Direct detection is needed.: detection seems to be difficult: David McKeen, Yu-Sheng Lu 19 16 p(1.88 MeV) + F ↵ + O⇤(6.05) 16 16 ! O⇤(6.05) O(GS)+φ 0+ to 0+! (no photon emission) Electron-positron resonant elastic scattering Beam dump experiments, muon facilities university of melbourne cssm, university of adelaide The Experimentmuonic hydrogen experiment Muonic Hydrogen 2P1/2 The Lamb shift is the splitting of the degenerate 2S1/2 and 2P1/2 eigenstates The Lamb shift is the splitting ∆ 2S−2P ELamb of the degenerate 2S1/2 and 2P1/2 eigenstates,Dominant due to in vacuum μH polar- vacuum polarization 205 of 206 meV ization 2S1/2 Dominant in eH electron self-energy ∞ 2 Zα α d(q ) −meqr 4 2 VVP(r)=− 2 e 1 − 2 1+ 2 r 3π 4 q q q Proton radius in! " # $ ? Lamb shift J. Carroll — Proton Radius Puzzle — Slide 8 pt 2 2 ∆E = V V = ⇡↵ (0) ( 6G0 (0)) h S| C − C | Si 3 | S | − E • Muon/electron mass ratio 205! 8 million times larger for muon Recoil effects included: interaction computed for moving fermions 1 RESEARCH ARTICLES Figure 3 shows the two measured mp res- The uncertainties result from quadratically This rE value is compatible with our pre- onances. Details of the data analysis are given adding the statistical and systematic uncertain- vious mp result (6), but 1.7 times more precise, in (12). The laser frequency was changed every ties of ns and nt. and is now independent of the theoretical pre- few hours, and we accumulated data for up to The charge radius. The theory (14, 16–22) diction of the 2S-HFS. Although an order of 13 hours per laser frequency. The laser frequen- relating the Lamb shift to rE yields (13): magnitude more precise, the mp-derived proton cy was calibrated [supplement in (6)] by using radius is at 7s variance with the CODATA-2010 th 2 well-known water absorption lines. The reso- DE 206:0336(15 − 5:2275(10 r DETPE (7)valueofr =0.8775(51)fmbasedonHspec- L ¼ Þ Þ E þ E nance positions corrected for laser intensity ef- 7 troscopy and electron-proton scattering. fects using the line shape model (12)are ð Þ Magnetic and Zemach radii. The theoretical stat sys where E is in meV and rE is the root mean prediction (17, 18, 27–29)ofthe2S-HFSis(13) ns 54611:16(1:00) (30) GHz 2 ¼ ð Þ square (RMS) charge radius given in fm and 2 3 2 th pol stat sys defined as rE = ∫d rr rE(r) with rE being the DE 22:9763(15 − 0:1621(10)rZ DE nt 49881:35(57) (30) GHz 3 HFS ¼ Þ þ HFS ¼ ð Þ normalized proton charge distribution. The first 9 where “stat” and “sys” indicate statistical and sys- term on the right side of Eq. 7 accounts for ð Þ tematic uncertainties, giving total experimental un- radiative, relativistic, and recoil effects. Fine and where E is in meV and rZ is in fm. The first term is certainties of 1.05 and 0.65 GHz, respectively. hyperfine corrections are absent here as a con- the Fermi energy arising from the interaction Although extracted from the same data, the fre- sequence of Eqs. 4. The other terms arise from between the muon and the proton magnetic mo- quency value of the triplet resonance, nt,isslightly the proton structure. The leading finite size effect ments, corrected for radiative and recoil con- 2 more accurate than in (6)owingtoseveralimprove- −5.2275(10)rE meV is approximately given by tributions, and includes a small dependence of 2 ments in the data analysis. The fitted line widths Eq. 1 with corrections given in (13, 17, 18). −0.0022rE meV = −0.0016 meV on the charge are 20.0(3.6) and 15.9(2.4) GHz, respectively, com- Two-photon exchange (TPE) effects, including the radius (13). patible with the expected 19.0 GHz resulting from proton polarizability, are covered by the term The leading proton structure term depends the laser bandwidth (1.75 GHz at full width at half DETPE =0.0332(20)meV(19, 24–26). Issues on rZ,definedas maximum) and the Doppler broadening (1 GHz) related with TPE are discussed in (12, 13). th exp of the 18.6-GHz natural line width. The comparison of DEL (Eq. 7) with DEL 3 3 ′ ′ ′ rZ d r d r r