Category Theory As a Unifying Database Formalism

Total Page:16

File Type:pdf, Size:1020Kb

Category Theory As a Unifying Database Formalism Category Theory as a Unifying Database Formalism ABSTRACT from the system development side. For example consider the Database theory developed from mathematical logic and set various formal advances regarding schema mapping, aggre- theory, but many formalisms have been introduced over time gates and user-defined-functions, deductive databases, in- to tackle specific extensions of these core theories. This pa- complete data and management of nulls, database recovery per makes the case for using category theory as a unifying and concurrency control, real-time DB. DS: are we propos- formalism for databases, by arguing that category theory ing to handle each of these? can capture in a uniform and succinct way the basic rela- While for each of these areas precise formal models, rooted tional model (e.g., schemas, constraints, queries, updates), in formal logic, have been provided, it remains often hard and its many extensions (e.g., aggregates, transactions, trig- to precisely understand the correspondences between differ- gers, schema mapping, pivoting, anonymization, and semi- ent formalizations — at the very least this understanding structured data). We also show how existing results from the requires a significant time investment. This task is often large corpus of theorems developed within pure mathematics daunting, making it harder to operate across the boundaries can be naturally imported, and how automated proof assis- of different theories, which in turn works as a disincentive tants such as COQ could be leveraged. Finally, we observe to anyone trying to reduce this gap. that category theory has been successfully applied to other A similar problem faced the mathematics community in areas of computer science (e.g., programming languages), the first half of the 20th century. Mathematics was subdi- this provides hope about the feasibility of our attempt, and vided into many subfields, each with its own jargon and way suggests that by sharing a rigorous formal footing we could of doing business. In order to advance, a unifying language enable fascinating cross-area analysis and theories. and formalism was needed. Category theory was invented in the 1940s by Mac Lane and Eilenberg to strengthen the con- nection between topology and algebra, but it quickly spread 1. INTRODUCTION to neighboring fields. By providing a precise language for DS: Much of the theory below would work out if we used comparing different universes of discourse, category theory only finite schemas (only a finite number of non-equivalent has been a unifying force for mathematics. paths) and allowed only finitely many rows in each table. CC: next two paragraphs need smoothing Category the- Would you prefer this? If so, should we still call the cate- ory is no stranger to computer science. It has been remark- gory of states on “ –Set” or should we replace Set with C C ably successful in formalizing the semantics of programming something like Fin or FSet? languages []. In fact, it has also been applied many times The field of Database research developed at the boundary to database theory in the past. These attempts did not of active industrial development and solid formal theories, catch on in mainstream applications, perhaps because those and here more than in any other field this duality has pro- models attempted to be too faithful to the relational model. duced a fascinating interplay between system builders and Because these formalisms did not seem to offer enough ad- theoreticians. The flow of innovation has not always been a vantages to justify the learning curve, some database theo- unidirectional transfer from new advances in theory to cor- rists developed a slight aversion to category theory. CC: We responding systems, but rather an intricate back and forth, need to check who’s in the PC, and avoid to make enemies! where often systems have been built before a full under- However in this paper, we argue that database theory and standing of the theoretical implications was available. category theory are naturally compatible, in fact that a ba- The core of database theory has developed from rather old sic database schema and a category are roughly the same and well-understood mathematics: mathematical logic and thing. Once a simple dictionary is set up, classical category set theory. From this common starting point the database theoretic results and constructions capture many of the for- community has built a host of extensions, which were needed mal results that appear in database literature. to provide the formal underpinnings for a large number of In particular, we present an application of categories and new functionalities and new solutions to problems arising functors to uniformly represent schemas, integrity constraints, Permission to make digital or hard copies of all or part of this work for database states, queries, updates, and show that this is not personal or classroom use is granted without fee provided that copies are only natural but enlightening. And we show, with a simple not made or distributed for profit or commercial advantage and that copies online demo, that simple algorithms can be used to trans- bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific late SQL schemas (with primary keys and foreign keys) and permission and/or a fee. queries into the formalism of categories and functors. Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00. 