Functionalized Aptamers for Detection of Small-Molecule Targets

Total Page:16

File Type:pdf, Size:1020Kb

Functionalized Aptamers for Detection of Small-Molecule Targets Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 6-25-2019 Functionalized Aptamers for Detection of Small-Molecule Targets Haixiang Yu Florida International University, [email protected] Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Analytical Chemistry Commons, and the Biochemistry Commons Recommended Citation Yu, Haixiang, "Functionalized Aptamers for Detection of Small-Molecule Targets" (2019). FIU Electronic Theses and Dissertations. 4249. https://digitalcommons.fiu.edu/etd/4249 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida FUNCTIONALIZED APTAMERS FOR DETECTION OF SMALL-MOLECULE TARGETS A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOCHEMISTRY by Haixiang Yu 2019 To: Dean Michael R. Heithaus College of Arts, Sciences and Education This dissertation, written by Haixiang Yu, and entitled Functionalized Aptamers for Detection of Small-Molecule Targets, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. _______________________________________ Prem Chapagain _______________________________________ Yuan Liu _______________________________________ Alexander Mebel _______________________________________ Yi Xiao, Major Professor Date of Defense: June 25, 2019 The dissertation of Haixiang Yu is approved. _______________________________________ Dean Michael R. Heithaus College of Arts, Sciences and Education ______________________________________ Andrés G. Gil Vice President for Research and Economic Development and Dean of the University Graduate School Florida International University, 2019 ii © Copyright 2019 by Haixiang Yu All rights reserved. iii DEDICATION I dedicate this work to my parents Boyang Yu and Xuming Liu, and my grandmother Lijuan Xia with my deepest love. iv ACKNOWLEDGMENTS No accomplishment is achieved by a single pair of hands. My dissertation could have not been possible without the cooperation and support of numerous people. I want to express my most sincere appreciation to those who have helped me during my six years of study at FIU in my humble acknowledgment below. First and foremost, I would like to express my utmost gratitude to my major professor Dr. Yi Xiao, for her continuous effort and care throughout my Ph.D. years. Dr. Xiao has armed me with knowledge and skills, nurtured me with every opportunity and resource, ignited my dreams, and enlightened my way to future success. She has been a role model that encouraged me to conquer any obstacle, and is a beacon that gives me strength and persistence to overcome the darkest times. This artist carved and filed me into the current state I am now. I owe all my achievements to Dr. Xiao. I am most grateful to my dissertation committee, Dr. Prem Chapagain, Dr. Yuan Liu, and Dr. Alexander Mebel for their constant guidance and support during my graduate research and career development. They have made time for me whenever I needed help and have provided numerous valuable advices during the past six years. I would like to give special thanks to Dr. Liu, who is also the biochemistry graduate program director, for keep tracking my graduation progress during the years. I would also like to thank Dr. Xiaotang Wang, the former graduate program director, who admitted me into this great program and provided considerable help and support on my research and life in the past six years. I would like to acknowledge the Graduate Research Fellowship (2015-R2-CX-0034) from the National Institute of Justice, Office of Justice Programs, U.S. Department of v Justice, which not only funded my stipend and research between 2015 and 2018, but also supported me for training and presenting at several national research conferences throughout the years. I would like to acknowledge the Department of Chemistry and Biochemistry and Dissertation Year Fellowship from University Graduate School at FIU for the financial support during my Ph.D. research. I would also like to thank the Graduate and Professional Student Committee and the dean’s office of the College of Arts, Sciences and Education at Florida International University for travel funding. These supports were essential for me to acquire this Ph.D. I would like to thank all current and formal lab mates for their support. Particularly, I would like to thank Obtin Alkhamis, Bhargav Guntupalli, Juan Canoura, Pingping Liang, Yingzhu Liu, Yingping Luo, Zongwen Wang, Weijuan Yang for their direct contribution to my dissertation research. I could not