r (r)r (r − r ) 10 The systematic uncertainty of each measure- (Eq. 5) yields ¼ ∫ ∫ E M ð Þ ment is 300 MHz, given by the frequency cal- exp th ibration uncertainty arising from pulse-to-pulse rE 0:84087(26) (29) fm with rM being the normalized proton mag- fluctuations in the laser and from broadening ¼ 0:84087(39) fm 8 netic moment distribution. The HFS polariz- effects occurring in the Raman process. Other ¼ ð Þ systematic corrections we have considered are Muonic Hydrogen Experiment the Zeeman shift in the 5-T field (<60 MHz), AC and DC Stark shifts (<1 MHz), Doppler shift (<1 MHz), pressure shift (<2 MHz), and black-body radiation shift (<<1 MHz). All these typically important atomic spectroscopy system- atics are small because of the small size of mp. The Lamb shift and the hyperfine splitting. From these two transition measurements, we can independently deduce both the Lamb shift (DEL = DE2P1/2−2S1/2) and the 2S-HFS splitting (DEHFS) by the linear combinations (13) 1 3 hns hnt DEL 8:8123 2 meV 4 þ 4 ¼ þ ð Þ hns − hnt DEHFS − 3:2480 2 meV 4 ¼ ð Þ ð Þ Finite size effects are included in DEL and DEHFS. The numerical terms include the cal- From 2013 culated values of the 2P fine structure, the 2P3/2 hyperfine splitting, and the mixing of the 2P states (14–18). The finite proton size effects on Science paper the 2P fine and hyperfine structure are smaller than 1 × 10−4 meV because of the small overlap between the 2P wave functions and the nu- cleus. Thus, their uncertainties arising from the proton structure are negligible. By using the measured transition frequencies ns and nt in Eqs. 4, we obtain (1 meV corresponds to 241.79893 GHz) Fig. 1. (A)Formationofmpinhighlyexcitedstatesandsubsequentcascadewithemissionof“prompt” DEexp 202:3706(23) meV 5 L ¼ ð Þ Ka, b, g.(B)Laserexcitationofthe2S-2Ptransitionwith subsequent decay to the ground state with Ka emission. (C)2Sand2Penergylevels.Themeasuredtransitionsns and nt are indicated together with DEexp 22:8089(51) meV 6 HFS ¼ ð Þ the Lamb shift, 2S-HFS, and 2P-fine and hyperfine splitting. EMBARGOED UNTIL 2PM U.S. EASTERN TIME ON THE THURSDAY BEFORE THIS DATE: 418 25 JANUARY 2013 VOL 339 SCIENCE www.sciencemag.org NATURE | Vol 466 | 8 July 2010 LETTERS a 105 We obtain a centroid position of 49,881.88(70) GHz, and a width of 200 1.32 × 106 events 104 18.0(2.2) GHz, where the given uncertainties are the 1 s.d. statistical 103 150 uncertainties. The width compares well with the value of 20(1) GHz 102 expected from the laser bandwidth and Doppler- and power-broad- 10 100 1 ening of the natural line width of 18.6 GHz. The resulting background 01234 amplitude agrees with the one obtained by a fit to data recorded 50 without laser (not shown). We obtain a value of x2 5 28.1 for 28 0 degrees of freedom (d.f.). A fit of a flat line, assuming no resonance, 5 2 b 10 6 200 1.02 × 10 events gives x 5 283 for 31 d.f., making this resonance line 16s significant. 104 Events in 25 ns The systematic uncertainty of our measurement is 300 MHz. It 103 150 102 originates exclusively from our laser wavelength calibration proced- 10 ure. We have calibrated our line position in 21 measurements of 5 100 1 different water vapour absorption lines in the rangel 5 5.49–6.01 mm. 01234 28 50 The positions of these water lines are known to an absolute precision of 1 MHz and are tabulated in the HITRAN database29. The measured 0 –0.5 0 0.5 1 1.5 2 2.5 3 relative spacing between the 5 lines agrees with the published ones. One Time (μs) such measurement of a water vapour absorption line is shown in Fig. 5. Our quoted uncertainty of 300 MHz comes from pulse to pulse fluc- Figure 4 | Summed X-ray time spectra. Spectra were recorded on resonance tuations and a broadening effect occurring in the Raman process. The (a) and off resonance (b). The laser light illuminates the muonic atoms in the FSR of the reference Fabry–Perot cavity does not contribute, as the FSR laser time window t g [0.887, 0.962] ms indicated in red.
