A Some Special Functions and Their Properties

The main purpose of this appendix is to introduce several special functions and to state their basic properties that are most frequently used in the theory and applica- tions of ordinary and partial differential equations. The subject is, of course, too vast to be treated adequately in so short a space, so that only the more important results will be stated. For a fuller discussion of these topics and of further properties of these functions the reader is referred to the standard treatises on the subject.

A-1 Gamma, Beta, and Error Functions

The gamma (also called the factorial function) is defined by a definite inte- gral in which a variable appears as a parameter ∞ Γ (x)= e−ttx−1 dt, x > 0. (A-1.1) 0 The integral (A-1.1) is uniformly convergent for all x in [a, b] where 0 0. Integrating (A-1.1) by parts, we obtain the fundamental property of Γ (x) ∞ − −t x−1 ∞ − −t x−2 Γ (x)= e t 0 +(x 1) e t dt 0 =(x − 1)Γ (x − 1) for x − 1 > 0. Then we replace x by x +1to obtain the fundamental result Γ (x +1)=xΓ(x). (A-1.2) In particular, when x = n is a positive integer, we make repeated use of (A-1.2) to obtain Γ (n +1)=nΓ (n)=n(n − 1)Γ (n − 1) = ··· = n(n − 1)(n − 2) ···3 · 2 · 1Γ (1) = n!, (A-1.3) where Γ (1) = 1.

L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers, DOI 10.1007/978-0-8176-8265-1, c Springer Science+Business Media, LLC 2012 690 A Some Special Functions and Their Properties

We put t = u2 in (A-1.1) to obtain ∞ Γ (x)=2 exp −u2 u2x−1 du, x > 0. (A-1.4) 0 1 Letting x = 2 , we find √ 1 ∞ π √ Γ =2 exp −u2 du =2 = π. (A-1.5) 2 0 2 Using (A-1.2), we deduce √ 3 1 1 π Γ = Γ = . (A-1.6) 2 2 2 2

5 7 2n+1 Similarly, we can obtain the values of Γ ( 2 ),Γ( 2 ),...,Γ( 2 ). The gamma function can also be defined for negative values of x by the rewritten form of (A-1.2)as Γ (x +1) Γ (x)= ,x=0 , −1, −2,.... (A-1.7) x For example, 1 Γ ( 1 ) 1 √ Γ − = 2 = −2 Γ = −2 π, (A-1.8) 2 − 1 2 2 3 Γ (− 1 ) 4√ Γ − = 2 = π. (A-1.9) − 3 2 2 3 We differentiate (A-1.1) with respect to x to obtain d ∞ d e−t Γ (x)=Γ (x)= tx dt dx dx t 0 ∞ d e−t ∞ = exp(x log t) dt = tx−1(log t)e−t dt. (A-1.10) 0 dx t 0 At x =1, this gives ∞ Γ (1) = e−t log tdt= −γ, (A-1.11) 0 where γ is called the Euler constant and has the value 0.5772. The graph of the gamma function is shown in Figure A.1. The volume, Vn, and the surface area, Sn, of a sphere of radius r in n-dimensional space Rn are given by { 1 }n n { 1 }n n−1 Γ ( 2 ) r 2 Γ ( 2 ) r Vn = n ,Sn = n . Γ ( 2 +1) Γ ( 2 )

dVn Thus, dr = Sn. A-1 Gamma, Beta, and Error Functions 691

Fig. A.1 The gamma function.

2 4 3 In particular, when n =2, 3,..., we get V2 = πr , S2 =2πr; V3 = 3 πr , 2 S3 =4πr ;etc. Using (A-1.2) and (A-1.5), we obtain the following results: πmr2m 2πmr2m−1 V = ,S= , 2m m! 2m (m − 1)! 2(2π)mr2m+1 22m+1m!πmr2m V = ,S = . 2m+1 1.3.5 ···(2m +1) 2m+1 (2m)!

Legendre Duplication Formula

Several useful properties of the gamma function are recorded below for reference without proof. We begin with 1 √ 22x−1Γ (x)Γ x + = πΓ(2x). (A-1.12) 2 In particular, when x = n (n =0, 1, 2,...), √ 1 π (2n)! Γ n + = . (A-1.13) 2 22n n! The following properties also hold for Γ (x):

Γ (x)Γ (1 − x)=π cosec πx, x is a noninteger, (A-1.14) ∞ Γ (x)=px exp(−pt) tx−1 dt, (A-1.15) 0 ∞ Γ (x)= exp xt − et dt. (A-1.16) −∞ 692 A Some Special Functions and Their Properties √ x+ 1 Γ (x +1)∼ 2π exp(−x)x 2 for large x, (A-1.17) √ n+ 1 n! ∼ 2π exp(−n)x 2 for large n. (A-1.18)

The latter formulas are known as Stirling approximation of Γ (x +1)for large x and of n! for large n. The incomplete gamma function, γ(x, a), is defined by the integral x γ(a, x)= e−tta−1 dt, a > 0. (A-1.19) 0 The complementary incomplete gamma function, Γ (a, x), is defined by the integral ∞ Γ (a, x)= e−t ta−1 dt, a > 0. (A-1.20) x Thus, it follows that γ(a, x)+Γ (a, x)=Γ (a). (A-1.21) The beta function, denoted by B(x, y), is defined by the integral t B(x, y)= tx−1(1 − t)y−1 dt, x > 0,y>0. (A-1.22) 0 The beta function B(x, y) is symmetric with respect to its arguments x and y, that is, B(x, y)=B(y, x). (A-1.23) This follows from (A-1.22) by the change of variable 1 − t = u, that is, 1 B(x, y)= uy−1(1 − u)x−1 du = B(y, x). 0 If we make the change of variable t = u/(1 + u) in (A-1.22), we obtain another integral representation of the beta function ∞ ∞ B(x, y)= ux−1(1 + u)−(x+y) du = uy−1(1 + u)−(x+y) du. (A-1.24) 0 0 Putting t = cos2 θ in (A-1.22), we derive π/2 B(x, y)=2 cos2x−1 θ sin2y−1 θdθ. (A-1.25) 0 Several important results are recorded below for ready reference without proof: 1 1 B(1, 1) = 1,B, = π, (A-1.26) 22 x − 1 B(x, y)= B(x − 1,y), (A-1.27) x + y − 1 A-1 Gamma, Beta, and Error Functions 693

Fig. A.2 The error function and the complementary error function.

Γ (x)Γ (y) B(x, y)= , (A-1.28) Γ (x + y) 1+x 1 − x πx B , = π sec , 0

The error function, erf(x), is defined by the integral 2 x erf(x)=√ exp −t2 dt, −∞

erf(−x)=− erf(x), (A-1.31) d 2 erf(x) = √ exp −x2 , (A-1.32) dx π erf(0) = 0, erf(∞)=1. (A-1.33)

The complementary error function, erfc(x), is defined by the integral 2 ∞ erfc(x)=√ exp −t2 dt. (A-1.34) π x Clearly, it follows that

erfc(x)=1− erf(x), (A-1.35) erfc(0) = 1, erfc(∞)=0. (A-1.36)

The graphs of erf(x) and erfc(x) are shown in Figure A.2. 1 erfc(x) ∼ √ exp −x2 for large x. (A-1.37) x π

Closely associated with the error function are the Fresnel integrals, which are defined by 694 A Some Special Functions and Their Properties

Fig. A.3 The Fresnel integrals C(x) and S(x).

x πt2 x πt2 C(x)= cos dt and S(x)= sin dt. (A-1.38) 0 2 0 2 These integrals arise in diffraction problems in optics, in water waves, in elasticity, and elsewhere. Clearly, it follows from (A-1.38) that

C(0) = 0 = S(0), (A-1.39) π C(∞)=S(∞)= , (A-1.40) 2 d πx2 d πx2 C(x) = cos , S(x)=sin . (A-1.41) dx 2 dx 2

It also follows from (A-1.38) that C(x) has extrema at the points where x2 = (2n+1), n =0, 1, 2, 3,..., and S(x) has extrema at the points where x2 =2n, n = 1, 2√, 3,.... The largest maxima occur first and are found to be C(1) = 0.7799 and S( 2) = 0.7139. We also infer that both C(x) and S(x) are oscillatory about the line y =0.5. The graphs of C(x) and S(x) for non-negative real x are shown in Figure A.3. We prove further properties of the Gamma and the Beta functions. We first prove that π/2 1 sin2p−1 x cos2q−1 xdx= B(p, q). (A-1.42) 0 2 We put sin2 x = t so that the left hand side of the above integral becomes 1 π/2 sin2p−2 x cos2q−2 x · 2 cos x sin xdx 2 0 1 1 1 = tp−1(1 − q)q−1 dt = B(p, q). (A-1.43) 2 0 2 We next prove that A-1 Gamma, Beta, and Error Functions 695 1 1 Γ (2p)Γ =22p−1Γ (p) Γ p + . (A-1.44) 2 2 We have π/2 1 π π/2 1 sin2p 2xdx= sin2p θdθ=2 sin2p θdθ, (2x = θ). 0 2 0 0 2

1 Putting q = 2 in (A-1.42) with x =2θ gives 1 1 π/2 π/2 B p + , =2 sin2p xdx=2 sin2p 2θdθ 2 2 0 0 π/2 =22p+1 sin2p θ cos2p θdθ 0 1 1 =22pB p + ,p+ , 2 2 which is, using (A-1.28) and (A-1.2),

Γ (p + 1 )Γ ( 1 ) Γ (p + 1 )Γ (p + 1 ) Γ (p + 1 )Γ (p + 1 ) 2 2 =22p 2 2 =22p 2 2 , Γ (p +1) Γ (2p +1) 2pΓ(2p) or equivalently, 1 1 Γ (2p) Γ =22p−1Γ (p)Γ p + . 2 2 We next define (1 − t )ntx−1 if 0 ≤ t ≤ n, f(n, t)= n (A-1.45) 0 if t ≥ n.

Using x n lim 1 − = e−x, n→∞ n we obtain, for fixed t, t n lim f(n, t) = lim 1 − tx−1 = e−t tx−1. (A-1.46) n→∞ n→∞ n Hence, for x>0, ∞ ∞ Γ (x)= e−ttx−1 dt = lim f(n, t) dt n→∞ 0 0 n t n = lim 1 − tx−1 dt, →∞ n 0 n 696 A Some Special Functions and Their Properties

t which is, putting n = z, 1 = lim nx (1 − z)nzx−1 dz n→∞ 0 zx 1 1 z = lim nx (1 − z)n · + n (1 − z)n−1 dz n→∞ x x 0 0 n 1 = lim nx · (1 − z)n−1zx dz n→∞ x 0 n · (n − 1) ···1 1 = lim nx zn+x−1 dz →∞ · ··· − n x (x +1) (n + x 1) 0 nx n! = lim . (A-1.47) n→∞ x(x +1)···(x + n) This is the celebrated Gauss formula. We next prove that, for 0

A random variable X with values in (0, 1) has the Beta distribution if its density function is, for some p, q>0, 1 f(x)= xp−1(1 − x)q−1, 0 0 and q>0, qp f(x)= xp−1e−qx. (A-1.55) Γ (p)

A-2 Bessel and Airy Functions

The Bessel function of the first kind of order v (non-negative real number) is denoted by Jv(x) and defined by ∞ (−1)rx2r J (x)=xv . (A-2.1) v 22r+vr! Γ (r + v +1) r=0 This series is convergent for all x. 698 A Some Special Functions and Their Properties

The Bessel function y = Jv(x) satisfies the Bessel equation x2y + xy + x2 − v2 y =0. (A-2.2)

When v is not a positive integer or zero, Jv(x) and J−v(x) are two linearly independent solutions so that

y = AJv(x)+BJ−v(x) (A-2.3) is the general solution of (A-2.2), where A and B are arbitrary constants. However, when v = n, where n is a positive integer or zero, Jn(x) and J−n(x) are no longer independent, but are related by the equation

n J−n(x)=(−1) Jn(x). (A-2.4)

Thus, when n is a positive integer or zero, equation (A-2.2) has only one solution given by ∞ (−1)r x n+2r J (x)= . (A-2.5) n r!(n + r)! 2 r=0

A second solution, known as Neumann’s or Webber’s solution, Yn(x) is given by

Yn(x) = lim Yv(x), (A-2.6) v→n where (cos vπ)J (x) − J− (x) Y (x)= v v . (A-2.7) v sin vπ Thus, the general solution of (A-2.2)is

y(x)=AJn(x)+BYn(x), (A-2.8) where A and B are arbitrary constants. In particular, from (A-2.5),

∞ (−1)r x 2r J (x)= , (A-2.9) 0 (r!)2 2 r=0 ∞ (−1)r x 2r+1 J (x)= . (A-2.10) 1 r!(r + 1)! 2 r=0 Clearly, it follows from (A-2.9) and (A-2.10) that  − J0(x)= J1(x). (A-2.11)

Bessel’s equation may not always arise in the standard form given in (A-2.2), but more frequently as x2y + xy + k2x2 − v2 y =0 (A-2.12) A-2 Bessel and Airy Functions 699 with the general solution

y(x)=AJv(kx)+BYv(kx). (A-2.13)

The recurrence relations are recorded below for easy reference without proof: v J (x)= J (x) − J  (x), (A-2.14) v+1 x v v v  J − (x)= J (x)+J (x), (A-2.15) v 1 x v v 2v J − (x)+J (x)= J (x), (A-2.16) v 1 v+1 x v −  Jv−1(x) Jv+1(x)=2Jv(x). (A-2.17)

We have, from (A-2.5),

∞ (−1)r2−(n+2r) xnJ (x)= x2n+2r. n r!(n + r)! r=0 Differentiating both sides of this result with respect to x and using the fact that 2(n + r)/(n + r)! = 2/(n + r − 1)!, it turns out that

∞ − r −(n+2r+1) d n ( 1) 2 2n+2r−1 n x J (x) = x = x J − (x). (A-2.18) dx n r!(n + r − 1)! n 1 r=0 Similarly, we can show d x−nJ (x) = −x−nJ (x). (A-2.19) dx n n+1 The generating function for the Bessel function is

∞ 1 1 exp x t − = tnJ (x). (A-2.20) 2 t n n=−∞

The integral representation of Jn(x) is 1 π Jn(x)= cos(nθ − x sin θ) dθ. (A-2.21) π 0 The following are known as the Lommel integrals: a xJn(px)Jn(qx) dx 0 a = pJ (qa)J  (pa) − qJ (pa) J  (qa) ,p= q, (A-2.22) (q2 − p2) n n n n 700 A Some Special Functions and Their Properties

Fig. A.4 Graphs of y = J0(x), J1(x),andJ2(x). and a 2 2 2 a 2 − n 2 xJn(px) dx = Jn (pa)+ 1 2 2 Jn(pa) . (A-2.23) 0 2 p a ± 1 When n = 2 , 2 2 J 1 (x)= sin x, J− 1 (x)= cos x. (A-2.24) 2 πx 2 πx A rough idea of the shape of the Bessel functions when x is large may be obtained − 1 from equation (A-2.2). Substitution of y = x 2 u(x) eliminates the first , and hence, gives the equation 4n2 − 1 u + 1 − u =0. (A-2.25) 4x2 For large x, this equation approximately becomes

u + u =0. (A-2.26)

This equation admits the solution u(x)=A cos(x + ε), that is, A y = √ cos(x + ε). (A-2.27) x

This suggests that Jn(x) is oscillatory and has an infinite number of zeros. It also →∞ ± 1 tends to zero as x . The graphs of Jn(x) for n =0, 1, 2 and for n = 2 are shown in Figures A.4 and A.5, respectively. An important special case arises in particular physical problems when k2 = −1 in equation (A-2.12). we then have the modified Bessel equation x2y + xy − x2 + v2 y =0, (A-2.28) with the general solution

y = AJv(ix)+BYv(ix). (A-2.29) A-2 Bessel and Airy Functions 701

Fig. A.5 Graphs of J 1 (x) and J− 1 (x). 2 2

Fig. A.6 Graphs of y = Y0(x), Y1(x),andY2(x).