accomplish my research without your help. I would also like to spread my gratitude to our collaborators for their generous help with my research. I would like to Dr. Milan Stojanovic and Dr. Kyung-Ae Yang at Columbia University for their training and guidance on aptamer isolation; Dr. Xinhui Lou and Dr. Shi Xu at Capital Normal University for their guidance on isothermal titration calorimetry; Dr. Yi Lu and Kang Yong Loh at University of Illinois Urbana-Champaign for their help for nanomaterial synthesis and characterization; and Dr. Paul Sharp at the FIU Department of Biological Sciences for assistance with the DNA sequencing process. I would also like to thank the faculty and staff members of the Department of Chemistry and Biochemistry for their help during my Ph.D. study. Special thanks to Magali Autie, Jackelyn Marcos, and Lilia San Miguel, who help me the most over the years. vi Last but not least, I would like to express my very profound gratitude to my parents Boyang Yu and Xuming Liu and my grandmother Lijuan Xia for their endless support, care, and encouragement throughout my years of study. They have been giving me strength for me to overcome even the hardest of times. I would also like to thank my other family members and friends for their support and encouragement; I must apologize as I could not mention each personally one by one. vii ABSTRACT OF THE DISSERTATION FUNCTIONALIZED APTAMERS FOR DETECTION OF SMALL-MOLECULE TARGETS by Haixiang Yu Florida International University, 2019 Miami, Florida Professor Yi Xiao, Major Professor Aptamers have recently gained considerable attention for small-molecule detection in diverse applications such as drug identification, medical diagnostics, and environmental monitoring. However, the performance of aptamer-based sensors has been greatly limited by the low target affinity and responsiveness of small-molecule binding aptamers. This dissertation describes several novel aptamer engineering and isolation strategies to remedy this problem. Specifically, we first develop a generally applicable strategy to engineer split aptamers containing two binding domains termed cooperative-binding split aptamers (CBSAs). CBSAs exhibit higher target binding affinity and are far more responsive in terms of target-induced split aptamer assembly compared to single-domain parent split aptamers from which they are derived. Using a cocaine-binding CBSA, we achieve specific fluorescence detection of as low as 50 nM cocaine in 10% saliva within 15 minutes. We then develop a general approach for creating rapid and sensitive CBSA- based enzyme-assisted target recycling (EATR)-amplified small-molecule sensors for sensitive target detection. Using this strategy, we develop a fluorescence assay for dehydroisoandrosterone-3-sulfate which achieves 100-fold enhanced target sensitivity viii relative to a non-EATR-based assay, and a colorimetric assay for visual detection of low- micromolar concentrations of cocaine. To simplify the sensor development process, we establish a novel and simple SELEX strategy for directly isolating aptamers with intrinsic dye-displacement functionality which transduce target-binding events into a change of dye absorbance. As a demonstration, we isolate an aptamer against the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV) that can detect MDPV at concentrations as low as 300 nM in a label-free, rapid, and simple dye-displacement assay. To further control the target-binding spectra of aptamers, we employ a novel parallel-and-serial SELEX strategy to isolate an aptamer binding 12 synthetic cathinones with nanomolar affinity but not 11 non-target compounds that are closely related in structure. Using this aptamer, instantaneous visual detection of synthetic cathinones at nanomolar concentrations in biological samples is achieved. In summary, this work demonstrates the great potential of novel aptamer engineering and isolation strategies in generating functional signal-reporting aptamers for sensitive small molecule detection. Importantly, the strategies described here are generalizable and can be used to develop aptamer-based assays for virtually any small-molecule targets. ix TABLE OF CONTENTS CHAPTER PAGE 1: Introduction ......................................................................................................................1 1.1. Overview ................................................................................................................. 1 1.2. Motivation and goals ..............................................................................................