1 by other communities, such as the theoretical programming Definition 2.0.1. A category consists of the following C language community, there is an interesting opportunity of components: bridging results and enabling theories and analysis to span 1. A set of objects Ob –eachelementx Ob is called across different areas, as an example consider security mod- C ∈ C an object of . els C DS: This paper can serve as a very fast introduction of 2. For each x, y Ob asetArr (x, y) —eachelement ∈ C C databases to anyone familiar with computer science. Database f Arr (x, y) is called an arrow from x to y in , C theorists should note the economy of the definitions con- ∈ f C and is denoted as f : x y or as x y. tained here. → −→ 3. For each object x Ob achosenarrowidx Arr (x, x) ∈ C ∈ C Contributions. In summary this paper makes the following cal led the identity arrow on x. contributions: 4. For each x, y, z Ob ,afunction ∈ C comp : Arr (x, y) Arr (y, z) Arr (x, z) • C C × C → C cal led the composition law for —we denote comp (f,g) Next, we showcase the expressivity of category theory in 2. BACKGROUND C C • simply by f g. • modeling classical database problems, many of which re- This section provides the reader with• a crash course in To be a category the above components must also satisfy quired significant extensions of the relational model, such as category theory. More details can beThe found rest of this in paper [?, is? organized, ?, ? as]. follows: Section 2 the following properties: provides a crash course in category theory, Section 3 presents Identity law: For each arrow f : x y,thefollowingequa- → schema mapping, transactions, and user defined aggregates. the basic application of category theory to databases that we tions hold: The reader already familiar with thepropose, definition Section 4 shows of howcategory some of the classical database results can be proved in this new framework, Section 5 show- idx f = f and f idy = f. We show existing results in DB theory can be proved using • • and functor, as well as the category caseSet the powerof sets, of category can theory safely beyond classical results on category theories. skip to Section 2.1. The goal of thisa simple section case, and is argues to that provide much more can be done, Sec- Associative law: Given a sequence of composable arrows tion 6 provides summary of related work, and Section ?? f g h w x y z, We then argue that by adopting this formalism we can database researchers with a core introductionsummarizes our conclusions. to category −→ −→ −→ also: (i) inherit results from the large corpus of theorems theory, so we slightly abuse our notation and postpone de- the following equation holds: 2. BACKGROUND f (g h)=(f g) h. produced in the pure category theory research, and (ii) lever- tailed comments on some set-theoreticThis issues section provides (e.g., the the reader dis- with a crash course in • • • • category theory. More details can be found in [?, ?, ?, ?]. CC: I pulled this triangle comment from the definition age automated proof assistants such as COQ. tinction between sets and classes) toThe Appendix reader already B. familiar with the definition of category Given the following triangle: and functor, as well as the category Set of sets, can safely f Finally, since category theory has already been embraced skip to Section 2.1. The goal of this section is to provide x y Intuitively, a category is a multi-graph (i.e., a graph that database researchers with a core introduction to category • • by other communities such as the theoretical programming g can have multiple edges between thetheory, same so wetwo slightly nodes)abuse our notation to- and postpone de- h tailed comments on some set-theoretic issues (e.g., the dis- language community, there is an interesting opportunity of z gether with an equivalence relation ontinction finite between paths sets and classes)(i.e., to we Appendix A. • Intuitively, a category is a multi-graph (i.e., a graph that We say the triangle commutes iff f g =comp (f,g)=h. bridging results and enabling theories and analysis to span • C can declare two paths between the samecan have nodes multiple edgesto be between equiv- the same nodes) together Mathematicians often use categories to formalize rather across different areas.
Recommended publications
  • A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints
    A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints by Mehrdad Sabetzadeh A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Computer Science University of Toronto Copyright c 2003 by Mehrdad Sabetzadeh Abstract A Category-Theoretic Approach to Representation and Analysis of Inconsistency in Graph-Based Viewpoints Mehrdad Sabetzadeh Master of Science Graduate Department of Computer Science University of Toronto 2003 Eliciting the requirements for a proposed system typically involves different stakeholders with different expertise, responsibilities, and perspectives. This may result in inconsis- tencies between the descriptions provided by stakeholders. Viewpoints-based approaches have been proposed as a way to manage incomplete and inconsistent models gathered from multiple sources. In this thesis, we propose a category-theoretic framework for the analysis of fuzzy viewpoints. Informally, a fuzzy viewpoint is a graph in which the elements of a lattice are used to specify the amount of knowledge available about the details of nodes and edges. By defining an appropriate notion of morphism between fuzzy viewpoints, we construct categories of fuzzy viewpoints and prove that these categories are (finitely) cocomplete. We then show how colimits can be employed to merge the viewpoints and detect the inconsistencies that arise independent of any particular choice of viewpoint semantics. Taking advantage of the same category-theoretic techniques used in defining fuzzy viewpoints, we will also introduce a more general graph-based formalism that may find applications in other contexts. ii To my mother and father with love and gratitude. Acknowledgements First of all, I wish to thank my supervisor Steve Easterbrook for his guidance, support, and patience.