We now define a new function −v Iv(x)=i Jv(ix), (A-2.30) and then use the series (A-2.1)forJv(x) so that ∞ ∞ (−1)r ix v+2r 1 x v+2r I (x)=i−v = . v r!Γ (r + v +1) 2 r!Γ (r + v +1) 2 r=0 r=0 (A-2.31)

Similarly, we can find the second solution, Kv(x), of the modified Bessel equation (A-2.28). Usually, Iv(x) and Kv(x) are called modified Bessel functions and their properties can be obtained in a similar way to those of Jv(x) and Yv(x). The graphs of Y0(x), Y1(x), and Y2(x) are shown in Figure A.6. We state a few important infinite integrals involving Bessel functions which arise frequently in the application of Hankel transforms. ∞ (2b)vΓ (v + 1 ) 1 exp(−at)J (bt)tv dt = √ 2 ,v>− , (A-2.32) v v+ 1 π(a2 + b2) 2 2 0 ∞ v 3 v+1 2a(2b) Γ (v + 2 ) exp(−at)Jv(bt)t dt = √ ,v>−1, (A-2.33) 2 2 v+ 3 0 π(a + b ) 2 702 A Some Special Functions and Their Properties

Fig. A.7 The Airy function.

∞ v 2 − 2 2 v+1 b − b − exp a t Jv(bt)t dt = 2 v+1 exp 2 ,v>1, 0 (2a ) 4a (A-2.34) ∞ 2 2 − 2 2 1 −b + c bc exp a t Jv(bt)Jv(ct)tdt = 2 exp 2 Iv 2 , 0 2a 4a 2a v>−1, (A-2.35) ∞ 2μ−v−1 2μ−v−1 2 Γ (μ) 1 −1 t Jv(t) dt = − , 0 <μ< ,v> . 0 Γ (v μ +1) 2 2 (A-2.36)

The Airy function, y = Ai(x), is the first solution of the differential equation

y − xy =0. (A-2.37)

The second solution is denoted by Bi(x). Then these functions are expressed in terms of the Bessel and modified Bessel functions in the form x 2 3/2 2 3/2 1 x Ai(x)= I− 1 x − I 1 x = K 1 (ξ), (A-2.38) 3 3 3 3 3 π 3 3 x 2 3/2 2 3/2 x iπ Bi(x)= I− 1 x + I 1 x = Re e 6 H 1 (−iξ) , 3 3 3 3 3 3 3 (A-2.39)

2 3/2 where ξ = 3 x . The integral representation of Ai(x) is 1 ∞ 1 Ai(x)= cos t3 + xt dt. (A-2.40) π 0 3 The graph of y = Ai(x) is shown in Figure A.7 using the values of Ai(x) at x =0 and x →∞: 1 1 Ai(0) = √ Bi(0) = =0.355028, 3 33/2Γ ( 2 ) 3 Ai(x), Bi(x) → [0, ∞]asx →∞. A-3 Legendre and Associated Legendre Functions 703

Similarly, the graph of y = Bi(x) can be drawn. The integral representation of Bi(x) is 1 ∞ t3 t3 Bi(x)= exp xt − +sin xt + dt. (A-2.41) π 0 3 3 A slightly more general integral representation of Ai(ax) is 1 ∞ t3 Ai(ax)= cos xt + 3 dt. (A-2.42) πa 0 3a When a =1, this reduces to (A-2.40). The general power series solution of the Airy equation (A-2.37) is given by x3 x6 x3n y(x)=a 1+ + + ···+ + ··· 0 2 · 3 2 · 3 · 5 · 6 2 · 3 ···(3n − 1)(3n) x4 x7 x3n+1 + a x + + + ···+ + ··· 1 3 · 4 3 · 4 · 6 · 7 3 · 4 ···(3n)(3n +1) (A-2.43) ∞ x3n = a 1+ 0 3 · 4 ···(3n − 4)(3n − 3)(3n − 1)(3n) n=1 ∞ x3n+1 + a x + , (A-2.44) 1 3 · 4 ···(3n − 3)(3n − 2)(3n)(3n +1) n=1 where a0 and a1 are arbitrary constants of integration. Finally, the asymptotic representations of Ai(x) and Bi(x) are given by 1 2 Ai(x) ≈ √ exp − x3/2 as x → +∞, 1/4 (A-2.45) 2 πx 3 1 3 Bi(x) ≈ √ exp x3/2 as x →∞. (A-2.46) πx1/4 2

A-3 Legendre and Associated Legendre Functions

The Legendre , Pn(x), are defined by the Rodrigues formula

n 1 d n P (x)= x2 − 1 . (A-3.1) n 2nn! dxn The first seven Legendre polynomials are

P0(x)=1,

P1(x)=x, 704 A Some Special Functions and Their Properties 1 P (x)= 3x2 − 1 , 2 2 1 P (x)= 5x3 − 3x , 3 2 1 P (x)= 35x4 − 30x2 +3 , 4 8 1 P (x)= 63x5 − 70x3 +15x , 5 8 1 P (x)= 231x6 − 315x4 + 105x2 − 5 . 6 16 The generating function for the Legendre polynomials is ∞ − 1 2 2 n 1 − 2xt + t = t Pn(x). (A-3.2) n=0 This function provides more information about the Legendre polynomials. For example,

n Pn(1) = 1,Pn(−1) = (−1) , (A-3.3) 1 · 3 · 5 ···(2n − 1) (2n − 1)!! P (0) = (−1)n =(−1)n , (A-3.4) 2n 2nn! (2n)!!

P2n+1(0) = 0,n=0, 1, 2,..., (A-3.5) dn (2n)! P (−x)=(−1)nP (x), P (x)= , (A-3.6) n n dxn n 2nn! where the double factorial is defined by

(2n − 1)!! = 1 · 3 · 5 ···(2n − 1) and (2n)!! = 2 · 4 · 6 ···(2n).

The graphs of the first four Legendre polynomials are shown in Figure A.8. The recurrence relations for the Legendre polynomials are

(n +1)Pn+1(x)=(2n +1)xPn(x) − nPn−1(x), (A-3.7)  −  Pn+1(x) Pn−1(x)=(2n +1)Pn(x), (A-3.8) 2  1 − x P (x)=nP − (x) − nxP (x), (A-3.9) n n 1 n − 2  − 1 x Pn(x)=(n +1)xPn(x) (n +1)Pn+1(x). (A-3.10)

The Legendre polynomials, y = Pn(x), satisfy the Legendre differential equation 1 − x2 y − 2xy + n(n +1)y =0. (A-3.11)

If n is not an integer, both solutions of (A-3.11) diverge at x = ±1. The orthogonal relation is 1 2 Pn(x)Pm(x) dx = δnm. (A-3.12) −1 (2n +1) A-3 Legendre and Associated Legendre Functions 705

Fig. A.8 Graphs of y = P0(x), P1(x), P2(x),andP3(x).

The associated Legendre functions are defined by

m m+n m d 1 m d n P m(x)= 1 − x2 2 P (x)= 1 − x2 2 x2 − 1 , (A-3.13) n dxm n 2nn! dxm+n where 0 ≤ m ≤ n. Clearly, it follows that

0 Pn (x)=Pn(x), (A-3.14) (n − m)! P m(−x)=(−1)n+mP m(x),P−m(x)=(−1)m P m(x). (A-3.15) n n n (n + m)! n

m The generating function for Pn (x) is

m ∞ − 2 2 (2m)!(1 x ) m r 1 = Pr+m(x)t . (A-3.16) m − 2 m+ 2 2 m!(1 2tx + t ) r=0 The recurrence relations are

m m − m (2n +1)xPn (x)=(n + m)Pn−1(x)+(n m +1)Pn+1(x), (A-3.17) 1 d − 2 1 − x2 2 P m(x)=P m+1(x) − (n + m)(n − m +1)P m 1(x). (A-3.18) dx n n n

m The associated Legendre functions Pn (x) are solutions of the differential equation m2 1 − x2 y − 2xy + n(n +1)− y =0. (A-3.19) (1 − x2)

This reduces to the Legendre equation when m =0. 706 A Some Special Functions and Their Properties

Listed below are a few associated Legendre functions with x = cos θ:

1 1 − 2 2 P1 (x)= 1 x =sinθ, 1 P 1(x)=3x 1 − x2 2 = 3 cos θ sin θ, 2 2 − 2 2 P2 (x)=3 1 x =3sin θ, 3 1 3 1 2 − − 2 2 2 − P3 (x)= 5x 1 1 x = 5 cos θ 1 sin θ, 2 2 2 − 2 2 P3 (x)=15x 1 x = 15 cos θ sin θ, 3 − 2 3/2 3 P3 (x)=15 1 x =15sin θ.

The orthogonal relations are 1 m m 2 · ( + m)! Pn (x)Pt (x) dx = δn, (A-3.20) − (2 +1) ( − m)! 1 1 − 2 −1 m  (n + m)! 1 x Pn (x)Pn(x) dx = − δm. (A-3.21) −1 m(n m)!

A-4 Jacobi and Gegenbauer Polynomials

(α,β) The Jacobi polynomials, Pn (x),ofdegreen are defined by the Rodrigues for- mula (−1)n dn P (α,β)(x)= (1 − x)−α(1 + x)−β (1 − x)α+n(1 + x)β+n , (A-4.1) n 2nn! dxn where α>−1 and β>−1. When α = β =0, the Jacobi polynomials become Legendre polynomials, that is, (0,0) Pn(x)=Pn (x),n=0, 1, 2,.... (A-4.2) On the other hand, the associated Laguerre functions arise as the limit α (α,β) − 2x Ln(x) = lim Pn 1 . (A-4.3) β→∞ β

(α,β) The recurrence relations for Pn (x) are

2(n + 1)(α + β + n + 1)(α + β +2n)P (α,β)(x) n+1 2 − 2 (α,β) =(α + β +2n +1) α β + x(α + β +2n + 2)(α + β +2n) Pn (x) − (α,β) 2(α + n)(β + n)(α + β +2n +2)Pn−1 (x), (A-4.4) where n =1, 2, 3,..., and A-4 Jacobi and Gegenbauer Polynomials 707

(α,β−1) − (α−1,β) (α,β) Pn (x) Pn (x)=Pn−1 (x). (A-4.5) The generating function for Jacobi polynomials is ∞ (α+β) −1 − −α −β (α,β) n 2 R (1 t + R) (1 + t + R) = Pn (x)t , (A-4.6) n=0

2 1 where R =(1− 2xt + t ) 2 . (α,β) The Jacobi polynomials, y = Pn (x), satisfy the differential equation 1 − x2 y + (β − α) − (α + β +2)x y + n(n + α + β +1)y =0. (A-4.7)

The orthogonal relation is 1 0 if n = m, − α β (α,β) (α,β) (1 x) (1 + x) Pn (x)Pm (x) dx = (A-4.8) −1 δn if n = m, where 2α+β+1Γ (n + α +1)Γ (n + β +1) δ = . (A-4.9) n n!(α + β +2n +1)Γ (α + β + n +1) − 1 When α = β = v 2 , the Jacobi polynomials reduce to the Gegenbauer polynomi- v als, Cn(x), which are defined by the Rodrigues formula

n n (−1) v− 1 d v+n− 1 Cv(x)= 1 − x2 2 1 − x2 2 . (A-4.10) n 2nn! dxn

v The generating function for Cn(x) of degree n is ∞ −v 1 1 − 2xt+ t2 = Cv(x) tn, |t| < 1, |x|≤1,v>− . (A-4.11) n 2 n=0 The recurrence relations are

v − v − v (n +1)Cn+1(x) 2(v + n)xCn(x)+(2v + n 1)Cn−1(x)=0, (A-4.12) v − v+1 v+1 (n +1)Cn+1(x) 2vCn (x)+2vCn−1(x)=0, (A-4.13) d Cv(x) =2vCv+1(x). (A-4.14) dx n n+1

v The differential equation satisfied by y = Cn(x) is 1 − x2 y − (2v +1)xy + n(n +2v)y =0. (A-4.15)

The orthogonal property is 1 v− 1 − 2 2 v v 1 x Cn(x)Cm(x) dx = δnδnm, (A-4.16) −1 708 A Some Special Functions and Their Properties where 21−2vnΓ (n +2v) δ = . (A-4.17) n n!(n + v)[Γ (v)]2 1 When v = 2 , the Gegenbauer polynomials reduce to Legendre polynomials, that is,

1 2 Cn (x)=Pn(x). (A-4.18)

The can also be obtained from the Gegenbauer polynomials as the limit −n/2 v √x Hn(x)=n! lim v Cn . (A-4.19) v→∞ v 1 Finally, when α = β = 2 , the Gegenbauer polynomials reduce to the well-known Chebyshev polynomials, Tn(x), which are defined by a solution of the second order difference equation

un+2 − 2xun+1 + un =0, |x|≤1, (A-4.20)

u(0) = u0 and u(1) = u1. (A-4.21)

The generating function for Tn(x) is

∞ (1 − t2) = T (x)+2 T (x)tn, |x|≤1,t<1. (A-4.22) (1 − 2xt+ t2) 0 n n=1 The first seven Chebyshev polynomials of degree n of the first kind are

T0(x)=1,

T1(x)=x, 2 T2(x)=2x − 1, 3 T3(x)=4x − 3x, 4 2 T4(x)=8x − 8x +1, 5 3 T5(x)=16x − 20x +5x, 6 4 2 T6(x)=32x − 48x +18x − 1.

The graphs of the first four Chebyshev polynomials are shown in Figure A.9. The Chebyshev polynomials y = Tn(x) satisfy the differential equation 1 − x2 y − xy + n2y =0. (A-4.23)

It follows from (A-4.22) that Tn(x) satisfies the recurrence relations

Tn+1(x) − 2xTn(x)+Tn−1(x)=0, (A-4.24) − Tn+m(x) 2Tn(x)Tm(x)+Tn−m(x)=0, (A-4.25) − 2  − 1 x Tn(x)+nxTn(x) nTn−1(x)=0. (A-4.26) A-4 Jacobi and Gegenbauer Polynomials 709

Fig. A.9 Chebyshev polynomials y = Tn(x).

The parity relation for Tn(x) is

n Tn(−x)=(−1) Tn(x). (A-4.27)

The Rodrigues formula is √ n 2 1 n π(−1) (1 − x ) 2 d n− 1 T (x)= · 1 − x2 2 . (A-4.28) n n − 1 n 2 (n 2 )! dx

The orthogonal relation for Tn(x) is ⎧ ⎪  1 ⎨ 0 if m = n, − 1 1 − x2 2 T (x) T (x) dx = π if m = n, m n ⎪ 2 (A-4.29) −1 ⎩ π if m = n =0.