Recommended publications
  • Fluorescence Imaging of Metal Ions Implicated in Diseases
    Chemical Society Reviews Fluorescence imaging of metal ions implicated in diseases Journal: Chemical Society Reviews Manuscript ID: CS-HIG-09-2014-000292.R1 Article Type: Highlight Date Submitted by the Author: 08-Dec-2014 Complete List of Authors: Qian, Xu Hong; East China University of Science and Technology, Xu, Zhaochao; Key Laboratory of Separation Science for Analytical Chemistry of CAS, Dalian Institute of Chemical Physics,, Chinese Academy of Sciences, Page 1 of 7 CREATED USING THE RSC ARTICLEChemical TEMPLATE (VER. Society 2.0) - SEE WWW.RSC.ORG/ELECTRONICFILESReviews FOR DETAILS [JOURNAL NAME HERE] | www.rsc.org/[JOURNAL] Article Fluorescence Imaging of Metal ions Implicated in Diseases Xuhong Qian*a and Zhaochao Xu*b Receipt/Acceptance Data [DO NOT ALTER/DELETE THIS TEXT] Publication data [DO NOT ALTER/DELETE THIS TEXT] DOI: 10.1039/b000000x [DO NOT ALTER/DELETE THIS TEXT] Metal ions play an important role in various biological processes; their abnormal homeostasis in cells are related to many diseases, such as neurodegenerative disease, cancer and diabetes. Fluorescent imaging offers an unique route to detect metal ions in cells via a contactless and damage-free way with high spatial and temporal fidelity. Consequently, it represents a promsing method to advance the understanding of physiological and pathological functions of metal ions in cell biology. In this highlight article, we will discuss recent advance in fluorescent imaging of metal ions by small-molecule sensors for understanding the role of metals in related diseases. We will also discuss challenges and opportunities for the design of small-molecule sensors for fluorescent detection of cellular metal ions as a potential method for disease diagnosis.
    [Show full text]
  • Faculty Research in Chemistry at UCA.Docx
    Faculty Research in Chemistry at UCA Table of Contents For more information on each professor’s research please see the links below. Analytical Chemistry Dr. Mauldin He is currently working on a project involving Green Chemistry in which molybdenum (Mo) levels in waste from teaching labs is chemically treated and converted to an environmentally-safe form, using atomic absorption spectroscopy to measure Mo levels in treated versus untreated chemical waste. Dr. Yarberry Her primary current interest is in the field of chemical education. Biochemistry Dr. Dunlap Her research is on calcium regulated proteins. Dr. Isom Her research involves the computational analysis of 3D biomacromolecular structures. Dr. Kelley Her research interest is in the field of retinoid metabolism. Inorganic Chemistry Dr. Desrochers His research studies the coordination chemistry of metal ions. Dr. Massey Her research focuses on making molecules to transform carbon dioxide into an alternative fuel source and developing new methods to improve learning chemistry. Dr. Yang His research focuses on the nitrous oxide and carbon dioxide activation and construction of dynamic coordination polymer materials Organic Chemistry Dr. Barnett Her research is focused on the development and design of methods for sustainable catalysis. Dr. Carter His research interests include investigating the role played by free radical intermediates in the damage of biologically important molecules. Dr. Naumiec His research is on the development of drug candidates to treat tropical diseases. Dr. Tarkka The goals of his research project are new methods for protein purification and quantification of sulfur-containing amino acids. Physical Chemistry Dr. Dooley Her research involves the measurement of aerosol optical properties using pulsed laser cavity ring-down spectroscopy.