Recommended publications
  • The Lamb Shift Experiment in Muonic Hydrogen
    The Lamb Shift Experiment in Muonic Hydrogen Dissertation submitted to the Physics Faculty of the Ludwig{Maximilians{University Munich by Aldo Sady Antognini from Bellinzona, Switzerland Munich, November 2005 1st Referee : Prof. Dr. Theodor W. H¨ansch 2nd Referee : Prof. Dr. Dietrich Habs Date of the Oral Examination : December 21, 2005 Even if I don't think, I am. Itsuo Tsuda Je suis ou` je ne pense pas, je pense ou` je ne suis pas. Jacques Lacan A mia mamma e mio papa` con tanto amore Abstract The subject of this thesis is the muonic hydrogen (µ−p) Lamb shift experiment being performed at the Paul Scherrer Institute, Switzerland. Its goal is to measure the 2S 2P − energy difference in µp atoms by laser spectroscopy and to deduce the proton root{mean{ −3 square (rms) charge radius rp with 10 precision, an order of magnitude better than presently known. This would make it possible to test bound{state quantum electrody- namics (QED) in hydrogen at the relative accuracy level of 10−7, and will lead to an improvement in the determination of the Rydberg constant by more than a factor of seven. Moreover it will represent a benchmark for QCD theories. The experiment is based on the measurement of the energy difference between the F=1 F=2 2S1=2 and 2P3=2 levels in µp atoms to a precision of 30 ppm, using a pulsed laser tunable at wavelengths around 6 µm. Negative muons from a unique low{energy muon beam are −1 stopped at a rate of 70 s in 0.6 hPa of H2 gas.
    [Show full text]
  • The MUSE Experiment and the Proton Radius
    Introduction Resolutions to the Puzzle MUSE - MUon Scattering Experiment The MUSE experiment and the Proton Radius Cristina Collicott SPIN 2016 Cristina Collicott SPIN 2016 1/17 Introduction Resolutions to the Puzzle MUSE - MUon Scattering Experiment The Proton Radius Puzzle How big is the proton? Easy question to ask, not so easy to answer! Currently an unanswered problem in physics Cristina Collicott SPIN 2016 2/17 Introduction Resolutions to the Puzzle MUSE - MUon Scattering Experiment The Proton Radius Puzzle What is the proton radius puzzle? The proton charge radius, measured via muonic hydrogen spectroscopy, is 4% smaller than results from hydrogen spectroscopy and elastic electron proton scattering experiments. Cristina Collicott SPIN 2016 3/17 Introduction Resolutions to the Puzzle MUSE - MUon Scattering Experiment The Proton Radius Puzzle - scattering Rosenbluth scattering: 2 2 2 2 dσ dσ GE (Q )+ xGM (Q ) 2 2 2 θ = + 2xGM (Q ) tan dΩ dΩ (point.) 1 + x 2 Sach's form factors (F1,F2 Dirac and Pauli FFs) 2 2 2 GE (Q ) = F1(Q ) − xF2(Q ) 2 2 2 GE (Q ) = F1(Q ) − xF2(Q ) hq 2 x = 2Mc Cristina Collicott SPIN 2016 4/17 Introduction Resolutions to the Puzzle MUSE - MUon Scattering Experiment The Proton Radius Puzzle - scattering Rosenbluth scattering: 2 2 2 2 dσ dσ GE (Q )+ xGM (Q ) 2 2 2 θ = + 2xGM (Q ) tan dΩ dΩ (point.) 1 + x 2 Derivative in the Q2 ! 0 limit 2 2 dGE (Q ) < rE >= −6 2 dQ Q2!0 We expect identical results for hq 2 experiments with ep and µp x = 2Mc scattering..