The Chebyshev polynomials of the second kind, Un(x), are defined by

− 1 2 2 −1 Un(x)= 1 − x sin (n + 1) cos x , −1 ≤ x ≤ 1. (A-4.30)

The generating function for Un(x) is ∞ 2 −1 n 1 − 2xt+ t = Un(x)t , |x| < 1, |t| < 1. (A-4.31) n=0

The first seven Chebyshev polynomials Un(x) are given by

U0(x)=1, U1(x)=2x, 2 U2(x)=4x − 1, 710 A Some Special Functions and Their Properties

3 U3(x)=8x − 4x, 4 2 U4(x)=16x − 12x +1, 5 3 U5(x)=32x − 32x +6x, 6 4 2 U6(x)=64x − 80x +24x − 1.

The differential equation for y = Un(x) is 1 − x2 y − 3xy + n(n +2)y =0. (A-4.32)

The recurrence relations are − Un+1(x) 2xUn(x)+Un−1(x)=0, (A-4.33) − 2  − 1 x Un(x)+nxUn(x) (n +1)Un−1(x)=0. (A-4.34)

The parity relation is n Un(−x)=(−1) Un(x). (A-4.35) The Rodrigues formula is √ n n π(−1) (n +1) d n+ 1 U (x)= 1 − x2 2 . (A-4.36) n 1 1 n n+1 − 2 2 dx 2 (n + 2 )!(1 x )

The orthogonal relation for Un(x) is 1 1 2 2 π 1 − x Um(x) Un(x) dx = δmn. (A-4.37) −1 2

A-5 Laguerre and Associated Laguerre Functions

The Laguerre polynomials Ln(x) are defined by the Rodrigues formula dn L (x)=ex xn e−x , (A-5.1) n dxn where n =0, 1, 2, 3,.... The first seven Laguerre polynomials are

L0(x)=1,

L1(x)=1− x, 2 L2(x)=2− 4x + x , 2 3 L3(x)=6− 18x +9x − x , 2 3 4 L4(x)=24− 96x +72x − 16x + x , 2 3 4 5 L5(x) = 120 − 600x + 600x − 200x +25x − x , 2 3 4 5 6 L6(x) = 720 − 4320x + 5400x − 2400x + 450x − 36x + x . A-5 Laguerre and Associated Laguerre Functions 711

The generating function is ∞ xt (1 − t)−1 exp = tn L (x). (A-5.2) 1 − t n n=0 In particular, Ln(0) = 1. (A-5.3) The orthogonal relation for the Laguerre is ∞ −x 2 e Lm(x)Ln(x) dx =(n!) δnm. (A-5.4) 0 The recurrence relations are

(n +1)Ln+1(x)=(2n +1− x)Ln(x) − nLn−1(x), (A-5.5)  − xLn(x)=nLn(x) nLn−1(x), (A-5.6)   − Ln(x)=Ln−1(x) Ln−1(x). (A-5.7)

The Laguerre polynomials, y = Ln(x), satisfy the Laguerre differential equation xy +(1− x)y + ny =0. (A-5.8) The associated Laguerre polynomials are defined by dm Lm(x)= L (x) for n ≥ m. (A-5.9) n dxm n m The generating function for Ln (x) is ∞ xz (1 − z)−(m+1) exp − = Lm(x)zn, |z| < 1. (A-5.10) 1 − z n n=0 It follows from this that (n + m)! Lm(0) = . (A-5.11) n n!m! The associated Laguerre function satisfies the recurrence relation m − m − m (n +1)Ln+1(x)=(2n + m +1 x)Ln (x) (n + m)Ln−1(x), (A-5.12) d x Lm(x)=nLm(x) − (n + m)Lm (x). (A-5.13) dx n n n−1 m The associated Laguerre function, y = Ln (x), satisfies the associated Laguerre differential equation xy +(m +1− x)y + ny =0. (A-5.14) m The Rodrigues formula for Ln (x) is exx−m dn Lm(x)= e−xxn+m . (A-5.15) n n! dxn m The orthogonal relation for Ln (x) is ∞ −x m m m (n + m)! e x Ln (x)Ll (x) dx = δnl. (A-5.16) 0 n! 712 A Some Special Functions and Their Properties A-6 Hermite Polynomials and Weber–Hermite Functions

The Hermite polynomials Hn(x) are defined by the Rodrigues formula dn H (x)=(−1)n exp x2 exp −x2 , (A-6.1) n dxn where n =0, 1, 2, 3,.... The first seven Hermite polynomials are

H0(x)=1,

H1(x)=2x, 2 H2(x)=4x − 2, 3 H3(x)=8x − 12x, 4 2 H4(x)=16x − 48x +12, 5 3 H5(x)=32x − 16x + 120x, 6 4 2 H6(x)=64x − 480x + 720x − 120.

The generating function is

∞ tn exp 2xt − t2 = H (x). (A-6.2) n! n n=0

It follows from (A-6.2) that Hn(x) satisfies the parity relation

n Hn(−x)=(−1) Hn(x). (A-6.3)

Also, it follows from (A-6.2) that (2n)! H (0) = 0,H(0) = (−1)n . (A-6.4) 2n+1 2n n! The recurrence relations for Hermite polynomials are

Hn+1(x) − 2xHn(x)+2nHn−1(x)=0, (A-6.5)  Hn(x)=2xHn−1(x). (A-6.6)

The Hermite polynomials, y = Hn(x), are solutions of the Hermite differential equa- tion y − 2xy +2ny =0. (A-6.7) The orthogonal property of Hermite polynomials is ∞ √ 2 n exp −x Hn(x)Hm(x) dx =2 n! πδmn. (A-6.8) −∞

With repeated use of integration by parts, it follows from (A-6.1) that A-7 Mittag-Leffler Function 713 ∞ 2 m exp −x Hn(x)x dx =0,m=0, 1,...,(n − 1), (A-6.9) −∞ ∞ √ 2 n exp −x Hn(x)x dx = πn!. (A-6.10) −∞

The WeberÐHermite function,orsimplyHermite function, x2 y = h (x)=exp − H (x) (A-6.11) n 2 n satisfies the Hermite differential equation y + λ − x2 y =0,x∈ R, (A-6.12) where λ =2n +1.Ifλ =2 n +1, then y is not finite as |x|→∞. { }∞ The Hermite functions hn(x) 0 form an orthogonal basis for the Hilbert space L2(R) with weight function 1. They satisfy the following fundamental properties:  − hn(x)+xhn(x) 2nhn−1(x)=0,  − hn(x) xhn(x)+hn+1(x)=0,  − 2 hn(x) x hn(x)+(2n +1)hx =0, ˜ n F hn(x) = hn(k)=(−i) hn(k).

The normalized WeberÐHermite functions are given by 2 −n/2 − 1 − 1 x ψ (x)=2 π 4 (n!) 2 exp − H (x). (A-6.13) n 2 n

Physically, they represent quantum-mechanical oscillator wave functions. The graphs of these functions are shown in Figure A.10.

A-7 Mittag-Leffler Function

Another important function that has widespread use in fractional calculus and frac- tional differential equation is the Mittag-Leffler function. The Mittag-Leffler function is an entire function defined by the series

∞ zn E (z)= ,α>0. (A-7.1) α Γ (αn +1) n=0 The graph of the Mittag-Leffler function is shown in Figure A.11. The generalized Mittag-Leffler function, Eα,β(z), is defined by

∞ zn E (z)= ,α,β>0. (A-7.2) α,β Γ (αn + β) n=0 714 A Some Special Functions and Their Properties

Fig. A.10 The normalized WeberÐHermite functions.

Fig. A.11 Graph of the Mittag-Leffler function Eα(x).

Also the inverse yields m!sα−β L−1 = tαm+β−1E(m) ±atα , (A-7.3) (sα+¯ a)m+1 α,β where dm E(m)(z)= E (z). (A-7.4) α,β dzm α,β A-8 The Jacobi Elliptic Integrals and Elliptic Functions 715

Obviously,

z Eα,1(z)=Eα(z),E1,1(z)=E1(z)=e . (A-7.5)

A-8 The Jacobi Elliptic Integrals and Elliptic Functions

The parametric equation of an ellipse is given by

x = a sin θ, y = b cos θ, (a>b), 0 ≤ θ ≤ φ. (A-8.1)

Using the arclength formula from calculus, the length of the elliptic arc (A-8.1)is ds2 = dx2 + dy2 = a2 cos2 θ + b2 sin2 θ dθ2 a2 − b2 = a2 1 − sin2 θ dθ2 = a2 1 − m2 sin2 θ dθ2, (A-8.2) a2

2− 2 1 a b 2 where e = m =( a2 ) < 1 is the eccentricity of the ellipse. Consequently, (A-8.2) gives the length of the elliptic arc s φ  s = ds = a 1 − m2 sin2 θdθ. (A-8.3) 0 0 This integral cannot be evaluated in terms of elementary functions. Because of its origin, it is called an elliptic integral. In general, there are three classes of elliptic integrals, called elliptic integrals of the first, second and third kinds, and they defined by φ dθ F (φ, m)=  , (A-8.4) 2 0 1 − m2 sin θ φ  E(φ, m)= 1 − m2 sin2 θdθ, (A-8.5) 0 φ dθ Π(φ, m, n)=  , (m = n), (A-8.6) 2 2 0 (1 + n2 sin θ) 1 − m2 sin θ where the parameter φ is called the amplitude, φ = am(F, m) so that am(0,m)=0 π and m (0

sn(u, m)=sinφ, (A-8.10) 1 cn(u, m) = cos φ = 1 − sn2 u 2 , (A-8.11) 1 1 dn(u, m)= 1 − m2 sin2 φ 2 = 1 − m2 sn2 u 2 (A-8.12) so that

sn(−u)=− sn u, cn(−u)=cn u, dn(−u)=dn u, (A-8.13) sn(0) = 0, and cn(0) = dn(0) = 1. (A-8.14)

The following limiting results also hold lim sn(u, m)=sinu, lim cn(z,m) = cos u, → → m 0 m 0 (A-8.15) lim dn(z,m)=1, m→0 lim sn(u, m) = tanh u, lim cn(u, m)=sechu, → → m 1 m 1 (A-8.16) lim dn(u, m)=sechu. m→1 Making reference to Dutta and Debnath (1965) without proof, we state the fol- lowing basic properties of the Jacobi elliptic functions: sn2 u + cn2 u =1, dn2 u + m2 sn2 u =1, dn2 u − m2 cn2 u =1− m2, (A-8.17) d d sn u = cn u dn u, cn u = − sn u dn u, (A-8.18) du du and d dn u = −m2 sn u cn u. (A-8.19) du Putting sn(u, m)=x in the first result in (A-8.18) gives the differential equation  dx = 1 − x2 1 − m2x2 , (A-8.20) du so that it leads to the Legendre normal form for the sn-function sn(u,m) dx u =  . (A-8.21) 2 2 2 0 (1 − x )(1 − m x ) A-8 The Jacobi Elliptic Integrals and Elliptic Functions 717

Similarly, it follows from (A-8.18)Ð(A-8.19) that the Legendre normal forms for cn and dn functions are 1 dx u =  , (A-8.22) 2 2 2 2 cn(u,m) (1 − x )(m + m x ) 1 dx u =  , (A-8.23) 2 2 2 dn(u,m) (1 − x )(x − m ) √ where m = 1 − m2 is called the complementary modulus of the elliptic integral. The complete elliptic integrals are then given by π π K(m)=F ,m = K m ,E(m)=E ,m = E m . (A-8.24) 2 2

The limiting values of K(m) and E(m) are given as follows: π π lim K(m)=K(0) = , lim E(m)=E(0) = , (A-8.25) m→0 2 m→0 2 lim K(m)=K(1) = ∞, lim E(m)=E(1) = 1. (A-8.26) m→1 m→1 Finally, the addition theorems for sn, cn, and dn functions are sn u cn v dn v + sn v cn u dn u sn(u + v)= , (A-8.27) (1 − m2 sn2 u sn2 v) cn u cn v − sn u dn u sn v dn v cn(u + v)= , (A-8.28) (1 − m2 sn2 u sn2 v) dn u dn v − m2 sn u cn u sn v cn v dn(u + v)= , (A-8.29) (1 − m2 sn2 u sn2 v) where sn(u +4K)=sn u, cn(u +4K)=cn u, and dn(u +2K)=dn u so that sn and cn are periodic functions of period 4K, and dn is a periodic function of period 2K. B Fourier Series, Generalized Functions, and Fourier and Laplace Transforms

The main purpose of this appendix is to discuss Fourier series and generalized func- tions, and to state their basic properties that are most frequently used in the theory and applications of ordinary and partial differential equations. The subject is, of course, too vast to be treated adequately in so short a space, so that only the more important results will be stated. Included are basic properties of Fourier and Laplace transforms which are used in finding solutions of ordinary and partial differential equations. For a fuller discussion of these topics and of further properties of these functions the reader is referred to the standard treatises on the subjects including Debnath and Bhatta (2007).

B-1 Fourier Series and Its Basic Properties

If f(x) is a periodic function of period 2π defined in (−π, π), then f(x) can be represented as an infinite series in terms of trigonometric functions in the form ∞ 1 f(x)= a + (a cos nx + b sin nx). (B-1.1) 2 0 n n n=1 This is known as the Fourier Series. If we assume that the infinite series is term-by- term integrable on (−π, π), then ∞ π π 1 f(x) dx = a0 + (an cos nx + bn sin nx) dx = πa0 − − 2 π π n=1 so that 1 π a0 = f(x) dx. (B-1.2) π −π Multiplying both sides of (B-1.1)bycos mx and integrating the resulting series from −π to π gives

L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers, DOI 10.1007/978-0-8176-8265-1, c Springer Science+Business Media, LLC 2012 720 B Fourier Series, Generalized Functions, and Fourier and Laplace Transforms π f(x) cos mx dx −π ∞ π 1 = a0 + (an cos nx + bn sin nx) cos mx dx = πan,m= n. − 2 π n=1 Thus, 1 π an = f(x) cos nx dx. (B-1.3) π −π Similarly, multiplying (B-1.1)bysin mx and integrating over (−π, π) gives 1 π bn = f(x)sinnx dx. (B-1.4) π −π

The Fourier coefficients an and bn given by (B-1.2)Ð(B-1.4) are known as the EulerÐ Fourier formulas. If f(x) is an even function of x defined on [−π, π], then 1 π a = f(x) cos nx dx n π −π 2 π = f(x) cos nx dx, n =0, 1, 2,..., (B-1.5) π 0 1 π bn = f(x)sinnx dx =0,n=1, 2, 3,.... (B-1.6) π −π Hence, the Fourier series of an even function f(x) can be written as

∞ 1 f(x)= a + a cos nx, (B-1.7) 2 0 n n=1 where an are given by (B-1.5). Similarly, if f(x) is an odd function of x on (−π, π), the Fourier series of an odd function is given by ∞ f(x)= bn sin nx, (B-1.8) n=1 where an =0for all n, and bn are given by 1 π b = f(x)sinnx dx n π −π 2 π = f(x)sinnx dx, n =1, 2, 3,.... (B-1.9) π 0 B-1 Fourier Series and Its Basic Properties 721

Fig. B.1 The function f(x) and its extension.

Fig. B.2 Graph of f(x)=x2 and its extension.

Example B-1.1. The Fourier series of f(x) (see Figure B.1) 0 if − π

∞ π 2 (−1)n f(x)= − cos(2n − 1)x + sin nx . (B-1.10) 4 π(2n − 1)2 n n=1

Example B-1.2. The Fourier series of the (see Figure B.2) function

f(x)=x2, −π ≤ x ≤ π with f(x ± 2nπ)=f(x),n=1, 2, 3,..., 722 B Fourier Series, Generalized Functions, and Fourier and Laplace Transforms

Fig. B.3 The triangular wave function and its extension. is ∞ π2 (−1)n x2 = +4 cos nx. (B-1.11) 3 n2 n=1

Since f(x) is even, bn =0for all n ≥ 1, it turns out that 1 π 2 π 2π2 a = x2 dx = x2 dx = , 0 π π 3 −π 0 π π 1 2 2 2 an = x cos nx dx = x cos nx dx π −π π 0 4 = (−1)n,n≥ 1. n2

Example B-1.3. The triangular wave function (see Figure B.3) −x if − π ≤ x<0, f(x)=|x| = x if 0 ≤ x<π, with f(x ± 2πn)=f(x) has the Fourier cosine series representation

∞ π 4 1 f(x)= − cos(2n − 1)x. (B-1.12) 2 π (2n − 1)2 n=1

In this case, f(x) is even, thus, bn =0for all n ≥ 1, and 1 π 2 π a = |x| dx = xdx= π, 0 π π −π 0 1 π 2 π an = |x| cos nx dx = x cos nx dx π −π π 0 2 = (−1)n − 1 , πn2 and so 0 if n is even, a = n − 4 πn2 if n is odd. B-1 Fourier Series and Its Basic Properties 723

Fig. B.4 The sawtooth wave function.