    [Show full text]
  • Uptake Into Metazoan Cells
    A Sensitive, Nonradioactive Assay for Zn(II) Uptake into Metazoan Cells The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Richardson, Christopher E. R. et al. “A Sensitive, Nonradioactive Assay for Zn(II) Uptake into Metazoan Cells.” Biochemistry 57 (2018): 6807-6815 © 2018 The Author(s) As Published https://dx.doi.org/10.1021/ACS.BIOCHEM.8B01043 Publisher American Chemical Society (ACS) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/125596 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Biochemistry Manuscript Author . Author manuscript; Manuscript Author available in PMC 2019 December 18. Published in final edited form as: Biochemistry. 2018 December 18; 57(50): 6807–6815. doi:10.1021/acs.biochem.8b01043. A sensitive, non-radioactive assay for Zn(II) uptake into metazoan cells Christopher E. R. Richardson, Elizabeth M. Nolan, Matthew D. Shoulders*, and Stephen J. Lippard* Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States Abstract Sensitive measurements of cellular Zn(II) uptake currently rely on quantitating radioactive emissions from cells treated with 65Zn(II). Here, we describe a straightforward and reliable method employing a stable isotope to sensitively monitor Zn(II) uptake by metazoan cells. First, biological media selectively depleted of natural abundance Zn(II) using A12-resin [Richardson, C. E.
    [Show full text]
  • Visualizing Metal Ions in Cells: an Overview of Analytical Techniques, Approaches, and Probes☆
    Biochimica et Biophysica Acta 1823 (2012) 1406–1415 Contents lists available at SciVerse ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbamcr Review Visualizing metal ions in cells: An overview of analytical techniques, approaches, and probes☆ Kevin M. Dean, Yan Qin, Amy E. Palmer ⁎ article info abstract Article history: Quantifying the amount and defining the location of metal ions in cells and organisms are critical steps in un- Received 6 February 2012 derstanding metal homeostasis and how dyshomeostasis causes or is a consequence of disease. A number of Received in revised form 2 April 2012 recent advances have been made in the development and application of analytical methods to visualize metal Accepted 3 April 2012 ions in biological specimens. Here, we briefly summarize these advances before focusing in more depth on Available online 13 April 2012 probes for examining transition metals in living cells with high spatial and temporal resolution using fluores- cence microscopy. This article is part of a Special Issue entitled: Cell Biology of Metals. Keywords: Metal ion homeostasis © 2012 Elsevier B.V. All rights reserved. Fluorescence imaging Fluorescent sensors Imaging metal ions in cells 1. Introduction Transition metals can exist in many different forms within cells, including free ions,1 bound to biomolecules such as proteins, or in as- Metal ions play fundamental roles in biology by serving as essen- sociation with low molecular weight species such as amino acids or tial cofactors in processes such as respiration, growth, gene transcrip- glutathione, from which the metal ion could be released by changes tion, enzymatic reactions, cell proliferation and immune function.
    [Show full text]
  • Thiophene-Based Molecular Sensors Towards the Selective Detection of Mercury(II) and Other Metals
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Summer 8-6-2018 Thiophene-Based Molecular Sensors towards the Selective Detection of Mercury(II) and Other Metals Austin Kazuo Shigemoto Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Chemistry Commons Let us know how access to this document benefits ou.y Recommended Citation Shigemoto, Austin Kazuo, "Thiophene-Based Molecular Sensors towards the Selective Detection of Mercury(II) and Other Metals" (2018). Dissertations and Theses. Paper 4517. https://doi.org/10.15760/etd.6401 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Thiophene-Based Molecular Sensors towards the Selective Detection of Mercury(II) and Other Metals by Austin Kazuo Shigemoto A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemistry Dissertation Committee: Theresa McCormick, Chair Robert Strongin Mark Woods Raj Solanki Portland State University 2018 Abstract This work describes several thiophene-based molecular sensors and various modifications aimed to improve and understand the photophysical and supramolecular properties, such as the association constant (Ka) and selectivity, towards the development of a selective mercury(II) sensor. From the first generation of sensors containing pyridine and thiophene groups, it was determined that thiophene can offer good selectivity for mercury(II) against other transition metal ions, and provide a ratiometric absorption and fluorescent response.