    [Show full text]
  • Arxiv:2103.17101V1 [Physics.Hist-Ph] 29 Mar 2021 1/2 1/2 Are Equal, While That of 2P3/2 Is Higher by About 40 Μev; This Is the fine Structure (FS), Fig
    April 1, 2021 0:46 WSPC Proceedings - 9in x 6in protonr page 1 1 THE QUEST FOR THE PROTON CHARGE RADIUS ISTVAN´ ANGELI Institute of Experimental Physics, University of Debrecen, Hungary A slight anomaly in optical spectra of the hydrogen atom led Willis E. Lamb to the search for the proton size. As a result, he found the shift of the 2S1/2 level, the first experimental demonstration of quantum electrodynamics (QED). In return, a modern test of QED yielded a new value of the charge radius of the proton. This sounds like Baron M¨unchausen's tale: to pull oneself out from the marsh by seizing his own hair. An independent method was necessary. Muonic hydrogen spectroscopy came to the aid. However, the high-precision result significantly differed from the previous { electronic { values: this is (was?) the proton radius puzzle (2010-2020?). This puzzle produced a decade-long activity both in experimental work and in theory. Even if the puzzle seems to be solved, the precise determination of the proton charge radius requires further efforts in the future. 1. The Dirac equation; anomalies in hydrogen spectra (1928{1938) In 1928, P.A.M. Dirac published his relativistic wave equation implying two important consequences: (1) The electron has an intrinsic magnetic dipole moment µe = 1 × µB (µB: Bohr magneton) in agreement with the experiment (1925: George Uhlenbeck, Samuel Goudsmit). (2) If in the hydrogen atom the electron moves in the field of a Coulomb potential V (r) ∼ 1=r, then its energy E(n; j) is determined by the principal quantum number n and the total angular momentum quan- tum number j, but not by the orbital angular momentum l and spin s, separately.
    [Show full text]
  • The Proton Radius Puzzle Μ
    The proton radius puzzle µ A. Antognini Paul Scherrer Institute ETH, Zurich Switzerland CREMA collaboration Laser spectroscopy of muonic atoms µ 2P 2S-2P Laser excitation Energy 2S 1S μ • 2S-2P p From 2S-2P • 2S-2P μd ꔄ charge radii • 2S-2P μ3He, μ4He Aldo Antognini Rencontres de Moriond 19.03.2017 2 Three ways to the proton radius p p e- H 2 e- µ- e--p scattering H spectroscopy µp spectroscopy 6.7 σ CODATA-2010 µp 2013 scatt. JLab µp 2010 scatt. Mainz H spectroscopy 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 Proton charge radius [fm] Pohl et al., Nature 466, 213 (2010) Antognini et al., Science 339, 417 (2013) Pohl et al., Science 353, 669 (2016) Aldo Antognini Rencontres de Moriond 19.03.2017 3 Extracting the proton radius from 훍p Measure 2S-2P splitting (20 ppm) 8.4 meV 2P F=2 and compare with theory 3/2 F=1 2P1/2 F=1 → proton radius F=0 ∆Eth . − . r2 . 2P −2S = 206 0336(15) 5 2275(10) p +00332(20) [meV] 206 meV 50 THz 6 µm fin. size: 3.8 meV F=1 2π(Zα) 2 2 2S ∆Esize = r |Ψnl(0)| 1/2 m ≈ 200m 3 p 23 meV µ e 4 2(Zα) 3 2 F=0 3 m r δl = 3n r p 0 Aldo Antognini Rencontres de Moriond 19.03.2017 4 Principle of the µp 2S-2P experiment Produce many µ− at keV energy − Form µp by stopping µ in 1 mbar H2 gas Fire laser to induce the 2S-2P transition Measure the 2 keV X-rays from 2P-1S decay µp formation Laser excitation Plot number of X-rays vs laser frequency ] n~14 2 P -4 7 Laser 6 1 % 99 % 2 S 5 2 P 4 2 S 3 2 keV 2 keV γ γ 2 delayed / prompt events [10 1 0 1 S 49.75 49.8 49.85 49.9 49.95 1 S laser frequency [THz] Aldo Antognini Rencontres de Moriond 19.03.2017 5 The setup at the Paul Scherrer Institute Aldo Antognini Rencontres de Moriond 19.03.2017 6 The first 훍p resonance (2010) Discrepancy: 5.0 σ ↔ 75 GHz ↔ δν/ν =1.5 × 10−3 ] -4 7 CODATA-06 our value 6 e-p scattering H2O 5 calib.