Example B-1.4. The sawtooth wave function (see Figure B.4)

f(x)=x, −π

∞ sin nx f(x)=2 (−1)n+1 . (B-1.13) n n=1

In this case, f(x) is odd and hence, an =0for all n ≥ 0, and π π 1 2 2 n+1 bn = x sin nx dx = x sin nx dx = (−1) . π −π π 0 n Example B-1.5. The Fourier series representation of the square wave function (see Figure B.5) defined by ⎧ ⎪ ≤ ⎨⎪ 1 if 0

Obviously, f(x) is odd, and hence, an =0for all n ≥ 0, and bn is given by 1 π 2 π bn = sgn x sin nx dx = sin nx dx π −π π 0 2 1 − (−1)n 0 if n is even, = = 4 π n nπ if n is odd. 724 B Fourier Series, Generalized Functions, and Fourier and Laplace Transforms

Fig. B.5 The square wave function and its extension.

Fig. B.6 The triangular wave function and its extension.

Example B-1.6. The triangular wave function (see Figure B.6) f(x) on [−π, π] is given by π + x if − π ≤ x ≤ 0, f(x)= π − x if 0 ≤ x ≤ π. Since f(x) is even, b =0for n ≥ 1, and n 1 π 2 π a0 = f(x) dx = (π − x) dx = π, π −π π 0 π 2 − 2 1 − − n an = (π x) cos nx dx = 2 1 ( 1) π 0 π n 2 0 if n is even, = · πn2 2 if n is odd. Thus, the Fourier series for f(x) is ∞ a f(x)= 0 + a cos nx 2 n n=1 ∞ π 4 1 = + cos(2n − 1)x. (B-1.15) 2 π (2n − 1)2 n=1 B-1 Fourier Series and Its Basic Properties 725

If f(x) is a periodic function of period 2l and is defined on [−l, l], then the Fourier representation of f(x) is

∞ a nπx nπx f(x)= 0 + a cos + b sin , (B-1.16) 2 n l n l n=1 where a0, an, and bn are given by the EulerÐFourier formulas: 1 l a0 = f(x) dx, (B-1.17) l − l 1 l nπx an = f(x) cos dx, (B-1.18) l − l l 1 l nπx bn = f(x)sin dx. (B-1.19) l −l l If f(x) is an even function of period 2l defined on [−l, l], then

∞ a nπx f(x)= 0 + a cos , (B-1.20) 2 n l n=1 where bn =0, n ≥ 1, and 2 l nπx an = f(x) cos dx, n =0, 1, 2,.... (B-1.21) l 0 l If f(x) is an odd function of period 2l, then

∞ nπx f(x)= b sin , (B-1.22) n l n=1 where an =0, n ≥ 0, and 2 l nπx bn = f(x)sin dx. (B-1.23) l 0 l The functions f(x) in all Examples B-1.1ÐB-1.6 can be defined on [−l, l] and the corresponding Fourier series can be obtained directly by calculating Fourier co- πt efficients an and bn, or by using the transformation x = l . In Example B-1.1,the Fourier series on [−l, l] is

∞ l l 2 (2n − 1)πx (−1)n nπx f(x)= − cos + sin . 4 π π(2n − 1)2 l n l n=1 (B-1.24)

In Example B-1.2, the Fourier series on [−l, l] is given by 726 B Fourier Series, Generalized Functions, and Fourier and Laplace Transforms

∞ l2 4l2 (−1)n nπx f(x)= + cos . (B-1.25) 3 π2 n2 l n=1 In Example B-1.3, the Fourier series on [−l, l] is ∞ l 4l 1 xπ f(x)= − cos (2n − 1) . (B-1.26) 2 π2 (2n − 1)2 l n=1 When l = π, this reduces to (B-1.12). In Example B-1.4, the Fourier series on [−l, l] is ∞ 2l (−1)n+1 nπx f(x)= sin . (B-1.27) π n l n=1 In Example B-1.5, the Fourier series of sgn(x) on [−l, l] is ∞ 4 1 xπ sgn(x)= sin (2n − 1) . (B-1.28) π (2n − 1) l n=1 In Example B-1.6, the Fourier series on [−l, l] is ∞ l 4l 1 πx f(x)= + cos(2n − 1) . (B-1.29) 2 π2 (2n − 1)2 l n=1 It is sometimes convenient to represent a function f(x) by a Fourier series in complex form. This expansion can easily be derived from the Fourier series (B-1.1), that is, ∞ a f(x)= 0 + (a cos nx + b sin nx) 2 n n n=1 ∞ a 1 b = 0 + a einx + e−inx + n einx − e−inx 2 2 n 2i n=1 ∞ a 1 1 = 0 + (a − ib )einx + (a + ib )e−inx 2 2 n n 2 n n n=1 ∞ ∞ inx −inx inx = c0 + cne + c−ne = cne , n=1 n=−∞ where π a0 1 c0 = = f(x) dx, 2 2π −π 1 1 π cn = (an − ibn)= f(x)(cos nx − i sin nx) dx 2 2π −π 1 π = f(x)e−inx dx, 2π −π B-1 Fourier Series and Its Basic Properties 727 1 1 π c− = (a + ib )= f(x)(cos nx + i sin nx) dx n 2 n n 2π −π π 1 inx = f(x)e dx = cn. 2π −π Thus, we obtain the Fourier series of f(x) in complex form ∞ inx f(x)= cne , −π

Thus, (B-1.32) is known as the Parseval formula for a complex Fourier series. We next consider the nth partial sum a n s (x)= 0 + (a cos kx + b sin kx), (B-1.33) n 2 k k k=1  − π 2 of the Fourier series for f(x) in (B-1.1) defined on [ π, π].If −π f (x) dx exists and is finite, then π 2 0 ≤ f(x) − sn(x) dx −π π π π 2 − 2 = f (x) dx 2 f(x)sn(x) dx + sn(x) dx. (B-1.34) −π −π −π It follows from the definition of the Fourier coefficients (B-1.2)Ð(B-1.4) and the orthogonality of the cosine and sine functions that π π n a0 f(x)sn(x) dx = f(x) + (ak cos kx + bk sin kx) dx − − 2 π π k=1 πa2 n = 0 + π a2 + b2 . 2 k k k=1 728 B Fourier Series, Generalized Functions, and Fourier and Laplace Transforms

Similarly, it turns out that 2 π π n 2 a0 sn(x) dx = + (ak cos kx + bk sin kx) dx −π −π 2 k=1 π 2 n π π a0 2 2 2 2 = dx + ak cos kx dx + bk sin kx dx − 4 − − π k=1 π π πa2 n = 0 + π a2 + b2 . 2 k k k=1 Consequently, (B-1.34) reduces to π 2 0 ≤ f(x) − sn(x) dx −π π 2 n 2 − πa0 2 2 = f (x) dx + π ak + bk . (B-1.35) − 2 π k=1 This leads to the inequality 2 n π a0 2 2 ≤ 1 2 + ak + bk f (x) dx, (B-1.36) 2 π − k=1 π and since the right-hand side of (B-1.36) is independent of n, it follows in the limit as n →∞that ∞ 2 π a0 2 2 ≤ 1 2 + ak + bk f (x) dx. (B-1.37) 2 π − k=1 π This is known as the Bessel inequality for a Fourier series. Since the left-hand side of (B-1.36) is non-decreasing and is bounded above, the series ∞ a2 0 + a2 + b2 (B-1.38) 2 k k k=1 converges. Thus, the necessary condition for the convergence of the series (B-1.38) is that

lim ak = 0 and lim bk =0. (B-1.39) k→∞ k→∞ That is, π π lim f(x) cos kx dx =0, lim f(x)sinkx dx =0. (B-1.40) →∞ →∞ k −π k −π These results are known as the RiemannÐLebesgue Lemma. B-1 Fourier Series and Its Basic Properties 729

The Fourier series is said to converge in the mean to f(x) when π 2 lim f(x) − s (x) dx =0. (B-1.41) →∞ n n −π If the Fourier series converges in the mean to f(x), then

∞ 2 π a0 2 2 1 2 + an + bn = f (x) dx. (B-1.42) 2 π − n=1 π This is called Parseval’s relation, and it is one of the fundamental results in the theory of Fourier series. This relation can formally be derived from the convergence of the Fourier series to f(x) on [−π, π]. In other words, if

∞ 1 f(x)= a + (a cos nx + b sin nx), (B-1.43) 2 0 n n n=1 where a0, an, and bn are given by (B-1.2)Ð(B-1.4), we multiply by (B-1.43)by 1 − π f(x) and integrate the resulting expression from π to π to obtain 1 π f 2(x) dx π −π a π = 0 f(x) dx 2π −π ∞ 1 π 1 π + an f(x) cos nx dx + bn f(x)sinnx dx . (B-1.44) π − π − n=1 π π Replacing all integrals on the right hand side of (B-1.44) by the Fourier coefficients gives the Parseval relation (B-1.42). If two (2π)-periodic integrable functions f(x) and g(x) defined on [−π, π] have the Fourier series expansions

∞ 1 f(x)= a + (a cos nx + b sin nx), (B-1.45) 2 0 n n n=1 ∞ 1 g(x)= α + (α cos nx + β sin nx), (B-1.46) 2 0 n n n=1 where a0, an, and bn are given by (B-1.1)Ð(B-1.3), and α0, αn, and βn are given by results similar to those of (B-1.1)Ð(B-1.3), then the following Parseval’s relations hold π ∞ 1 2 1 2 2 2 f(x)+g(x) dx = (a0 + α0) + (an + αn) +(bn + βn) , π − 2 π n=1 (B-1.47) 730 B Fourier Series, Generalized Functions, and Fourier and Laplace Transforms π ∞ 1 2 1 2 2 2 f(x) − g(x) dx = (a0 − α0) + (an − αn) +(bn − βn) . π − 2 π n=1 (B-1.48)

Subtracting (B-1.48) from (B-1.47) yields

∞ 1 π 1 f(x)g(x) dx = a0α0 + (anαn + bnβn). (B-1.49) π − 2 π n=1

This is a general Parseval relation for the product function f(x)g(x). When f = g, (B-1.49) reduces to (B-1.42). In the context of the complex Fourier series expansion (B-1.30)ofa(2π)-  periodic function f(x), we can replace the Fourier coefficient cn by f(n) so that π  1 −inx cn = f(n)= e f(x) dx. (B-1.50) 2π −π

The concept of of two (2π)-periodic integrable functions f and g on R arises naturally, so that we define their convolution (f ∗ g)(x) on [−π, π] by 1 π (f ∗ g)(x)= f(x − t)g(t) dt. (B-1.51) 2π −π

Physically, the convolution (f ∗ g)(x) represents an integral output of the two func- tions f and g in contrast to the ordinary pointwise product (output) f(x)g(x). Clearly, the convolution is commutative, that is, 1 π (f ∗ g)(x)= f(ξ)g(x − ξ) dξ =(g ∗ f)(x). (B-1.52) 2π −π Another interpretation of a convolution is that it represents an average (or mean) value. In particular, if g =1in (B-1.52), then f ∗ g is constant and is equal to 1 π (f ∗ 1)(x)= f(ξ) dξ. (B-1.53) 2π −π

This means that (f ∗ 1)(x) represents the average value of f(x) on [−π, π]. In addition to commutativity, the convolution satisfies the following algebraic and analytic properties for any constant α and β:

f ∗ (αg + βh)=α(f ∗ g)+β(f ∗ h) (Distributive), (B-1.54)

(f ∗ g) ∗ h = f ∗ (g ∗ h) (Associative), (B-1.55)

(f ∗ g)(x) is continuous (Continuity), (B-1.56)

f∗ g(n)=f(n)g(n)(Convolution). (B-1.57) B-1 Fourier Series and Its Basic Properties 731

To prove (B-1.57), we use the definition 1 π f∗ g(n)= (f ∗ g)(x)e−inx dx 2π −π 1 π 1 π = e−inx f(t)g(x − t) dt dx 2π −π 2π −π 1 π 1 π = e−intf(t) e−in(x−t)g(x − t) dx dt, x − t = s 2π −π 2π −π 1 π 1 π = e−intf(t) dt g(s)e−ins ds 2π −π 2π −π = f(n)g(n).

The nth partial sum of a complex Fourier series (B-1.30)is n n π ikx ikx 1 −ikt sn(x)= cke = e f(t)e dt 2π − k=−n k=−n π 1 π n = f(t) eik(x−t) dt 2π −π k=−n 1 π = f(t)Dn(x − t) dt, (B-1.58) 2π −π = Dn(x) ∗ f(x), (B-1.59) where Dn(x) is called the Dirichlet kernel defined by n n ikx ikx −ikx Dn(x)= e =1+ e + e k=−n k=1 n =1+ 2 cos kx. (B-1.60) k=1 We next make the following observations regarding the genesis of the convolution in the theory of Fourier. The convolution (Dn ∗f)(x) arises in the nth partial sum sn(x) of the Fourier series of f(x). Thus, the problem of understanding sn(x) reduces to that of (Dn ∗ f)(x). It follows from (B-1.60) that 1 x 1 x x Dn(x)sin = sin +sin (cos x + cos 2x + ···+ cos nx) 2 2 2 2 2 1 x 1 3x x 5x 3x = sin + sin − sin + sin − sin 2 2 2 2 2 2 2 1 1 + ···+ sin n + x − sin n − x 2 2 1 1 = sin n + x. 2 2 732 B Fourier Series, Generalized Functions, and Fourier and Laplace Transforms

Fig. B.7 Graph of Dn(x = θ) against (x = θ).

Thus, the exact form of the Dirichlet kernel is

1 sin(n + 2 )x Dn(x)= x . (B-1.61) sin 2

This reveals that the denominator of the Dirichlet kernel Dn(x) vanishes at the points x =2πm which are removable points of discontinuity. Furthermore, it follows from (B-1.60) that Dn(x) is an even function with period 2π and satisfies π Dn(x) dx =2π. (B-1.62) −π

The graph of Dn(x = θ) isshowninFigureB.7. It looks very similar to that of the diffusion kernel as shown in Figure 1.6 in Chapter 1 except for its symmetric oscillatory trail in both positive and negative θ-axes. It follows from (B-1.58), by putting t−x = ξ and noting that Dn(ξ) is even, that 1 π−x s (x)= f(x + ξ)D (ξ) dξ n 2π n −π−x 1 π = f(x + ξ)Dn(ξ) dξ. (B-1.63) 2π −π We close this section by stating the Pointwise Convergence Theorem:Iff(x) is a piecewise smooth and periodic function with period 2π on [−π, π], then, for any x in (−π, π), n a0 lim sn = lim + (ak cos kx + bk sin kx) n→∞ n→∞ 2 k=1 1 = f(x +0)+f(x − 0) , (B-1.64) 2 B-1 Fourier Series and Its Basic Properties 733 or equivalently,

∞ a 1 0 + (a cos kx + b sin kx)= f(x+) + f(x−) , (B-1.65) 2 k k 2 k=1 where 1 π a = f(x) cos kx dx, k =0, 1, 2, 3,..., (B-1.66) k π −π 1 π bk = f(x)sinkxdx, k =1, 2, 3,.... (B-1.67) π −π We refera to Myint-U and Debnath (2007) for its proof. Another remarkable feature of Fourier series of a function at its ordinary points of discontinuity deals with the behavior of its nth partial sums sn(x) as n →∞.At points where f(x) is continuous, the nth partial sums sn(x) approach smoothly the value f(x) as n →∞. However, for the functions f(x)=x in Example B-1.4 or f(x)=sgnx in Example B-1.5, the graphs of their partial sums exhibit a large error in the neighborhood of points of discontinuity at x =0and x = ±π independent of the number of terms in their partial sums. In other words, the partial sums do not converge smoothly to the mean value. Instead, they overshoot the mark at each end of the jumps of the function. The explanation of this phenomenon was first provided by J.W. Gibbs (1839Ð1903) in 1899, who showed that overshooting was not the result of computational errors. This feature is typical for the Fourier series of a function at the points of discontinuity, and is now universally known as the Gibbs phenomenon. One of the most effective and useful applications of Fourier series deals with the summation of infinite series in closed form which is one of the major problems in mathematics. We shall use Examples B-1.1ÐB-1.6 to derive the sums of many important numerical series. Substituting x =0in (B-1.10) gives the numerical series ∞ π 2 1 0=f(0) = − . 4 π (2n − 1)2 n=1 Hence, ∞ 1 π2 = , (2n − 1)2 8 n=1 or equivalently, 1 1 1 1 π2 + + + + ···= . (B-1.68) 12 32 52 72 8 This can be used to obtain another numerical series 1 1 1 1 1 π2 S = + + + + ···+ + ···= . (B-1.69) 12 22 32 42 n2 6 734 B Fourier Series, Generalized Functions, and Fourier and Laplace Transforms