    [Show full text]
  • Full Dissertation Grad Division2
    Molecular Imaging Approaches to Understanding the Roles of Copper in Biology By Dylan Wythe Domaille A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Christopher J. Chang, Chair Professor Kenneth N. Raymond Professor Carolyn R. Bertozzi Professor Jhih-Wei Chu Spring 2011 Molecular Imaging Approaches to Understanding the Roles of Copper in Biology © 2011 by Dylan Wythe Domaille Abstract Molecular Imaging Approaches to Understanding the Roles of Copper in Biology by Dylan Wythe Domaille Doctor of Philosophy in Chemistry University of California, Berkeley Professor Christopher J. Chang, Chair Cells exert precise control over their cellular copper pools through a sophisticated array of uptake, trafficking, and storage mechanisms that effectively maintain a low concentration of thermodynamically free copper ions while maintaining excellent kinetic lability of cellular copper stores. In higher eukaryotes and humans, and particularly in specialized cell types associated with brain, heart, intestine, and liver tissue, the molecular specifics of how kinetically labile copper pools are regulated at the subcellular level and the consequences of copper misregulation in aging and disease remain insufficiently understood. Biochemical and genetic studies have established a broad understanding of how cells acquire, maintain, redirect and release copper ions, while also identifying key proteins involved in these activities. The precise role of the copper ion, however, is more difficult to determine, owing mainly to a dearth of methods for directly following the fate of cellular copper stores. This dissertation describes the design, synthesis, and characterization a several new Cu(I)-responsive fluorophores.
    [Show full text]
  • UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Molecular Imaging Approaches to Understanding the Roles of Copper in Biology Permalink https://escholarship.org/uc/item/73t8x5vh Author Domaille, Dylan Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Molecular Imaging Approaches to Understanding the Roles of Copper in Biology By Dylan Wythe Domaille A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Christopher J. Chang, Chair Professor Kenneth N. Raymond Professor Carolyn R. Bertozzi Professor Jhih-Wei Chu Spring 2011 Molecular Imaging Approaches to Understanding the Roles of Copper in Biology © 2011 by Dylan Wythe Domaille Abstract Molecular Imaging Approaches to Understanding the Roles of Copper in Biology by Dylan Wythe Domaille Doctor of Philosophy in Chemistry University of California, Berkeley Professor Christopher J. Chang, Chair Cells exert precise control over their cellular copper pools through a sophisticated array of uptake, trafficking, and storage mechanisms that effectively maintain a low concentration of thermodynamically free copper ions while maintaining excellent kinetic lability of cellular copper stores. In higher eukaryotes and humans, and particularly in specialized cell types associated with brain, heart, intestine, and liver tissue, the molecular specifics of how kinetically labile copper pools are regulated at the subcellular level and the consequences of copper misregulation in aging and disease remain insufficiently understood. Biochemical and genetic studies have established a broad understanding of how cells acquire, maintain, redirect and release copper ions, while also identifying key proteins involved in these activities.
    [Show full text]
  • Pentiptycene-Derived Fluorescence Turn-Off Polymer Chemosensor for Copper(II) Cation with High Selectivity and Sensitivity
    polymers Article Pentiptycene-Derived Fluorescence Turn-Off Polymer Chemosensor for Copper(II) Cation with High Selectivity and Sensitivity Anting Chen 1, Wei Wu 1, Megan E. A. Fegley 1, Sherryllene S. Pinnock 1, Jetty L. Duffy-Matzner 2, William E. Bernier 1 and Wayne E. Jones Jr. 1,* 1 Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY 13902, USA; [email protected] (A.C.); [email protected] (W.W.); [email protected] (M.E.A.F.); [email protected] (S.S.P.); [email protected] (W.E.B.) 2 Department of Chemistry, Augustana University, Sioux Falls, SD 57197, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-607-777-2421 Academic Editor: Po-Chih Yang Received: 2 March 2017; Accepted: 21 March 2017; Published: 24 March 2017 Abstract: Fluorescent conjugated polymers (FCPs) have been explored for selective detection of metal cations with ultra-sensitivity in environmental and biological systems. Herein, a new FCP sensor, tmeda-PPpETE (poly[(pentiptycene ethynylene)-alt-(thienylene ethynylene)] with a N,N,N0-trimethylethylenediamino receptor), has been designed and synthesized via Sonogashira cross-coupling reaction with the goal of improving solid state polymer sensor development. The polymer was found to be emissive at lmax ~459 nm under UV radiation with a quantum yield of 0.119 at room temperature in THF solution. By incorporating diamino receptors and pentiptycene groups into the poly[(phenylene ethynylene)-(thiophene ethynylene)] (PPETE) backbone, the polymer showed an improved turn-off response towards copper(II) cation, with more than 99% quenching in fluorescence emission. It is capable of discriminating copper(II) cation from sixteen common cations, with a detection limit of 16.5 nM (1.04 ppb).