    [Show full text]
  • Knowledge Representation in Bicategories of Relations
    Knowledge Representation in Bicategories of Relations Evan Patterson Department of Statistics, Stanford University Abstract We introduce the relational ontology log, or relational olog, a knowledge representation system based on the category of sets and relations. It is inspired by Spivak and Kent’s olog, a recent categorical framework for knowledge representation. Relational ologs interpolate between ologs and description logic, the dominant formalism for knowledge representation today. In this paper, we investigate relational ologs both for their own sake and to gain insight into the relationship between the algebraic and logical approaches to knowledge representation. On a practical level, we show by example that relational ologs have a friendly and intuitive—yet fully precise—graphical syntax, derived from the string diagrams of monoidal categories. We explain several other useful features of relational ologs not possessed by most description logics, such as a type system and a rich, flexible notion of instance data. In a more theoretical vein, we draw on categorical logic to show how relational ologs can be translated to and from logical theories in a fragment of first-order logic. Although we make extensive use of categorical language, this paper is designed to be self-contained and has considerable expository content. The only prerequisites are knowledge of first-order logic and the rudiments of category theory. 1. Introduction arXiv:1706.00526v2 [cs.AI] 1 Nov 2017 The representation of human knowledge in computable form is among the oldest and most fundamental problems of artificial intelligence. Several recent trends are stimulating continued research in the field of knowledge representation (KR).
    [Show full text]
  • Chapter 1 Logic and Set Theory
    Chapter 1 Logic and Set Theory To criticize mathematics for its abstraction is to miss the point entirely. Abstraction is what makes mathematics work. If you concentrate too closely on too limited an application of a mathematical idea, you rob the mathematician of his most important tools: analogy, generality, and simplicity. – Ian Stewart Does God play dice? The mathematics of chaos In mathematics, a proof is a demonstration that, assuming certain axioms, some statement is necessarily true. That is, a proof is a logical argument, not an empir- ical one. One must demonstrate that a proposition is true in all cases before it is considered a theorem of mathematics. An unproven proposition for which there is some sort of empirical evidence is known as a conjecture. Mathematical logic is the framework upon which rigorous proofs are built. It is the study of the principles and criteria of valid inference and demonstrations. Logicians have analyzed set theory in great details, formulating a collection of axioms that affords a broad enough and strong enough foundation to mathematical reasoning. The standard form of axiomatic set theory is denoted ZFC and it consists of the Zermelo-Fraenkel (ZF) axioms combined with the axiom of choice (C). Each of the axioms included in this theory expresses a property of sets that is widely accepted by mathematicians. It is unfortunately true that careless use of set theory can lead to contradictions. Avoiding such contradictions was one of the original motivations for the axiomatization of set theory. 1 2 CHAPTER 1. LOGIC AND SET THEORY A rigorous analysis of set theory belongs to the foundations of mathematics and mathematical logic.
    [Show full text]
  • John P. Burgess Department of Philosophy Princeton University Princeton, NJ 08544-1006, USA [email protected]
    John P. Burgess Department of Philosophy Princeton University Princeton, NJ 08544-1006, USA [email protected] LOGIC & PHILOSOPHICAL METHODOLOGY Introduction For present purposes “logic” will be understood to mean the subject whose development is described in Kneale & Kneale [1961] and of which a concise history is given in Scholz [1961]. As the terminological discussion at the beginning of the latter reference makes clear, this subject has at different times been known by different names, “analytics” and “organon” and “dialectic”, while inversely the name “logic” has at different times been applied much more broadly and loosely than it will be here. At certain times and in certain places — perhaps especially in Germany from the days of Kant through the days of Hegel — the label has come to be used so very broadly and loosely as to threaten to take in nearly the whole of metaphysics and epistemology. Logic in our sense has often been distinguished from “logic” in other, sometimes unmanageably broad and loose, senses by adding the adjectives “formal” or “deductive”. The scope of the art and science of logic, once one gets beyond elementary logic of the kind covered in introductory textbooks, is indicated by two other standard references, the Handbooks of mathematical and philosophical logic, Barwise [1977] and Gabbay & Guenthner [1983-89], though the latter includes also parts that are identified as applications of logic rather than logic proper. The term “philosophical logic” as currently used, for instance, in the Journal of Philosophical Logic, is a near-synonym for “nonclassical logic”. There is an older use of the term as a near-synonym for “philosophy of language”.