In fact, 1 1 1 1 1 1 1 1 S = + + + ··· + + + + + ··· 12 32 52 4 12 22 32 42 π2 1 = + S. 8 4

− 1 π2 Thus, S(1 4 )= 8 , which gives (B-1.69). Putting x =0in (B-1.11) leads to the numerical series

∞ π2 (−1)n 0= +4 , 3 n2 n=1 or equivalently,

∞ (−1)n+1 π2 = . n2 12 n=1 Thus,

1 1 1 1 π2 − + − + ···= . (B-1.70) 12 22 32 42 12 π Substituting x = 2 in the series (B-1.13)gives ∞ π (−1)n+1 nπ =2 sin 2 n 2 n=1 sin π sin 2π sin 3π sin 4π =2 2 − 2 + 2 − 2 + ··· 1 2 3 4 1 1 1 =2 1 − + − + ··· . 3 5 7

Therefore, 1 1 1 π 1 − + − + ···= . (B-1.71) 3 5 7 4 This is celebrated Leibniz series for π discovered by Leibniz in 1673. It is also known as the Gregory series independently discovered by James Gregory (1638Ð1675) in around 1670. π Putting x = 4 in (B-1.13) gives another numerical series π 1 1 1 1 1 1 1 1 1 1 = √ 1+ − − + + −··· − 1 − + − + ··· . 8 2 3 5 7 9 11 2 3 5 7 In view of (B-1.71), this leads to the following series B-1 Fourier Series and Its Basic Properties 735 1 1 1 1 1 π 1+ − − + + −···= √ . (B-1.72) 3 5 7 9 11 2 2 Subtracting (B-1.70) from (B-1.69) yields 1 1 1 1 π2 + + + + ···= . (B-1.73) 22 42 62 82 24 In Example B-1.2, the Fourier series for f(x)=x2 isgivenby(B-1.11). It follows from the Parseval relation (B-1.42) that ∞ ∞ π 4 4 1 4 2π 2 2π 16 x dx = + an = + 4 , π − 9 9 n π n=1 n=1 or equivalently, ∞ 2π4 2π4 16 = + . 5 9 n4 n=1 Thus, ∞ 1 π4 = . (B-1.74) n4 90 n=1 If we apply the Parseval formula (B-1.42) to Example B-1.3, we can derive the fol- lowing numerical series ∞ 1 π4 = . (B-1.75) (2n − 1)4 96 n=1 A similar calculation can be used for the Fourier series of f(x)=x(π − x), 0

∞ nπx f(x)= b sin , (B-1.80) n l n=1 where 2 l nπx b = f(x)sin dx n l l 0 2 l/2 2hx nπx l 2h(l − x) nπx = sin dx + sin dx , l 0 l l l/2 l l which is, integrating by parts,  l/2 l/2 4h − l nπx  − nπx = 2 x cos  cos dx l nπ l 0 l  0 l l nπx nπx +(l − x) cos  + cos dx l l l/2 l/2 8h nπ = sin . (B-1.81) n2π2 2

Thus, when h =1and l = π, the Fourier sine series on the interval 0

π Thus, the Fourier sine series for f(x)=x on 0

π Putting x = 2 in (B-1.83) gives the numerical series π2 1 1 1 1 = + + + + ··· . (B-1.84) 8 12 32 52 72 π The Fourier sine series (B-1.83)forx can be integrated from x to 2 term-by-term so that 1 π2 4 1 1 − x2 = cos x − cos 3x + cos 5x −··· . (B-1.85) 2 4 π 33 53

Substituting x =0into (B-1.85) gives the numerical series B-1 Fourier Series and Its Basic Properties 737

1 1 1 1 π3 − + − + ···= . (B-1.86) 13 33 53 73 32 Integrating (B-1.85) with respect to x from 0 to x leads to 1 π2 x3 4 1 1 x − = sin x − sin 3x + sin 5x −··· . (B-1.87) 2 4 3 π 34 54

π Putting x = 2 in (B-1.87) yields the numerical series 1 1 1 1 π π3 π4 + + + + ···= · = . (B-1.88) 14 34 54 74 8 12 96 π Integrating (B-1.87) again from x to 2 gives π2 π 2 1 π 4 − x2 − − x4 16 2 24 2 4 1 1 = cos x − cos 3x + cos 5x −··· . (B-1.89) π 35 55 Substituting x =0in (B-1.89) gives the numerical series

1 1 1 1 5π5 − + − + ···= . (B-1.90) 15 35 55 75 1536 Integrating (B-1.89) again from 0 to x yields a new numerical series π4 π2 π4 1 x − x3 − x + x5 64 48 384 120 4 1 1 = sin x − sin 3x + sin 5x −··· . (B-1.91) π 36 56

π Putting x = 2 in (B-1.91) leads to another numerical series 1 1 1 π6 1+ + + + ···= . (B-1.92) 36 56 76 960 We consider applications of Fourier series to differential equations. As a simple application, we discuss the periodic solution of a non-homogeneous simple harmonic oscillator

x¨ + ω2x = f(t), (B-1.93) where the forcing function f(t) has a Fourier series expansion

∞ 1 f(t)= A + (A cos nt + B sin nt), (B-1.94) 2 0 n n n=1 the coefficients A0, An, and Bn are known. 738 B Fourier Series, Generalized Functions, and Fourier and Laplace Transforms

We seek a uniformly convergent Fourier series solution of (B-1.93) in the form

∞ 1 x(t)= a + (a cos nt + b sin nt). (B-1.95) 2 0 n n n=1 Differentiating (B-1.95) term by term and assuming the series for x˙(t) and x¨(t) con- verge uniformly, substituting in (B-1.93)gives

∞ ∞ a −n2 + ω2 a cos nt + 0 ω2 + −n2 + ω2 b sin nt n 2 0 n n=1 n=1 ∞ 1 = A + (A cos nt + B sin nt). (B-1.96) 2 0 n n n=1 Consequently, equating the coefficients, we obtain A A B a = 0 ,a= n ,b= n . 0 ω2 n ω2 − n2 n ω2 − n2 Thus, the solution of (B-1.93) is given by ∞ A (A cos nt + B sin nt) x(t)= 0 + n n (B-1.97) 2ω2 ω2 − n2 n=1 provided ω = n. However, if ω2 = n2 for some integer n, the solution becomes unbounded. This phenomenon is known as resonance. If damping is included in equation (B-1.93), the solution will remain bounded. However, when ω2 = n2, we can write

g(t)=f(t) − Aω cos ωt + Bω sin ωt,

2 2 and then we can solve separately x¨ + ω x = g(t) and x¨ + ω x = Aω cos ωt + Bω sin ωt. The second equation gives rise to the non-periodic solutions (At+B) cos ωt and (At+B)sinωt. The sum of the solutions of the two equations gives a solution of the original equation. Equation (B-1.93) can be solved by the use of integrating factor in the form t τ x(t)=exp(−iωt) exp(2iωτ) eiωxf(x) dx dτ. (B-1.98) 0 0 We next apply the method of Fourier series to solve the damped harmonic oscil- lator governed by x¨ + kx˙ + ω2x = f(t), (B-1.99) where kx˙ (k>0) is the damping term. If f(t) is periodic with period 2π and has the same Fourier series expan- sion (B-1.94), then we can find a Fourier series solution of (B-1.95) by differentiating and substituting in (B-1.99) so that equation (B-1.99) takes the form B-1 Fourier Series and Its Basic Properties 739

∞ ω2a −n2a + nkb + ω2a cos nt + 0 n n n 2 n=1 ∞ 2 2 + −n bn − nkan + ω bn sin nt n=1 ∞ 1 = A + (A cos nt + B sin nt). (B-1.100) 2 0 n n n=1

A0 Equating the coefficients from both sides gives a0 = ω2 and ω2 − n2 a + nkb = A , n n n 2 2 −nkan + ω − n bn = Bn.

Solving for an and bn gives      An nk   B ω2 − n2   n  1 2 − 2 − an =   = ω n An nkBn , (B-1.101)  ω2 − n2 nk  D  −nk ω2 − n2     2 2   ω − n An   −nk B   n  1 2 − 2 bn =   = ω n Bn + nkAn , (B-1.102)  ω2 − n2 nk  D  −nk ω2 − n2  where 2 D = ω2 − n2 + n2k2. (B-1.103)

Thus, the coefficients a0, an, and bn of the Fourier series solution (B-1.95)ofthe damped simple harmonic equation (B-1.99)aregivenby(B-1.101)Ð(B-1.102), and the solution represents the periodic response. There may be a transient response de- pending on the initial conditions, and the transient solution will eventually decay as t →∞. Because of the presence of the damping term, there will be no resonance when n = ω. We close this section by adding an example of an application of Fourier series to a simple boundary value problem d2u = λu = f(x), 0

∞ nπx f(x)= b sin , 0

∞ ∞ n2π2 nπx nπx − + λ B sin = b sin , 0

Consequently, the coefficients Bn are given by − n2π2 1 B = λ − b , (B-1.108) n l2 n

 nπ 2 provided λ =( l ) . nπ 2 If λ =(l ) for all or some values of positive integer n, then Bn cannot be determined, and hence no solution exists unless Bn ≡ 0. Thus, the Fourier series solution of the boundary value problem is ∞ l2b nπx u(x)= n sin , (B-1.109) λl2 − n2π2 l n=1 where the zero denominator must be handled separately.

B-2 Generalized Functions (Distributions) The most widely known example of a generalized function is the δ(x) which was first introduced by P.M.M. Dirac in 1920s as a mathematical device in the formulation of quantum mechanics. The Dirac delta function δ(x) is defined by ∞ δ(x) = 0 for all x =0 , and δ(x) dx =1. (B-2.1) −∞

In the ordinary sense, δ(x) cannot be considered as a function because if a func- tion vanishes everywhere except at a single point x =0, then its integral over any interval must be zero, so that integrating it over an interval including the origin can- not be equal to one. However, from the physical point of view, the delta function is the natural mathematical quantity which can be used to describe many of the ab- stractions which arise in physical sciences. For example, the mass-density function B-2 Generalized Functions (Distributions) 741

Fig. B.8 The sequence of delta functions, δn(x). is zero everywhere except at x =0, where it is infinite because a finite mass is con- centrated in zero length, and it is so infinitely large here that the integral is non-zero even through the integrand is positive over an infinitesimally small region only. This makes sense physically, though it is mathematically absurd. So the delta function δ(x) can be used as the mass-density function ρ(x) describing the mass distribution per unit length of a rod at a point x. Similarly, the point charge, the impulsive force, the point dipole, and the frequency response of an undamped harmonic oscillator are all aptly represented by the delta function or other generalized functions. In general, the generalized functions play a major role in Fourier analysis and in the theory of partial differential equations. The function f(x)=1has no Fourier √transform in the ordinary theory, but it has Fourier transform 2πδ(k) in the generalized function theory. Thus, the generalized functions remove difficulties which existed in the classical Fourier analysis. There is a beautiful anal- ogy with the way in which the use of complex numbers helps in the solution of quadratic equations as within the realm of real numbers only certain quadratic equa- tions have no solutions. Sometimes, the Dirac delta function δ(x) is defined by its fundamental property

∞ f(x)δ(x − a) dx = f(a), (B-2.2) −∞ where f(x) is any continuous function in any interval containing the point x = a. Although there are no ordinary functions which have the properties required of the delta function, we may approximate δ(x) in one dimension by a sequence of ordinary functions n δ (x)= exp −nx2 ,n=1, 2, 3,.... (B-2.3) n π 742 B Fourier Series, Generalized Functions, and Fourier and Laplace Transforms

Clearly, δn(x) → 0 as n →∞for any x =0 and δn(0) →∞as n →∞as showninFigureB.8. Also, for all n =1, 2, 3,..., ∞

δn(x) dx =1 −∞ and ∞ ∞

lim δn(x) dx = δ(x) dx =1, n→∞ −∞ −∞ as expected. Thus, the delta function can be considered as the limit of a sequence of ordinary Gaussian functions, and we write n δ(x) = lim exp −nx2 . (B-2.4) n→∞ π As mentioned in Chapter 1, the major problem of finding the solution of inho- mogeneous partial differential equations deals with the construction of the Green’s function in each case. This problem becomes easier by the use of a generalized func- tion together with the methods of Fourier and Laplace transforms. In spherical polar coordinates (r, θ, φ), the Laplacian is 1 d dψ ∇2ψ(r)= r2 , (B-2.5) r2 dr dr

1 ∇2  which is independent of θ and φ.Ifψ(r)= r , then ψ(r)=0for all r =0.At r =0, ∇2ψ(r) does not exist. By the divergence theorem (or Gauss’ theorem) 1 1 1 ∇2 dV = div ∇ dV = ∇ · ndS, (B-2.6) V r V r S r where V is the volume of a sphere of radius a and center at r =0so that ∇ 1 d 1 − eˆr =ˆer = 2 , (B-2.7) r r=a dr r r=a a where eˆr is the direction of the outward normal n to the surface of the sphere. It follows from (B-2.6) that ∇2 1 − 1 · − dV = 2 eˆr nds= 4π. (B-2.8) V r a S ∇2 1 Thus, the Laplacian ( r ) is a function of r which has the following fundamen- tal properties: (i) It vanishes for r =0 . (ii) It is not defined at r =0. (iii) And its integral over any sphere with center at r =0is −4π. B-2 Generalized Functions (Distributions) 743

All of these lead to the result 1 −4π if V contains r =0, ∇2 dV = (B-2.9) V r 0 if V does not contain r =0.

This may be written in the compact form 1 ∇2 = −4πδ(r), (B-2.10) r where δ(r) is the Dirac delta function with the property 1 if V contains r =0, δ(r) dV = (B-2.11) V 0 otherwise.