    [Show full text]
  • Casimir Effect Mechanism of Pairing Between Fermions in the Vicinity of A
    Casimir effect mechanism of pairing between fermions in the vicinity of a magnetic quantum critical point Yaroslav A. Kharkov1 and Oleg P. Sushkov1 1School of Physics, University of New South Wales, Sydney 2052, Australia We consider two immobile spin 1/2 fermions in a two-dimensional magnetic system that is close to the O(3) magnetic quantum critical point (QCP) which separates magnetically ordered and disordered phases. Focusing on the disordered phase in the vicinity of the QCP, we demonstrate that the criticality results in a strong long range attraction between the fermions, with potential V (r) 1/rν , ν 0.75, where r is separation between the fermions. The mechanism of the enhanced∝ − attraction≈ is similar to Casimir effect and corresponds to multi-magnon exchange processes between the fermions. While we consider a model system, the problem is originally motivated by recent establishment of magnetic QCP in hole doped cuprates under the superconducting dome at doping of about 10%. We suggest the mechanism of magnetic critical enhancement of pairing in cuprates. PACS numbers: 74.40.Kb, 75.50.Ee, 74.20.Mn I. INTRODUCTION in the frame of normal Fermi liquid picture (large Fermi surface). Within this approach electrons interact via ex- change of an antiferromagnetic (AF) fluctuation (param- In the present paper we study interaction between 11 fermions mediated by magnetic fluctuations in a vicin- agnon). The lightly doped AF Mott insulator approach, ity of magnetic quantum critical point. To address this instead, necessarily implies small Fermi surface. In this case holes interact/pair via exchange of the Goldstone generic problem we consider a specific model of two holes 12 injected into the bilayer antiferromagnet.
    [Show full text]
  • Charge Radius of the Short-Lived Ni68 and Correlation with The
    PHYSICAL REVIEW LETTERS 124, 132502 (2020) Charge Radius of the Short-Lived 68Ni and Correlation with the Dipole Polarizability † S. Kaufmann,1 J. Simonis,2 S. Bacca,2,3 J. Billowes,4 M. L. Bissell,4 K. Blaum ,5 B. Cheal,6 R. F. Garcia Ruiz,4,7, W. Gins,8 C. Gorges,1 G. Hagen,9 H. Heylen,5,7 A. Kanellakopoulos ,8 S. Malbrunot-Ettenauer,7 M. Miorelli,10 R. Neugart,5,11 ‡ G. Neyens ,7,8 W. Nörtershäuser ,1,* R. Sánchez ,12 S. Sailer,13 A. Schwenk,1,5,14 T. Ratajczyk,1 L. V. Rodríguez,15, L. Wehner,16 C. Wraith,6 L. Xie,4 Z. Y. Xu,8 X. F. Yang,8,17 and D. T. Yordanov15 1Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany 2Institut für Kernphysik and PRISMA+ Cluster of Excellence, Johannes Gutenberg-Universität Mainz, D-55128 Mainz, Germany 3Helmholtz Institute Mainz, GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany 4School of Physics and Astronomy, The University of Manchester, Manchester, M13 9PL, United Kingdom 5Max-Planck-Institut für Kernphysik, D-69117 Heidelberg, Germany 6Oliver Lodge Laboratory, Oxford Street, University of Liverpool, Liverpool L69 7ZE, United Kingdom 7Experimental Physics Department, CERN, CH-1211 Geneva 23, Switzerland 8KU Leuven, Instituut voor Kern- en Stralingsfysica, B-3001 Leuven, Belgium 9Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA and Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA 10TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, V6T 2A3, Canada 11Institut
    [Show full text]
  • The Proton Radius Puzzle-Why We All Should Care
    SNSN-323-63 September 27, 2018 The Proton Radius Puzzle- Why We All Should Care Gerald A. Miller1 Physics Department, University of Washington, Seattle, Washington 98195-1560, USA The status of the proton radius puzzle (as of the date of the Confer- ence) is reviewed. The most likely potential theoretical and experimental explanations are discussed. Either the electronic hydrogen experiments were not sufficiently accurate to measure the proton radius, the two- photon exchange effect was not properly accounted for, or there is some kind of new physics. I expect that upcoming experiments will resolve this issue within the next year or so. PRESENTED AT Conference on the Intersections between particle and nuclear physics, arXiv:1809.09635v1 [physics.atom-ph] 25 Sep 2018 Indian Wells, USA, May 29{ June 3, 2018 1This work was supported by the U. S. Department of Energy Office of Science, Office of Nuclear Physics under Award Number DE-FG02-97ER-41014,. This title is chosen because understanding of the proton radius puzzle requires knowledge of atomic, nuclear and particle physics. The puzzle began with the pub- lication of the results of the 2010 muon-hydrogen experiment in 2010 [1] and its confirmation [2]. The proton radius (r2 = 1=6G0 (Q2 = 0) was measured to be p − E rp = 0:84184(67) fm, which contrasted with the value obtained from electron spec- troscopy rp = 0:8768(69) fm. This difference of about 4% has become known as the proton radius puzzle [3]. We use the technical terms: the radius 0.87 fm is denoted as large, and the one of 0.84 fm as small.