    [Show full text]
  • Logic and Categories As Tools for Building Theories
    Logic and Categories As Tools For Building Theories Samson Abramsky Oxford University Computing Laboratory 1 Introduction My aim in this short article is to provide an impression of some of the ideas emerging at the interface of logic and computer science, in a form which I hope will be accessible to philosophers. Why is this even a good idea? Because there has been a huge interaction of logic and computer science over the past half-century which has not only played an important r^olein shaping Computer Science, but has also greatly broadened the scope and enriched the content of logic itself.1 This huge effect of Computer Science on Logic over the past five decades has several aspects: new ways of using logic, new attitudes to logic, new questions and methods. These lead to new perspectives on the question: What logic is | and should be! Our main concern is with method and attitude rather than matter; nevertheless, we shall base the general points we wish to make on a case study: Category theory. Many other examples could have been used to illustrate our theme, but this will serve to illustrate some of the points we wish to make. 2 Category Theory Category theory is a vast subject. It has enormous potential for any serious version of `formal philosophy' | and yet this has hardly been realized. We shall begin with introduction to some basic elements of category theory, focussing on the fascinating conceptual issues which arise even at the most elementary level of the subject, and then discuss some its consequences and philosophical ramifications.
    [Show full text]
  • Categorical Databases
    Categorical databases David I. Spivak [email protected] Mathematics Department Massachusetts Institute of Technology Presented on 2014/02/28 at Oracle David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 1 / 1 Introduction Purpose of the talk Purpose of the talk There is an fundamental connection between databases and categories. Category theory can simplify how we think about and use databases. We can clearly see all the working parts and how they fit together. Powerful theorems can be brought to bear on classical DB problems. David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 2 / 1 Introduction The pros and cons of relational databases The pros and cons of relational databases Relational databases are reliable, scalable, and popular. They are provably reliable to the extent that they strictly adhere to the underlying mathematics. Make a distinction between the system you know and love, vs. the relational model, as a mathematical foundation for this system. David I. Spivak (MIT) Categorical databases Presented on 2014/02/28 3 / 1 Introduction The pros and cons of relational databases You're not really using the relational model. Current implementations have departed from the strict relational formalism: Tables may not be relational (duplicates, e.g from a query). Nulls (and labeled nulls) are commonly used. The theory of relations (150 years old) is not adequate to mathematically describe modern DBMS. The relational model does not offer guidance for schema mappings and data migration. Databases have been intuitively moving toward what's best described with a more modern mathematical foundation. David I.
    [Show full text]
  • GRAPH DATABASE THEORY Comparing Graph and Relational Data Models
    GRAPH DATABASE THEORY Comparing Graph and Relational Data Models Sridhar Ramachandran LambdaZen © 2015 Contents Introduction .................................................................................................................................................. 3 Relational Data Model .............................................................................................................................. 3 Graph databases ....................................................................................................................................... 3 Graph Schemas ............................................................................................................................................. 4 Selecting vertex labels .............................................................................................................................. 4 Examples of label selection ....................................................................................................................... 4 Drawing a graph schema ........................................................................................................................... 6 Summary ................................................................................................................................................... 7 Converting ER models to graph schemas...................................................................................................... 9 ER models and diagrams ..........................................................................................................................
    [Show full text]
  • Juhani Pallasmaa, Architect, Professor Emeritus
    1 CROSSING WORLDS: MATHEMATICAL LOGIC, PHILOSOPHY, ART Honouring Juliette Kennedy University oF Helsinki, Small Hall Friday, 3 June, 2016-05-28 Juhani Pallasmaa, Architect, ProFessor Emeritus Draft 28 May 2016 THE SIXTH SENSE - diffuse perception, mood and embodied Wisdom ”Whether people are fully conscious oF this or not, they actually derive countenance and sustenance From the atmosphere oF things they live in and with”.1 Frank Lloyd Wright . --- Why do certain spaces and places make us Feel a strong aFFinity and emotional identification, while others leave us cold, or even frighten us? Why do we feel as insiders and participants in some spaces, Whereas others make us experience alienation and ”existential outsideness”, to use a notion of Edward Relph ?2 Isn’t it because the settings of the first type embrace and stimulate us, make us willingly surrender ourselves to them, and feel protected and sensually nourished? These spaces, places and environments strengthen our sense of reality and selF, whereas disturbing and alienating settings weaken our sense oF identity and reality. Resonance with the cosmos and a distinct harmonious tuning were essential qualities oF architecture since the Antiquity until the instrumentalized and aestheticized construction of the industrial era. Historically, the Fundamental task oF architecture Was to create a harmonic resonance betWeen the microcosm oF the human realm and the macrocosm oF the Universe. This harmony Was sought through proportionality based on small natural numbers FolloWing Pythagorean harmonics, on Which the harmony oF the Universe Was understood to be based. The Renaissance era also introduced the competing proportional ideal of the Golden Section.