This result is a special case of the general definition of the vector form of the delta function f(a) if V contains the point a, f(r)δ(r − a) dr = (B-2.12) V 0 otherwise, obtained by setting f(r)=1and a = 0 in (B-2.12). For the results (B-2.11) and (B-2.12) to be valid, it is certainly sufficient that the functions be continuous and infinitely differentiable everywhere. Result (B-2.12) reduces to (B-2.2) in one dimension. We would not go into great detail, but refer to the famous books of Lighthill (1958) and Jones (1982) for the introduction to the subject of generalized functions. A good function, g(x), is a function in C∞(R) that decays sufficiently rapidly so that g(x) and all of its decay to zero faster than |x|−N as |x|→∞for all N>0. In other words, suppose that for each positive integer N and n, lim xN g(n)(x)=0, (B-2.13) |x|→∞ then g(x) is called a good function. Usually, the class of good functions is represented by S. The good functions play an important role in Fourier analysis because the inversion, convolution, and differ- entiation theorems as well as many others take simple forms with no problem of convergence. The rapid decay and infinite differentiability properties of good func- tions lead to the fact that the Fourier transform of a good function is also a good function. Good functions also play an important role in the theory of generalized functions. A good function of bounded support is a special type of good function that also plays an important part in the theory of generalized functions. Good functions also have the following important properties. The sum (or difference) of two good functions is also a good function. The product and convolution of two good functions are good functions. The derivative of a good function is a good function; xn g(x) is a good 744 B Fourier Series, Generalized Functions, and Fourier and Laplace Transforms function for all non-negative integers n whenever g(x) is a good function. A good function belongs to Lp (a class of pth power Lebesgue integrable functions) for every p in 1 ≤ p ≤∞. The integral of a good function is not necessarily good. However, if φ(x) is a good function, then the function g defined for all x by x g(x)= φ(t) dt −∞  ∞ is a good function if and only if −∞ φ(t) dt exists. Good functions are not only continuous, but are also uniformly continuous on R and absolutely continuous on R. However, a good function cannot necessarily be represented by a expansion on every interval. As an example, consider a good function of bounded support exp[−(1 − x2)−1] if |x| < 1, g(x)= 0 if |x|≥1. The function g is infinitely differentiable at x = ±1, as it must be in order to be good. It does not have a Taylor series expansion in every interval because a Taylor expansion based on the various derivatives of g at any point x satisfying |x| > 1 would lead to zero value for all x. For example, exp(−x2), x exp(−x2), (1 + x2)−1 exp(−x2), and sech2x are good functions, while exp(−|x|) is not differentiable at x =0, and the function (1 + x2)−1 is not a good function as it decays too slowly as |x|→∞. A sequence of good functions, {fn(x)}, is called regular if, for any good function g(x), ∞

lim fn(x)g(x) dx (B-2.14) n→∞ −∞

1 exists. For example, fn(x)= n φ(x) is a regular sequence for any good function φ(x), since ∞ 1 ∞ lim fn(x)g(x) dx = lim φ(x)g(x) dx =0. n→∞ −∞ n→∞ n −∞ Two regular sequences of good functions are equivalent if, for any good function g(x), the limit (B-2.14) exists and is the same for each sequence. A generalized function, f(x), is a regular sequence of good functions, and two generalized functions are equal if their defining sequences are equivalent. General- ized functions are, therefore, only defined in terms of their action on integrals of good functions if ∞ ∞

f,g = f(x)g(x) dx = lim fn(x)g(x) dx = lim fn,g (B-2.15) −∞ n→∞ −∞ n→∞ for any good function g(x), where the symbol f, g is used to denote the ac- tion of the generalized function f(x) on the good function g(x),orf, g repre- sents the number that f associates with g.Iff(x) is an ordinary function such that B-2 Generalized Functions (Distributions) 745

(1 + x2)−N f(x) is integrable on (−∞, ∞) for some N, then the generalized func- tion f(x) equivalent to the ordinary function is defined as any sequence of good functions {fn(x)} such that, for any good function g(x), ∞ ∞

lim fn(x)g(x) dx = f(x)g(x) dx. (B-2.16) n→∞ −∞ −∞

For example, the generalized function equivalent to zero can be represented by either { φ(x) } { φ(x) } of the sequences n and n2 . The unit function, I(x), is defined by ∞ ∞ I(x)g(x) dx = g(x) dx (B-2.17) −∞ −∞ for any good function g(x). A very important and useful good function that defines { − x2 } the unit function is exp( 4n ) . Thus, the unit function is the generalized function that is equivalent to the ordinary function f(x)=1. The Heaviside function, H(x), is defined by ∞ ∞ H(x)g(x) dx = g(x) dx. (B-2.18) −∞ 0 The generalized function H(x) is equivalent to the ordinary unit function 0 if x<0, H(x)= (B-2.19) 1 if x>0, and since generalized functions are defined through the action on integrals of good functions, the value of H(x) at x =0does not have significance here. The sign function, sgn(x), is defined by ∞ ∞ 0 sgn(x)g(x) dx = g(x) dx − g(x) dx (B-2.20) −∞ 0 −∞ for any good function g(x). Thus, sgn(x) can be identified with the ordinary function −1 if x<0, sgn(x)= (B-2.21) +1 if x>0.

In fact, sgn(x)=2H(x) − I(x), which can be seen as follows: ∞ ∞ sgn(x)g(x) dx = 2H(x) − I(x) g(x) dx −∞ −∞ ∞ ∞ =2 H(x)g(x) dx − I(x)g(x) dx −∞ −∞ ∞ ∞ =2 g(x) dx − g(x) dx 0 −∞ 746 B Fourier Series, Generalized Functions, and Fourier and Laplace Transforms ∞ 0 = g(x) dx − g(x) dx. 0 −∞ The following results are also true xδ(x)=0, (B-2.22) δ(x − a)=δ(a − x). (B-2.23)

Result (B-2.23) shows that δ(x) is an even function. Clearly, the result x 1 if x>0, δ(y) dy = = H(x) −∞ 0 if x<0 shows that d H(x)=δ(x). (B-2.24) dx The Fourier transform of the Dirac delta function is ∞   1 1 F δ(x) = √ e−ikxδ(x) dx = √ . (B-2.25) 2π 2π −∞

Hence, 1 1 ∞ δ(x)=F −1 √ = eikx dk. (B-2.26) 2π 2π −∞ This is an integral representation of the delta function extensively used in quantum mechanics. Also, (B-2.26) can be rewritten as 1 ∞ δ(k)= eikx dx. (B-2.27) 2π −∞

The Dirac delta function, δ(x), is defined so that for any good function g(x), ∞ δ, g = δ(x)g(x) dx = g(0). (B-2.28) −∞

Derivatives of generalized functions are defined by the derivatives of any equiv- alent sequences of good functions. We can integrate by parts using any member of the sequences and assuming g(x) vanishes at infinity. We can obtain this definition as follows: ∞ f ,g = f (x)g(x) dx −∞ ∞ ∞ −  −  = f(x)g(x) −∞ f(x)g (x) dx = f,g . (B-2.29) −∞

The derivative of a generalized function f is the generalized function f  defined by B-2 Generalized Functions (Distributions) 747 f ,g = − f,g (B-2.30) for any good function g. The differential calculus of generalized functions can easily be developed with locally integrable functions. To every locally integrable function f, there corresponds a generalized function (or distribution) defined by ∞ f,φ = f(x)φ(x) dx, (B-2.31) −∞ where φ is a test function on R → C with bounded support (φ is infinitely differen- tiable and such that its derivatives of all orders exist and are continuous). The derivative of a generalized function f is the generalized function f  defined by f ,φ = − f,φ (B-2.32) for all test functions φ. This definition follows from the fact that ∞ f ,φ = f (x)φ(x) dx −∞ ∞ ∞ −  −  = f(x)φ(x) −∞ f(x)φ (x) dx, = f,φ −∞ which was obtained from integration by parts and using the fact that φ vanishes at infinity. It is easy to check that H(x)=δ(x),for ∞ ∞ H,φ = H(x)φ(x) dx = − H(x)φ(x) dx −∞ −∞ ∞ −  − ∞   = φ (x) dx = φ(x) 0 = φ(0) = δ, φ . 0 Another result is ∞ δ,φ = − δ(x)φ(x) dx = −φ(0). −∞

It is easy to verify that f(x)δ(x)=f(0)δ(x). We next define |x| = xsgn(x) and calculate its derivative as follows. We have d d   d   dx |x| = xsgn(x) = x sgn(x) +sgn(x) dx dx dx dx d   = x 2H(x) − I(x) +sgn(x) dx =2xδ(x)+sgn(x)=sgn(x), (B-2.33) which is true since sgn(x)=2H(x) − I(x) and xδ(x)=0. 748 B Fourier Series, Generalized Functions, and Fourier and Laplace Transforms

Similarly, we can show that d   sgn(x) =2H(x)=2δ(x). (B-2.34) dx Theorem B-2.1. The Fourier transform of a good function is a good function.

Proof. The Fourier transform of a good function f(x) exists and is defined by   1 ∞ F f(x) = F (k)=√ e−ikxf(x) dx. (B-2.35) 2π −∞

Differentiating F (k) n times and integrating N times by parts, we get      − N ∞ N     (n)  ≤  ( 1) √1 −ikx d − n  F (k)  N e N ( ix) f(x) dx (−ik) 2π −∞ dx   ∞  N   ≤ 1 √1  d n  N  N x f(x)  dx. |k| 2π −∞ dx

Evidently, all derivatives tend to zero as fast as |k|−N as |k|→∞for any N>0, and hence F (k) is a good function.

Theorem B-2.2. If f(x) is a good function with the Fourier transform (B-2.35), then the inverse Fourier transform is given by 1 ∞ f(x)=√ eikxF (k) dk. (B-2.36) 2π −∞ Proof. For any >0,wehave   ∞ ∞ 2 1 2 F e− x F (−x) = e−ikx− x eixtf(t) dt dx. 2π −∞ −∞

Since f is a good function, the order of integration can be interchanged to obtain   ∞ ∞ 2 1 2 F e− x F (−x) = f(t) dt e−i(k−t)x− x dx, 2π −∞ −∞ which is, by a similar calculation as that used in Example 1.7.1 in Chapter 1, 1 ∞ (k − t)2 = √ exp − f(t) dt. 4π −∞ 4 Using the fact that 1 ∞ (k − t)2 √ exp − dt =1, 4π −∞ 4 we can write B-2 Generalized Functions (Distributions) 749

 2  F e− x F (−x) − f(k) · 1 1 ∞ (k − t)2 = √ f(t) − f(k) exp − dt. (B-2.37) 4π −∞ 4 Since f is a good function, we have       f(t) − f(k)      ≤ max f (x) . t − k x∈R

It follows from (B-2.37) that

  2   F e− x F (−x) − f(k) 1   ∞ (t − k)2 ≤ √ maxf (x) |t − k| exp − dt x∈R 4 4π −∞   ∞ 1 2 = √ maxf (x)4 |α|e−α dα → 0 4π x∈R −∞

→ t−√k as  0, where α = 2 . Consequently,   1 ∞ f(k)=F F (−x) = √ e−ikxF (−x) dx 2π −∞ 1 ∞ = √ eikxF (x) dx 2π −∞ 1 ∞ ∞ = eikx dx e−iξxf(ξ) dξ. 2π −∞ −∞

Interchanging k with x, this reduces to the celebrated Fourier integral formula 1 ∞ ∞ f(x)= eikx e−ikξf(ξ) dξ dk. (B-2.38) 2π −∞ −∞

Hence, the theorem is proved.

Example B-2.1. The Fourier transform of a constant function c is √ F{c} = 2πcδ(k). (B-2.39)

In the ordinary sense, c ∞ F{c} = √ e−ikx dx 2π −∞ is not a well defined integral; it diverges. However, it can be treated as a generalized { − x2 } function, namely taking c = cI(x) and considering exp( 4n ) as an equivalent sequence to the unit function I(x) gives 750 B Fourier Series, Generalized Functions, and Fourier and Laplace Transforms

Fig. B.9 Graph of the function fa(x).

x2 c ∞ x2 F c exp − = √ exp −ikx − dx, 4n 2π −∞ 4n which, by Example 1.7.1,is √ √ n = c 2n exp −nk2 = 2πc exp −nk2 , √ √ π = 2πcδn(k) → 2πcδ(k)asn →∞,  { } { n − 2 } since δn(k) = π exp( nk ) is a sequence equivalent to the delta function defined by (B-2.4).

Example B-2.2. Show that   1 F e−axH(x) = √ ,a>0. (B-2.40) 2π(ik + a)

We have, by definition,   1 ∞   1 F e−axH(x) = √ exp −x(ik + a) dx = √ . 2π 0 2π(ik + a) Example B-2.3. By considering the function (see Figure B.9)

−ax ax fa(x)=e H(x) − e H(−x),a>0, (B-2.41)

find the Fourier transform of sgn(x). In Figure B.9, the vertical axis (y-axis) repre- sents fa(x) and the horizontal axis represents the x-axis. B-3 Basic Properties of the Fourier Transforms 751

We have, by definition,   1 0   1 ∞   F fa(x) = −√ exp (a − ik)x dx + √ exp −(a + ik)x dx 2π −∞ 2π 0 1 1 1 2 (−ik) = √ − = · . 2π a + ik a − ik π a2 + k2 In the limit as a → 0,f (x) → sgn(x) and then a   2 1 F sgn(x) = · . (B-2.42) π ik

B-3 Basic Properties of the Fourier Transforms

The Fourier transform of f(x), F{f(x)} = F (k), is defined by (1.7.1) and its in- verse F −1{F (k)} = f(x) is defined by (1.7.2). We state the following properties of the Fourier transform: (a) (Shifting)     F f(x − a) = e−iakF f(x) , (B-3.1) (b) (Scaling)   1 k F f(ax) = F , (B-3.2) |a| a (c) (Conjugate)     F f(−x) = F f(x) , (B-3.3) (d) (Translation)   F eiaxf(x) = F (k − a), (B-3.4) (e) (Duality)     F f(x) = F (k), and F F (x) = f(−k), (B-3.5) (f) (Composition) ∞ ∞ F (k)g(k)eikx dk = f(ξ)G(ξ − x) dξ, (B-3.6) −∞ −∞ where     F (k)=F f(ξ) and G(ξ)=F g(k) .

(g) (RiemannÐLebesgue Lemma) If F{f(x)} = F (k), then lim F (k)=0. (B-3.7) |k|→∞ 752 B Fourier Series, Generalized Functions, and Fourier and Laplace Transforms

(h) (Poisson Summation Formula)

∞ √ ∞ 2π nπ f(2πn)= F . (B-3.8) 2a a n=−∞ n=−∞

When a = π,

∞ ∞ 1 f(2πn)=√ F (n). (B-3.9) n=−∞ 2π n=−∞

When 2a =1,formula(B-3.8) becomes ∞ √ ∞ f(n)= 2π F (n). (B-3.10) n=−∞ n=−∞

The convolution (f ∗ g)(x) of two integrable function f(x) and g(x) is defined by (1.7.13) and the convolution Theorem 1.7.1 states that   F (f ∗ g)(x) = F (k)G(k), (B-3.11) or equivalently,   F −1 F (k)G(k) =(f ∗ g)(x). (B-3.12)

Proof. We have   1 ∞ F (f ∗ g)(x) = √ e−ikx (f ∗ g)(x) dx, 2π −∞ which is, by definition of the convolution, 1 ∞ ∞ = e−ikx f(x − ξ)g(ξ) dξ dx 2π −∞ −∞ 1 ∞ ∞ = e−ikξg(ξ) dξ e−ik(x−ξ)f(x − ξ) dξ 2π −∞ −∞ 1 ∞ ∞ = e−ikξg(ξ) dξ e−ikηf(η) dη, (x − ξ = η) 2π −∞ −∞ = F (k)G(k).