    [Show full text]
  • Zinc (II) and Aiegens: the “Clip Approach” for a Novel Fluorophore Family
    molecules Review Zinc (II) and AIEgens: The “Clip Approach” for a Novel Fluorophore Family. A Review Rosita Diana and Barbara Panunzi * Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-081-674-170 Abstract: Aggregation-induced emission (AIE) compounds display a photophysical phenomenon in which the aggregate state exhibits stronger emission than the isolated units. The common term of “AIEgens” was coined to describe compounds undergoing the AIE effect. Due to the recent interest in AIEgens, the search for novel hybrid organic–inorganic compounds with unique luminescence properties in the aggregate phase is a relevant goal. In this perspective, the abundant, inexpensive, and nontoxic d10 zinc cation offers unique opportunities for building AIE active fluorophores, sensing probes, and bioimaging tools. Considering the novelty of the topic, relevant examples collected in the last 5 years (2016–2021) through scientific production can be considered fully representative of the state-of-the-art. Starting from the simple phenomenological approach and considering different typological and chemical units and structures, we focused on zinc-based AIEgens offering synthetic novelty, research completeness, and relevant applications. A special section was devoted to Zn(II)- based AIEgens for living cell imaging as the novel technological frontier in biology and medicine. Keywords: AIE; zinc complex; fluorescence Citation: Diana, R.; Panunzi, B. Zinc (II) and AIEgens: The “Clip Approach” for a Novel Fluorophore 1. Introduction Family. A Review. Molecules 2021, 26, 1.1. Activation of the Fluorescence Channel in AIEgens 4176. https://doi.org/10.3390/ A luminescent material is a material able to emit light in the process of returning molecules26144176 from the electronic or vibrational excited state to the ground state after being excited by external energy.
    [Show full text]
  • Studying Zinc Homeostasis in Escherichia Coli Using Carbonic Anhydrase-Based Ratiometric Sensors
    STUDYING ZINC HOMEOSTASIS IN ESCHERICHIA COLI USING CARBONIC ANHYDRASE-BASED RATIOMETRIC SENSORS by Da Wang A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Chemical Biology) in the University of Michigan 2012 Doctoral Committee: Professor Carol A. Fierke, Chair Professor Raoul Kopelman Professor James E. Penner-Hahn Professor Joel A. Swanson © Da Wang 2012 DEDICATION To my parents. ii ACKNOWLEDGEMENTS There are many people I would like to thank through my graduate school. First, I would like to thank my advisor Dr. Carol Fierke for giving me great guidance and support through my graduate schooling. She has always been encouraging, understanding, helpful and supportive in both science and my personal life. I have learnt so much from her that will benefit me lifelong wherever I go. I would like to thank my committee, Prof. James Penner-Hahn, Prof. Raoul Kopelman, and Prof. Joel Swanson. I have benefited greatly from the helpful advice and insightful comments about my work over the past years. I truly appreciate the help. I would also like to thank my collaborators Dr. Richard Thompson and Dr. Bryan McCranor at the University of Maryland School Of Medicine. Dr. Thompson has been very instrumental in solving many of the practical issues of sensor development, and Dr. McCranor kindly provided assistance in sensor development for mammalian cell imaging. I appreciate their input that helped move the project forward. I would like to thank all my labmates for creating such a great and wonderful lab culture. It has been a delightful experience working with you.