    [Show full text]
  • Mathematical Logic
    Copyright c 1998–2005 by Stephen G. Simpson Mathematical Logic Stephen G. Simpson December 15, 2005 Department of Mathematics The Pennsylvania State University University Park, State College PA 16802 http://www.math.psu.edu/simpson/ This is a set of lecture notes for introductory courses in mathematical logic offered at the Pennsylvania State University. Contents Contents 1 1 Propositional Calculus 3 1.1 Formulas ............................... 3 1.2 Assignments and Satisfiability . 6 1.3 LogicalEquivalence. 10 1.4 TheTableauMethod......................... 12 1.5 TheCompletenessTheorem . 18 1.6 TreesandK¨onig’sLemma . 20 1.7 TheCompactnessTheorem . 21 1.8 CombinatorialApplications . 22 2 Predicate Calculus 24 2.1 FormulasandSentences . 24 2.2 StructuresandSatisfiability . 26 2.3 TheTableauMethod......................... 31 2.4 LogicalEquivalence. 37 2.5 TheCompletenessTheorem . 40 2.6 TheCompactnessTheorem . 46 2.7 SatisfiabilityinaDomain . 47 3 Proof Systems for Predicate Calculus 50 3.1 IntroductiontoProofSystems. 50 3.2 TheCompanionTheorem . 51 3.3 Hilbert-StyleProofSystems . 56 3.4 Gentzen-StyleProofSystems . 61 3.5 TheInterpolationTheorem . 66 4 Extensions of Predicate Calculus 71 4.1 PredicateCalculuswithIdentity . 71 4.2 TheSpectrumProblem . .. .. .. .. .. .. .. .. .. 75 4.3 PredicateCalculusWithOperations . 78 4.4 Predicate Calculus with Identity and Operations . ... 82 4.5 Many-SortedPredicateCalculus . 84 1 5 Theories, Models, Definability 87 5.1 TheoriesandModels ......................... 87 5.2 MathematicalTheories. 89 5.3 DefinabilityoveraModel . 97 5.4 DefinitionalExtensionsofTheories . 100 5.5 FoundationalTheories . 103 5.6 AxiomaticSetTheory . 106 5.7 Interpretability . 111 5.8 Beth’sDefinabilityTheorem. 112 6 Arithmetization of Predicate Calculus 114 6.1 Primitive Recursive Arithmetic . 114 6.2 Interpretability of PRA in Z1 ....................114 6.3 G¨odelNumbers ............................ 114 6.4 UndefinabilityofTruth. 117 6.5 TheProvabilityPredicate .
    [Show full text]
  • Mathematical Logic and Foundations of Mathematics
    Mathematical Logic and Foundations of Mathematics Stephen G. Simpson Pennsylvania State University Open House / Graduate Conference April 2–3, 2010 1 Foundations of mathematics (f.o.m.) is the study of the most basic concepts and logical structure of mathematics as a whole. Among the most basic mathematical concepts are: number, shape, set, function, algorithm, mathematical proof, mathematical definition, mathematical axiom, mathematical theorem. Some typical questions in f.o.m. are: 1. What is a number? 2. What is a shape? . 6. What is a mathematical proof? . 10. What are the appropriate axioms for mathematics? Mathematical logic gives some mathematically rigorous answers to some of these questions. 2 The concepts of “mathematical theorem” and “mathematical proof” are greatly clarified by the predicate calculus. Actually, the predicate calculus applies to non-mathematical subjects as well. Let Lxy be a 2-place predicate meaning “x loves y”. We can express properties of loving as sentences of the predicate calculus. ∀x ∃y Lxy ∃x ∀y Lyx ∀x (Lxx ⇒¬∃y Lyx) ∀x ∀y ∀z (((¬ Lyx) ∧ (¬ Lzy)) ⇒ Lzx) ∀x ((∃y Lxy) ⇒ Lxx) 3 There is a deterministic algorithm (the Tableau Method) which shows us (after a finite number of steps) that particular sentences are logically valid. For instance, the tableau ∃x (Sx ∧∀y (Eyx ⇔ (Sy ∧ ¬ Eyy))) Sa ∧∀y (Eya ⇔ Sy ∧ ¬ Eyy) Sa ∀y (Eya ⇔ Sy ∧ ¬ Eyy) Eaa ⇔ (Sa ∧ ¬ Eaa) / \ Eaa ¬ Eaa Sa ∧ ¬ Eaa ¬ (Sa ∧ ¬ Eaa) Sa / \ ¬ Sa ¬ ¬ Eaa ¬ Eaa Eaa tells us that the sentence ¬∃x (Sx ∧∀y (Eyx ⇔ (Sy ∧ ¬ Eyy))) is logically valid. This is the Russell Paradox. 4 Two significant results in mathematical logic: (G¨odel, Tarski, .