This completes the proof. It is often convenient to delete the factor √1 in the definition of convolution 2π (1.7.13) as this factor does not have any effect on the properties of the convolution. The convolution has the following algebraic properties:

f ∗ g = g ∗ f (Commutative), (B-3.13) f ∗ (g ∗ h)=(f ∗ g) ∗ h (Associative), (B-3.14) B-3 Basic Properties of the Fourier Transforms 753

(αf + βg) ∗ h = α(f ∗ h)+β(g ∗ h) (Distributive), (B-3.15) f ∗ δ = f = δ ∗ f (Identity), (B-3.16) where α and β are any two constants, and δ(x) is the Dirac delta function. ∗ ∗ (f g)(x)=(f g)(x), (B-3.17) x (f ∗ g)(x) = xf(x) ∗ g(x)+ f(x) ∗ xg(x) , (B-3.18) 1 f(ax + b) ∗ g(ax + c)= h(ax + b + c), (B-3.19) |a| where h(x)=(f ∗ g)(x). In particular,

f(x + b) ∗ g(x + c)=h(x + b + c). (B-3.20)

If a1, a2, b1, b2 are any constants and f1 ∗ g1, f1 ∗ g2, f2 ∗ g1, and f2 ∗ g2 exist, then

(a1f1 + a2f2) ∗ (b1g1 + b2g2)=a1b1(f1 ∗ g1)+a1b2(f1 ∗ g2)

+ a2b1(f2 ∗ g1)+a2b2(f2 ∗ g2). (B-3.21)

To prove (B-3.14), we have ∞ f ∗ (g ∗ h) (x)= f(x − ξ)(g ∗ h)(ξ) dξ −∞ ∞ ∞ = f(x − ξ) dξ g(ξ − t)h(t) dt −∞ −∞ ∞ ∞ = f(x − ξ)g(ξ − t) dξ h(t) dt, (ξ − t = η) −∞ −∞ ∞ ∞ = f(x − t − η)g(η) dη h(t) dt, −∞ −∞ ∞ = (f ∗ g)(x − t)h(t) dt = (f ∗ g) ∗ h (x). −∞

To prove (B-3.18), we apply the Fourier transform to the left hand side so that   ∞ F x(f ∗ g)(x) = e−ikxx(f ∗ g)(x) dx −∞ ∞ ∞ = xe−ikx dx f(x − ξ)g(ξ) dξ −∞ −∞ ∞ ∞ = (x − ξ + ξ)e−ikx dx f(x − ξ)g(ξ) dξ −∞ −∞ ∞ ∞ = (x − ξ)e−ikx dx f(x − ξ)g(ξ) dξ −∞ −∞ 754 B Fourier Series, Generalized Functions, and Fourier and Laplace Transforms ∞ ∞ + e−ikx dx f(x − ξ)ξg(ξ) dξ −∞ −∞ ∞ ∞ = e−ikx dx (x − ξ)f(x − ξ)g(ξ) dξ −∞ −∞ ∞ ∞ + e−ikx dx f(x − ξ)ξg(ξ) dξ −∞ −∞ ∞ = e−ikx xf(x) ∗ g(x) dx −∞ ∞ + e−ikx f(x) ∗ xg(x) dx −∞ = F xf(x) ∗ g(x) + F f(x) ∗ xg(x) . We next apply F −1 to obtain result (B-3.18). To prove (B-3.19), we apply the Fourier transform to its left-hand side and use the convolution theorem so that   F f(ax + b) ∗ g(ax + c)     = F f(ax + b) F g(ax + c) 1 ikb k 1 ikc k = exp F · exp G |a| a a |a| a a 1 ik(b + c) k = · exp H , since H(k)=F (k)G(k) |a|2 a a 1   = F h(ax + b + c) . |a| We next apply F −1 to both sides to obtain (B-3.19). Theorem B-3.1 (General Parseval’s Relation). If F{f(x)} = F (k) and F{g(x)} = G(k), then ∞ ∞ f(x)g(x) dx = F (k)G(k) dk. (B-3.22) −∞ −∞ Proof. We proceed formally to obtain ∞ 1 ∞ ∞ ∞ f(x)g(x) dx = dx eikxF (k) dk e−ilxG(l) dl 2π −∞ −∞ −∞ −∞ ∞ ∞ 1 ∞ = F (k) dk G(l) dl ei(k−l)x dx −∞ −∞ 2π −∞ ∞ ∞ = F (k) dk G(l)δ(k − l) dl −∞ −∞ ∞ = F (k)G(k) dk. −∞ Thus, the proof is complete. B-3 Basic Properties of the Fourier Transforms 755

In particular, if f(x)=g(x), then ∞ ∞ f(x)f(x) dx = F (k)F (k) dk, −∞ −∞ or equivalently, ∞ ∞ |f(x)|2 dx = |F (k)|2 dk. (B-3.23) −∞ −∞

This is well known as the Parseval relation. The function space L2(R) of all complex-valued Lebesgue square integrable functions with the inner product (f,g) defined by ∞ (f,g)= f(x)g(x) dx (B-3.24) −∞ is a complex Hilbert space with the norm f2 defined by

∞ 1    2  2 f2 = (f,f)= f(x) dx . (B-3.25) −∞

In terms of this norm, the Parseval relation (B-3.23) takes the form

f2 = F 2 = Ff2. (B-3.26)

This means that the Fourier transform is a unitary transformation on the Schwartz space S(R) which consists of the set of all infinitely differentiable functions f so that f and all its derivatives are rapidly decreasing in the sense that   sup |x|mf (n)(x) < ∞ for every m, n ≥ 0. x∈R

Physically, the quantity f2 is a measure of energy and F 2 represents the power spectrum of f. The following examples of the Fourier transforms are useful in applied mathe- matics (see Debnath and Bhatta 2007). If χ[−a,a](x) is the characteristic function of [−a, a] defined by 1 if |x| a, then   2 sin ak F χ − (x) = F (k)= . (B-3.28) [ a,a] a π k

If |x| |x| f(x)= 1 − H 1 − , (B-3.29) a a 756 B Fourier Series, Generalized Functions, and Fourier and Laplace Transforms then −   a ak 2 ak F f(x) = √ sin2 . (B-3.30) 2π 2 2 The following analytic properties of the convolution also hold: d (f ∗ g)(x) = f  ∗ g (x)= f ∗ g (x), (B-3.31) dx 2 d ∗  ∗   ∗ 2 (f g)(x) = f g (x)= f g (x), (B-3.32) dx (f ∗ g)(m+n)(x)= f (m) ∗ g(n) (x), (B-3.33) ∞ ∞ ∞ (f ∗ g)(x) dx = f(ξ) dξ g(η) dη, (B-3.34) −∞ −∞ −∞ b x−a (f ∗ χ[a,b])(x)= f(x − ξ) dξ = f(η) dη, (B-3.35) a x−b   1 ∞ F f(x)g(x) =(F ∗ G)(k)=√ F (k − ξ)G(ξ) dξ, (B-3.36) 2π −∞ f(x)=(f ∗ δ)(x)=F −1 F (k) . (B-3.37)

To prove (B-3.31), we have d ∞ ∞ (f ∗ g)(x)= f(x − ξ)g(ξ) dξ = f (x − ξ)g(ξ) dξ dx −∞ −∞ = f  ∗ g (x).

To prove (B-3.33), we first apply the Fourier transform to the left-hand side and then use the convolution Theorem 1.7.1 so that     F (f ∗ g)m+n(x) =(ik)m+nF (f ∗ g)(x) =(ik)m+nF (k)G(k)     = (ik)mF (k) (ik)nG(k) = F f (m)(x) F g(n)(x)   = F f (m) ∗ g(n) (x) .

The use of the inverse Fourier transform proves the result (B-3.33). To prove that the integral of the convolution satisfies (B-3.34), we have ∞ ∞ ∞ (f ∗ g)(x) dx = f(x − ξ)g(ξ) dξ dx −∞ −∞ −∞ ∞ ∞ = g(ξ) f(x − ξ) dξ dξ, (x − ξ = η) −∞ −∞ ∞ ∞ = g(ξ) dξ f(η) dη. −∞ −∞

We next prove (B-3.36) which is a dual result of (B-3.11) as follows. We have B-3 Basic Properties of the Fourier Transforms 757   1 ∞ F f(x)g(x) = √ e−ikxf(x)g(x) dx, 2π −∞ which is, by replacing g(x) by its inverse Fourier transform formula, ∞ ∞ 1 1 = √ e−ikxf(x) dx√ eik xG k dk 2π −∞ 2π −∞ ∞ ∞ 1 1 = √ G k dk · √ e−ix(k−k )f(x) dx 2π −∞ 2π −∞ 1 ∞ = √ F k − k G k dk 2π −∞ =(F ∗ G)(k).

Thus, the results (B-3.11) and (B-3.36) represent a duality since the Fourier trans- form of the convolution product of two functions is equal to the ordinary product of their Fourier transforms, and the Fourier transform of the ordinary product of two functions is equal to the convolution product of their Fourier transforms. If the diffusion kernel function Gt(x) is 1 x2 Gt(x)=√ exp − , (B-3.38) 4πκt 4κt then

(Gt ∗ Gs)(x)=Gt+s(x). (B-3.39) To prove (B-3.39), we apply the Fourier transform without the factor √1 .This  2π F{ − 2 } π − k2 means that exp( ax ) = a exp( 4a ). Consequently,       F (G ∗ G )(x) = F G (x) F G (x) t s t s =exp −κk2t exp −κk2s   2 =exp−k κ(t + s) = F Gt+s(x) . The inverse Fourier transform gives the result. 1 −| | ∗ If g(x)= 2a H(a x ), then (f g)(x) is the average value of f(x) on [x − a, x + a]. Using the value of g(x) gives ∞ 1 a (f ∗ g)(x)= f(x − ξ)g(ξ) dξ = f(x − ξ) dξ −∞ 2a − a 1 x+a = f(η) dη. 2a x−a We close this section by adding an application of the convolution to the solu- tion of the wave equation in Example 1.7.2. The solution of the Fourier transform U(k, t)=F{u(x, t)} of the transformed wave equation (1.7.17) is given by 758 B Fourier Series, Generalized Functions, and Fourier and Laplace Transforms

U(k, t)=A cos ckt + B sin ckt, (B-3.40) where dU U(k, 0) = F (k)and = G(k). (B-3.41) dk t=0 Consequently, the use of (B-3.41)gives G(k) U(k, t)=F (k) cos ckt + sin ckt. (B-3.42) ck Using the results   2 F δ(x − ct)+δ(x + ct) = cos(ckt), π     2 sin ckt F χ − (x) = F H ct −|x| = , [ ct,ct] π k applying the inverse Fourier transform to (B-3.42) gives the solution   1 sin ckt u(x, t)=F −1 F (k) cos ckt + F −1 G(k) . c k Application of the convolution Theorem 1.7.1 gives the solution π u(x, t)=f(x) ∗ δ(x − ct)+δ(x + ct) 2 1 π + g(x) ∗ χ − (x) (B-3.43) c 2 [ ct,ct] 1 ∞   = f(x − ξ) δ(ξ − ct)+δ(ξ + ct) dξ 2 −∞ 1 ∞ + g(x − ξ)χ[−ct,ct](ξ) dξ 2c −∞ 1 1 ct = f(x − ct)+f(x + ct) + g(x − ξ) dξ, (x − ξ = α) 2 2c − ct 1 1 x+ct = f(x − ct)+f(x + ct) + g(α) dα. (B-3.44) 2 2c x−ct This is identical with the d’Alembert solution of the wave equation.

B-4 Basic Properties of Laplace Transforms

The Laplace transform of a continuous or piecewise continuous function f(t) for t>0 is denoted by L{f(t)} = f(s), and it defined by (1.9.1) and the inverse B-4 Basic Properties of Laplace Transforms 759

Laplace transform, L−1{f(s)} = f(t), is defined by (1.9.2). In this section, some basic properties of the Laplace transform are presented. For more information, the reader is referred to Debnath and Bhatta (2007):   L eatf(t) = f(s − a)(shifting), (B-4.1)   1 b s L f(at + b) = exp s f (scaling), (B-4.2) |a| a a   dn L tnf(t) =(−1)n f(s),n≥ 1, (B-4.3) dsn f(t) ∞ L = f(s) ds, (B-4.4) t s t f(s) L f(τ) dτ = . (B-4.5) 0 s

If L{f(t)} = f(s), then f(s) t L−1 = f(τ) dτ, (B-4.6) s 0 t t1 t L−1 f(s) − 2 = f(τ) dτ = (t τ)f(τ) dτ. (B-4.7) s 0 0 0 In general, t t1 t2 tn−1 −1 f(s) L = ··· f(τ) dτ dt ··· dt − sn 1 n 1 0 0 0 0 t (t − τ)n−1 = − f(τ) dτ. (B-4.8) 0 (n 1)! If f(t) is a periodic function with period T and L{f(t)} exists, then   T −1 L f(t) = 1 − e−sT e−stf(t) dt. (B-4.9) 0 For example, if f(t) is a square wave function with period 2a defined by

f(t)=H(t) − 2H(t − a)+2H(t − 2a) − 2H(t − 3a)+··· , (B-4.10) then the Laplace transform of f(t) is 1 as f(s)= tanh . (B-4.11) s 2

Clearly, the graph of f(t) shows that f(t)=1if 0

Theorem B-4.1 (Convolution Theorem). If f(t) ∗ g(t) is the Laplace Convolution of f(t) and g(t) defined by t f(t) ∗ g(t)=(f ∗ g)(t)= f(t − τ)g(τ) dτ, (B-4.12) 0 and if L{f(t)} = f(s) and L{g(t)} = g(s), then       L f(t) ∗ g(t) = L f(t) L g(t) = f(s)g(s), (B-4.13) or equivalently,   L−1 f(s)g(s) = f(t) ∗ g(t). (B-4.14)

To prove the convolution theorem, we have   ∞ t L f(t) ∗ g(t) = e−st f(t − τ)g(τ) dτ dt, 0 0 ∞ t = e−s(t−τ)f(t − τ) · e−sτ g(τ) dτ dt, 0 0 which is, reversing the order of integration, ∞ ∞ = e−s(t−τ)f(t − τ) dt e−sτ g(τ) dτ, 0∞ τ ∞ = e−sxf(x) dx e−sτ g(τ) dτ, (t − τ = x) 0    0 = L f(t) L g(t) = f(s)g(s).

In case of the Laplace transform, we proved the convolution theorem (B-4.12) and now we prove the dual result   1 L f(t)g(t) = f¯(s) ∗ g¯(s), (B-4.15) 2πi where ∞ ∞ 1 c1+i 1 c2+i f(t)=√ estf¯(s) ds, g(t)=√ estg¯(s) ds, 2πi c1−i∞ 2πi c2−i∞ c1,c2 > 0. B-4 Basic Properties of Laplace Transforms 761

We have, by definition and replacing g(t) by its inverse Laplace transform,   ∞ L f(t)g(t) = e−stf(t)g(t) dt 0 ∞ ∞ 1 c2+i = e−stf(t) dt · eztg¯(z) dz 0 2πi c2−i∞ ∞ ∞ 1 c2+i = g¯(z) dz e−t(s−z)f(t) dt 2πi − ∞ c2 i 0 c2+i∞ 1 ¯ = f(s − z)¯g(z) dz, Re(s − z) ≥ c1 2πi c2−i∞ 1 = f¯(s) ∗ g¯(s), Re s ≥ c + c . 2πi 1 2 Like the above duality property for the Fourier transform, results (B-4.12) and (B-4.16) represent the duality property for the Laplace transform. The following properties of the Laplace convolution (B-4.12) also hold:     L (f ∗ g)(t) = L f  ∗ g (t) + f(0)g(s)=sf(s)g(s), (B-4.16) where the prime denotes the derivative with respect to t. Similarly,     L (f ∗ g)(t) = L f ∗ g (t) + g(0)f(s)=sf(s)g(s). (B-4.17)

Results similar to (B-4.16)Ð(B-4.17) can be proved for the second and the higher derivatives of (f ∗ g)(t). The Duhamel formulas follow from (B-4.16) and (B-4.17)as   t L−1 sf(s)g(s) = f(0)g(t)+ g(t − τ)f (τ) dτ, (B-4.18) 0 or equivalently,   t L−1 sf(s)g(s) = g(0)f(t)+ f(t − τ)g(τ) dτ. (B-4.19) 0

p−1 −t If fp(t)=t e , t>0, then direct differentiation gives  − − fp(t)=(p 1)fp−1(t) fp(t). (B-4.20)

It also follows that fp(t) ∗ fq(t) exists for all p, q>0 and satisfies the following identities ∗ (fp fq)(t)=B(p, q)fp+q(t) (B-4.21)  (f ∗ f ) (t)=B(p, q) (p + q − 1)f − (t) − f (t) (B-4.22) p q p+q 1 p+q ∗   ∗ − − ∗ (fp fq) (t)=fp fq(t)= (p 1)fp−1(t) fp(t) fq(t), (B-4.23)

=(p − 1)B(p − 1,q)fp+q−1(t) − B(p, q)fp+q(t), (B-4.24) where B(p, q) are the Beta function of p and q. 762 B Fourier Series, Generalized Functions, and Fourier and Laplace Transforms

To prove (B-4.21), we have t (fp ∗ fq)(t)= fp(t − τ)fq(τ) dτ 0 t = (t − τ)p−1e−(t−τ)τ q−1e−τ dτ, (t − τ = tu) 0 1 = e−ttp+q−1 up−1(1 − u)q−1 du, 0 −t p+q−1 = B(p, q)e t = B(p, q)fp+q(t).