    [Show full text]
  • Muonic Atoms and Radii of the Lightest Nuclei
    Muonic atoms and radii of the lightest nuclei Randolf Pohl Uni Mainz MPQ Garching Tihany 10 June 2019 Outline ● Muonic hydrogen, deuterium and the Proton Radius Puzzle New results from H spectroscopy, e-p scattering ● Muonic helium-3 and -4 Charge radii and the isotope shift ● Muonic present: HFS in μH, μ3He 10x better (magnetic) Zemach radii ● Muonic future: muonic Li, Be 10-100x better charge radii ● Ongoing: Triton charge radius from atomic T(1S-2S) 400fold improved triton charge radius Nuclear rms charge radii from measurements with electrons values in fm * elastic electron scattering * H/D: laser spectroscopy and QED (a lot!) * He, Li, …. isotope shift for charge radius differences * for medium-high Z (C and above): muonic x-ray spectroscopy sources: * p,d: CODATA-2014 * t: Amroun et al. (Saclay) , NPA 579, 596 (1994) * 3,4He: Sick, J.Phys.Chem.Ref Data 44, 031213 (2015) * Angeli, At. Data Nucl. Data Tab. 99, 69 (2013) The “Proton Radius Puzzle” Measuring Rp using electrons: 0.88 fm ( +- 0.7%) using muons: 0.84 fm ( +- 0.05%) 0.84 fm 0.88 fm 5 μd 2016 CODATA-2014 4 μp 2013 5.6 σ 3 e-p scatt. μp 2010 2 H spectroscopy 1 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.9 Proton charge radius R [fm] ch μd 2016: RP et al (CREMA Coll.) Science 353, 669 (2016) μp 2013: A. Antognini, RP et al (CREMA Coll.) Science 339, 417 (2013) The “Proton Radius Puzzle” Measuring Rp using electrons: 0.88 fm ( +- 0.7%) using muons: 0.84 fm ( +- 0.05%) 0.84 fm 0.88 fm 5 μd 2016 CODATA-2014 4 μp 2013 5.6 σ 3 e-p scatt.
    [Show full text]
  • The Proton Radius Puzzle and the Electro-Strong Interaction
    The Proton Radius Puzzle and the Electro-Strong Interaction The resolution of the Proton Radius Puzzle is the diffraction pattern, giving another wavelength in case of muonic hydrogen oscillation for the proton than it is in case of normal hydrogen because of the different mass rate. Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions. Contents Preface ................................................................................................................................... 2 The Proton Radius Puzzle ......................................................................................................... 2 Asymmetry in the interference occurrences of oscillators ............................................................ 2 Spontaneously broken symmetry in the Planck distribution law .................................................... 4 The structure of the proton ...................................................................................................... 6 The weak interaction ............................................................................................................... 6 The Strong Interaction - QCD .................................................................................................... 7 Confinement
    [Show full text]
  • The MITP Proton Radius Puzzle Workshop
    Report on The MITP Proton Radius Puzzle Workshop June 2–6, 2014 in Waldthausen Castle, Mainz, Germany 1 Description of the Workshop The organizers of the workshop were: • Carl Carlson, William & Mary, [email protected] • Richard Hill, University of Chicago, [email protected] • Savely Karshenboim, MPI fur¨ Quantenoptik & Pulkovo Observatory, [email protected] • Marc Vanderhaeghen, Universitat¨ Mainz, [email protected] The web page of the workshop, which contains all talks, can be found at https://indico.mitp.uni-mainz.de/conferenceDisplay.py?confId=14 . The size of the proton is one of the most fundamental observables in hadron physics. It is measured through an electromagnetic form factor. The latter is directly related to the distribution of charge and magnetization of the baryon and through such imaging provides the basis of nearly all studies of the hadron structure. In very recent years, a very precise knowledge of nucleon form factors has become more and more im- portant as input for precision experiments in several fields of physics. Well known examples are the hydrogen Lamb shift and the hydrogen hyperfine splitting. The atomic physics measurements of energy level splittings reach an impressive accuracy of up to 13 significant digits. Its theoretical understanding however is far less accurate, being at the part-per-million level (ppm). The main theoretical uncertainty lies in proton structure corrections, which limits the search for new physics in these kinds of experiment. In this context, the recent PSI measurement of the proton charge radius from the Lamb shift in muonic hydrogen has given a value that is a startling 4%, or 5 standard deviations, lower than the values ob- tained from energy level shifts in electronic hydrogen and from electron-proton scattering experiments, see figure below.