    [Show full text]
  • A Mathematical Theory of Computation?
    A Mathematical Theory of Computation? Simone Martini Dipartimento di Informatica { Scienza e Ingegneria Alma mater studiorum • Universit`adi Bologna and INRIA FoCUS { Sophia / Bologna Lille, February 1, 2017 1 / 57 Reflect and trace the interaction of mathematical logic and programming (languages), identifying some of the driving forces of this process. Previous episodes: Types HaPOC 2015, Pisa: from 1955 to 1970 (circa) Cie 2016, Paris: from 1965 to 1975 (circa) 2 / 57 Why types? Modern programming languages: control flow specification: small fraction abstraction mechanisms to model application domains. • Types are a crucial building block of these abstractions • And they are a mathematical logic concept, aren't they? 3 / 57 Why types? Modern programming languages: control flow specification: small fraction abstraction mechanisms to model application domains. • Types are a crucial building block of these abstractions • And they are a mathematical logic concept, aren't they? 4 / 57 We today conflate: Types as an implementation (representation) issue Types as an abstraction mechanism Types as a classification mechanism (from mathematical logic) 5 / 57 The quest for a \Mathematical Theory of Computation" How does mathematical logic fit into this theory? And for what purposes? 6 / 57 The quest for a \Mathematical Theory of Computation" How does mathematical logic fit into this theory? And for what purposes? 7 / 57 Prehistory 1947 8 / 57 Goldstine and von Neumann [. ] coding [. ] has to be viewed as a logical problem and one that represents a new branch of formal logics. Hermann Goldstine and John von Neumann Planning and Coding of problems for an Electronic Computing Instrument Report on the mathematical and logical aspects of an electronic computing instrument, Part II, Volume 1-3, April 1947.
    [Show full text]
  • Mathematics and the Brain: a Category Theoretical Approach to Go Beyond the Neural Correlates of Consciousness
    entropy Review Mathematics and the Brain: A Category Theoretical Approach to Go Beyond the Neural Correlates of Consciousness 1,2,3, , 4,5,6,7, 8, Georg Northoff * y, Naotsugu Tsuchiya y and Hayato Saigo y 1 Mental Health Centre, Zhejiang University School of Medicine, Hangzhou 310058, China 2 Institute of Mental Health Research, University of Ottawa, Ottawa, ON K1Z 7K4 Canada 3 Centre for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou 310036, China 4 School of Psychological Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3800, Australia; [email protected] 5 Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria 3800, Australia 6 Advanced Telecommunication Research, Soraku-gun, Kyoto 619-0288, Japan 7 Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), Suita, Osaka 565-0871, Japan 8 Nagahama Institute of Bio-Science and Technology, Nagahama 526-0829, Japan; [email protected] * Correspondence: georg.northoff@theroyal.ca All authors contributed equally to the paper as it was a conjoint and equally distributed work between all y three authors. Received: 18 July 2019; Accepted: 9 October 2019; Published: 17 December 2019 Abstract: Consciousness is a central issue in neuroscience, however, we still lack a formal framework that can address the nature of the relationship between consciousness and its physical substrates. In this review, we provide a novel mathematical framework of category theory (CT), in which we can define and study the sameness between different domains of phenomena such as consciousness and its neural substrates. CT was designed and developed to deal with the relationships between various domains of phenomena.
    [Show full text]