    [Show full text]
  • Challenges and Opportunities for Small-Molecule Fluorescent Probes in Redox Biology Applications
    ANTIOXIDANTS & REDOX SIGNALING Volume 00, Number 00, 2018 ª Mary Ann Liebert, Inc. DOI: 10.1089/ars.2017.7491 FORUM REVIEW ARTICLE Challenges and Opportunities for Small-Molecule Fluorescent Probes in Redox Biology Applications Xiqian Jiang,1 Lingfei Wang,1 Shaina L. Carroll,1 Jianwei Chen,1 Meng C. Wang,2,3 and Jin Wang1,4,5 Abstract Significance: The concentrations of reactive oxygen/nitrogen species (ROS/RNS) are critical to various bio- chemical processes. Small-molecule fluorescent probes have been widely used to detect and/or quantify ROS/ RNS in many redox biology studies and serve as an important complementary to protein-based sensors with unique applications. Recent Advances: New sensing reactions have emerged in probe development, allowing more selective and quantitative detection of ROS/RNS, especially in live cells. Improvements have been made in sensing reactions, fluorophores, and bioavailability of probe molecules. Critical Issues: In this review, we will not only summarize redox-related small-molecule fluorescent probes but also lay out the challenges of designing probes to help redox biologists independently evaluate the quality of reported small-molecule fluorescent probes, especially in the chemistry literature. We specifically highlight the advantages of reversibility in sensing reactions and its applications in ratiometric probe design for quantitative measurements in living cells. In addition, we compare the advantages and disadvantages of small-molecule probes and protein-based probes. Future Directions: The low physiological relevant concentrations of most ROS/RNS call for new sensing reactions with better selectivity, kinetics, and reversibility; fluorophores with high quantum yield, wide wavelength coverage, and Stokes shifts; and structural design with good aqueous solubility, membrane permeability, low protein interference, and organelle specificity.
    [Show full text]
  • Visualization of Peroxynitrite-Induced Changes of Labile Zn[Superscript 2+] in the Endoplasmic Reticulum with Benzoresorufin-Based Fluorescent Probes
    Visualization of Peroxynitrite-Induced Changes of Labile Zn[superscript 2+] in the Endoplasmic Reticulum with Benzoresorufin-based Fluorescent Probes The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Lin, Wei, Daniela Buccella, and Stephen J. Lippard. “Visualization of Peroxynitrite-Induced Changes of Labile Zn2+ in the Endoplasmic Reticulum with Benzoresorufin-Based Fluorescent Probes.” Journal of the American Chemical Society 135, no. 36 (September 11, 2013): 13512–13520. As Published http://dx.doi.org/10.1021/ja4059487 Publisher American Chemical Society (ACS) Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/88575 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Visualization of Peroxynitrite-Induced Changes of Labile Zn2+ in the Endoplasmic Reticulum with Benzoresorufin- based Fluorescent Probes Wei Lin,‡ Daniela Buccella,‡,† and Stephen J. Lippard*,‡ ‡Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States †Department of Chemistry, New York University, New York, New York 10003, United States KEYWORDS: labile zinc, zinc fluorescent sensor, unfolded protein response, fluorescence imaging, benzoresorufin. ABSTRACT: Zn2+ plays essential roles in biology, and the homeostasis of Zn2+ is tightly regulated in all cells. Subcellular distribution and 2+ trafficking of labile Zn , and its interrelation with reactive nitrogen species, are poorly understood due to the scarcity of appropriate imaging tools. We report a new family of red-emitting fluorescent sensors for labile Zn2+, ZBR1-3, based on a benzoresorufin platform functionalized with dipicolylamine or picolylamine-derived metal binding groups.
    [Show full text]