    [Show full text]
  • Proton Polarisability Contribution to the Lamb Shift in Muonic Hydrogen
    Proton polarisability contribution to the Lamb shift in muonic hydrogen Mike Birse University of Manchester Work done in collaboration with Judith McGovern Eur. Phys. J. A 48 (2012) 120 Mike Birse Proton polarisability contribution to the Lamb shift Mainz, June 2014 The Lamb shift in muonic hydrogen Much larger than in electronic hydrogen: DEL = E(2p1) − E(2s1) ' +0:2 eV 2 2 Dominated by vacuum polarisation Much more sensitive to proton structure, in particular, its charge radius th 2 DEL = 206:0668(25) − 5:2275(10)hrEi meV Results of many years of effort by Borie, Pachucki, Indelicato, Jentschura and others; collated in Antognini et al, Ann Phys 331 (2013) 127 Mike Birse Proton polarisability contribution to the Lamb shift Mainz, June 2014 The Lamb shift in muonic hydrogen Much larger than in electronic hydrogen: DEL = E(2p1) − E(2s1) ' +0:2 eV 2 2 Dominated by vacuum polarisation Much more sensitive to proton structure, in particular, its charge radius th 2 DEL = 206:0668(25) − 5:2275(10)hrEi meV Results of many years of effort by Borie, Pachucki, Indelicato, Jentschura and others; collated in Antognini et al, Ann Phys 331 (2013) 127 Includes contribution from two-photon exchange DE2g = 33:2 ± 2:0 µeV Sensitive to polarisabilities of proton by virtual photons Mike Birse Proton polarisability contribution to the Lamb shift Mainz, June 2014 Two-photon exchange Integral over T µn(n;q2) – doubly-virtual Compton amplitude for proton Spin-averaged, forward scattering ! two independent tensor structures Common choice: qµqn 1 p · q p · q
    [Show full text]
  • Arxiv:1909.08108V3 [Hep-Ph] 26 Sep 2019 Value Obtained from Muonic Hydrogen Is Re = 0.84087(39) Fm [8], While the Most Recent CODATA P Value Is Re = 0.8751(61) Fm [9]
    The Proton Radius Puzzle Gil Paz Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA Abstract: In 2010 the proton charge radius was extracted for the first time from muonic hydrogen, a bound state of a muon and a proton. The value obtained was five standard deviations away from the regular hydrogen extraction. Taken at face value, this might be an indication of a new force in nature coupling to muons, but not to electrons. It also forces us to reexamine our understanding of the structure of the proton. Here I describe an ongoing theoretical research effort that seeks to address this \proton radius puzzle". In particular, I will present the development of new effective field theoretical tools that seek to directly connect muonic hydrogen and muon-proton scattering. Talk presented at the 2019 Meeting of the Division of Particles and Fields of the American Physical Society (DPF2019), July 29{August 2, 2019, Northeastern University, Boston, C1907293. 1 Introduction How big is the proton? To answer such a question one needs to define how the proton size is measured. For example, one can use an electromagnetic probe to determine the proton's size. A \one photon" electromagnetic interaction with an on-shell proton can be described by two form 2 factors: F1 and F2. These form factors are functions of q , the square of the four-momentum transfer. Two different linear combinations of F1 and F2 define the \electric" form factor: GE = 2 2 F1 + q F2=4M , where M is the proton mass, and the \magnetic" form factor: GM = F1 + F2.
    [Show full text]