Then ∗   − − (fp fq) (t)=B(p, q)fp+q(t)=B(p, q) (p + q 1)fp+q−1(t) fp+q(t) .

The Laplace convolution (B-4.12) also satisfies the properties similar to (B-3.13). In particular,   L ∗ ∗···∗ ··· (f1 f2 fn)(t) = f 1(s)f 2(s) f n(s). (B-4.25)    n L f ∗n(t) = f(s) , (B-4.26) where f ∗n is the nth convolution product defined by

f ∗n(t)=(f ∗ f ∗···∗f)(t). (B-4.27)

In general, mathematical operations such as addition, f(x)+g(x), multiplication, f(x)g(x), and composition, f(g(x)), for two functions f(x) and g(x) form a new function or an ordinary output. On the other hand, the convolution f(x) ∗ g(x) rep- resents the integral output of two functions f and g, and it plays a central role in the subjects, such as Fourier series, Fourier transforms, number theory, harmonic anal- ysis, probability theory, and almost any . We have already stated the convolution Theorem 1.7.1 for the Fourier transform, and the convolution The- orem B-4.1 for the Laplace transform of two functions. Obviously, these theorems can be generalized to obtain a relation between the n-fold convolution of n functions and the product of the transforms of these functions. We next establish a nice connection between the Weierstrass transform and the two-sided Laplace transform of f(ξ) on −∞ <ξ<∞ defined by   ∞ L f(ξ) = f(s)= e−sξf(ξ) dξ (B-4.28) −∞ which is the Fourier transform of f(ξ) for s = ik so that   √   √ L f(ξ) = f(s)= 2πF f(ξ) (ik)= 2πF(ik). (B-4.29)

− ξ2 Thus, the two-sided Laplace transform of f(ξ)=exp( 4a ) is given by B-4 Basic Properties of Laplace Transforms 763 2 √  2  ξ − ξ L exp − = 2πF e 4a (ik = s) 4a √ = 4πa exp as2 . (B-4.30)

In Example 1.7.6 in Chapter 1, the solution of the Cauchy problem for the diffu- sion equation is given by ∞ u(x, t)= f(ξ)G(x − ξ) dξ = f(x) ∗ G(x), (B-4.31) −∞ where the diffusion kernel G(x) is given by 1 x2 G(x)=√ exp − . (B-4.32) 4πκt 4κt The above results (B-4.31)Ð(B-4.32) are used to introduce the Weierstrass trans- form of f(ξ) with positive parameter t in the form   ∞ W f(ξ) (x)=F (x)= f(ξ)G(x − ξ) dξ, (B-4.33) −∞ where G(x), or, more precisely, Gt(x), is the kernel of the Weierstrass transform defined by (B-4.33). We next expand the kernel Gt(x − ξ) to express the Weierstrass transform (B-4.33)off(ξ) in terms of the two-sided Laplace transform (B-4.28) so that (B-4.33) reduces to F (x)=W f(ξ) (x) 2 exp(− x ) ∞ x ξ2 = √ 4κt exp − − ξ exp − f(ξ) dξ 4πκt −∞ 2κt 4κt 2 exp(− x ) ξ2 x = √ 4κt L exp − f(ξ) − , (B-4.34) 4πκt 4κt 2κt where L is the two-sided Laplace transform (B-4.28). We use (B-4.32) with κt = a and (B-4.30) to derive the inverse Weierstrass transform so that ∞ 2 2 1 ξ eas = √ e−sξ exp − dξ. (B-4.35) 4πa −∞ 4a

d Replacing s by the operator D = dx and using the fact that ∞ (−ξ)kDkf(x) e−ξDf(x)= = f(x − ξ), (B-4.36) k! k=0 equation (B-4.35) becomes 764 B Fourier Series, Generalized Functions, and Fourier and Laplace Transforms ∞ 2 2 1 ξ eaD f(x)=√ e−ξDf(x) exp − dξ 4πa −∞ 4a 1 ∞ ξ2 = √ f(x − ξ)exp − dξ 4πa −∞ 4a 1 ∞ (x − ξ)2 = √ exp − f(ξ) dξ 4πa −∞ 4a ∞ = G(x − ξ)f(ξ) dξ = F (x). (B-4.37) −∞

This gives the formula for the inverse Weierstrass transform

2 f(x)=e−aD F (x),x∈ R. (B-4.38)

The celebrated RiemannÐLiouville fractional integral of order α of a function f(t) is usually defined by t −α −α 1 − α−1 D f(t)=0 Dt f(t)= (t x) f(x) dx, Re α>0. (B-4.39) Γ (α) 0 Clearly, D−α is a linear integral operator, and (B-4.39) can be expressed in terms of the convolution product

D−αf(t)=f(t) ∗ g(t), (B-4.40)

− tα 1 L{ } −α where g(t)= Γ (α) and g(s)= g(t) = s . Using the Laplace convolution theorem to (B-4.40)gives         L D−αf(t) = L f(t) ∗ g(t) = L f(t) L g(t) = s−αf(s), (B-4.41) or equivalently,   D−αf(t)=L−1 s−αf(s) . (B-4.42)

This can be used to evaluate the fractional integral of a given function f(t).For example, if f(t)=tβ, then Γ (β +1) Γ (β +1) D−αtβ = L−1 = tα+β. (B-4.43) sα+β+1 Γ (α + β +1)

Another consequence of (B-4.39)forthefractional derivative, D−αf(t), is that it can be defined as the solution φ(t) of the integral equation

D−αφ(t)=f(t) (B-4.44) so that its Laplace transform gives B-4 Basic Properties of Laplace Transforms 765

φ(s)=sαf(s). (B-4.45)

Consequently, the inverse Laplace transform yields   φ(t)=D−αf(t)=L−1 sαf(s) (B-4.46) −α−1 t t ∗ 1 − −α−1 = − f(t)= − (t x) f(x) dx. (B-4.47) Γ ( α) Γ ( α) 0 This is known as the Cauchy integral formula for the fractional derivative of f(t). In fact, (B-4.46) can often be used to obtain the fractional derivative of f(t).For example, if f(t)=tβ then Γ (β +1) Γ (β +1) Dαtβ = L−1 = t(β−α). (B-4.48) sβ−α+1 Γ (β − α +1

In general, the Laplace convolution integral equation is of the form t f(t)=h(t)+λ g(t − τ)f(τ) dτ, (B-4.49) 0 where λ is a given constant parameter, f(t) is the unknown function, h(t) and g(t) are given functions. Applications of the Laplace transform to (B-4.49) combined with the convolution theorem yields

h(s) f(s)= . (B-4.50) 1 − λg(s)

The inverse Laplace transform gives the formal solution of f(t) in the form h(s) f(t)=L−1 . (B-4.51) 1 − λg(s)

For example, the Abel integral equation of the first kind in the form t (t − τ)α−1f(τ) dτ = g(t), (B-4.52) 0 or equivalently,

tα−1 ∗ f(t)=g(t), (B-4.53) can be solved by application of the Laplace transform so that 1 1 f(s)= sαg(s)= s sα−1g(s) . (B-4.54) Γ (α) Γ (α)

This leads to the solution 766 B Fourier Series, Generalized Functions, and Fourier and Laplace Transforms t 1 1 d − −α f(t)= − (t τ) g(τ) dτ. (B-4.55) Γ (α) Γ (1 α) dt 0 The Abel integral equation of the second kind is given by λ t f(t)+ (t − τ)α−1f(τ) dτ = g(t),α>0, (B-4.56) Γ (α) 0 where λ is a real or complex parameter and g(t) is a given function. Application of the Laplace transform to (B-4.56) leads to the solution sα sα−1 f(s)= g(s)= s · · g(s) , (B-4.57) sα + λ sα + λ so that the inverse Laplace transform gives the solution of (B-4.56)as t d α f(t)= Eα,1 −λτ g(t − τ) dτ, (B-4.58) dt 0 where the Mittag-Leffler function, Eα,β(z), is given by

∞ zn E (z)= ,α,β>0. (B-4.59) α,β Γ (nα + β) n=0 C Answers and Hints to Selected Exercises

1.15 Exercises

2 − dy 1. (a) A =4, B =5, C =1, B 4AC =9> 0. Hyperbolic, dx = √ B± B2−4AC 1 − 1 2A =1, 4 . Integrating gives y x = c1 and y = 4 x + c2, 1 − 8 − − 1 − − 8 uξη = 3 (uη 3 ); α = ξ + η, β = ξ η, uαα uββ = 3 (uα uβ 3 ). − 2 − dy − 1 − (b) A =2, B = 3, C =1, B 4AC =1> 0. Hyperbolic, dx = 2 , 1.

Integrating gives x +2y = c1, x + y = c2; uξη = η − ξ. 2 − 2 − 1 (c) Hyperbolic, ξ = y x = c1, η = y x = c2; uξη + η uξ =0. (d) Hyperbolic for y<0 and elliptic for y>0. Parabolic for y =0. √ √ − − − − 1 − 2 For the hyperbolic case, ξ = x +2 y, η = x 2 y, y = 4 (x c) , and 1 − uξη = 2(ξ−η) (uη uξ). √ 1 For the elliptic case, α = x, β =2 y; uαα + uββ = β uβ. (e) Elliptic for y>e−x, parabolic for y = e−x, and hyperbolic for y

(f) Hyperbolic for x<0 and elliptic for x>0. 3 ± − 3/2 − ± 2 − 3/2 For x<0; ξ, η = 2 y ( x) , (y c)= 3 ( x) (cubic parabolas). 1 − uξη = 6(ξ−η) (uξ uη). 3 − 3/2 1 For x>0, α = 2 y, β = x ; uαα + uββ +(3β )uβ =0, where α and β √ − √1 satisfy the Beltrami equations βx = xαy, βy = x αx. (g) Hyperbolic for |x| < 2|y|, elliptic for |x| > 2|y|, and parabolic for |x| =2|y|.

L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers, DOI 10.1007/978-0-8176-8265-1, c Springer Science+Business Media, LLC 2012 768 C Answers and Hints to Selected Exercises

(h) Hyperbolic in the first and third quadrants, elliptic in the second and fourth

quadrants.

(i) Elliptic for |x| a.

2 2 (j) ξ = y , η = x ; 2ξη(uξξ + uηη)+ηuξ + ξuη =0.

dy 2. (d) Elliptic for all x and y. In this case, the characteristics equations are dx = ±i sech2 x so that the characteristics are y ∓ i tanh x = constant so that α = y,

β = tanh x. Thus, the canonical form of the given equation is uαα + uββ =

2 −1 2β(1 − β ) uβ. dy ± 2 (f) Hyperbolic for all x and y. The characteristic equations are dx = sech x so that the characteristics are y ∓ tanh x = const., ξ = y + tanh x, and η =

y − tanh x. Thus, the canonical form of the given equation is uξη =(η − ξ) ×

2 −1 (uξ − uη){4 − (ξ − η) } .

dy 2 (g) dx = cosec y; ξ = x + cos y, η = y; uηη =sin η cos ηuξ. 2 − 2 2 − 2 2 4 4. (a) A = u , B =2uxuy, C = u . Hence, B 4AC =4(uxuy + u ) > 0 for all u(x, y). Hyperbolic for all u(x, y).  |∇ | 2 2 − 2 − − 2 (b) u = ux + uy. A =1 ux, B = 2uxuy, C =1 uy. Hence, 2 − − 2 2 − 2 | | B 4AC = 4+4(ux + uy)= 4+4(Δu) > 0, =0,or< 0 for Δu > 1, =1,or,< 1. nπ − 2 nπx 5. αn =( ), n =0, 1, 2, 3,...; un(x, t)=an exp( αnkt) cos(  ), and ! ∞ nπx u(x, 0) = a0 + n=1an cos(  ) is the cosine Fourier series, where a0 =   1  2  nπx  0 f(x) dx and an =  0 f(x) cos(  ) dx. 6. For λ = −α2, u(x, y)=(A cos αx + B sin αx)(C cosh αy + D sinh αy), nπ C − A =0, and α = a , n =1, 2, 3,...; D = tanh αb, and u(x, y)= !  ∞ nπx nπ(b−y) nπb −1 2 a × n=1an sin( a )sinh a , where an =(sinha ) ( a ) 0 f(x) nπx sin( a ) dx. 7. Hint: We assume u(x, t)=X(x)T (t) =0 and substitute in the given equation

 2  − 1 T X 4 to obtain XT (t)+c TX (x)=0, or equivalently, c2 T = X = λ . 1.15 Exercises 769

We have X = λ4X, T  = −λ4c2T , where λ4 is a separation constant. Thus,

X(x)=A cosh λx + B cos λx + C sinh λx + D sin λx,

T (t)=E cos(λ2ct)+F sin(λ2ct),B= −A, D = −C,

X(x)=A(cosh λx − cos λx)+C(sinh λx − sin λx).

From conditions X( )=0=X( ), we obtain        cos λ − cos λ sinh α − sin α    =0 =⇒ cos λ cosh λ =1.  sinh λ +sinλ cosh α − cos α 

8. We seek a nontrivial separable solution u(x, t)=X(x)T (t) so that sin α =0, ! nπ  ∞ { nπ 2 } α =(  ), n =1, 2, 3, 4,...; sinh α =0. u(x, t)= n=1[an cos (  ) ct + { nπ 2 } nπx bn sin (  ) ct ]sin(  ). 4 − 4 9. an =0for all even n, an =(n2π2 ), n =1, 5, 9,..., and an = ( n2π2 ), n =3, 7, 11,.... ! ∞ − n2π2κt nπx Thus, u(x, t)= n=1an exp( 2 )sin(  ). 11. Application of the Fourier transform, F{u(x, t)} = U(k, t), to the problem

d2U 4 gives dt2 + k U =0, U(k, 0) = F (k), and Ut(k, 0) = 0. Thus, the solu- tion of the transformed system is U(k, t)=F (k) cos(k2t). Consequently, the inverse Fourier transform together with the Fourier convolution yields the so-  ∞ lution u(x, t)=F −1{F (k) cos(k2t)} = √1 f(x − ξ)h(ξ,t) dξ, where 2π −∞ 2 F −1{cos(k2t)} = √1 cos( x − π )=h(x, t). 2t 4t 4 12. Apply the joint Fourier and Laplace transforms (1.9.12) to obtain U(k, s)=

(s+α)F (k)+G(k) (s2+sα+c2k2) . Application of the joint inverse transforms combined with the convolution of the Fourier transform gives the solution for u(x, t).  ∞ √1 { − } 13. u(x, t)= −∞ A(k)exp[i(kx + ωt)] + B(k)exp[i(kx ωt)] dk, where √ 2π 2 2 2 1 1 1 − ω = c k + a , and A(k)= 2 [F (k)+ iω G(k)], and B(k)= 2 [F (k) 1 iω G(k)]. 770 C Answers and Hints to Selected Exercises

  2 2 15. Hint: F −1 cos (atk2) = √1 [cos( x ) ± sin( x )]. sin 2 at 4at 4at 17.

P ∞ sin ωt φ(x, z, t)=− exp ikx + |k|z dk, ω2 = g|k|, 2π ω −∞ √ P ∞ Pt g gt2 η(x, t)= cos ωtexp(ikx) dk ≈ √ · cos 3/2 2π −∞ 2 2π x 4x for gt2  4x.

19.

iP exp(εt) ∞ (Uk − iε)exp(|k|z + ikx) φ(x, z, t)= dk, 2πρ (Uk − iε)2 − g|k| −∞ P exp(εt) ∞ |k| exp(ikx) dk η(x, t)= 2 . 2πρ −∞ (Uk − iε) − g|k|

23. Using the Fourier transform, U(k, y)=F{u(x, y)}, gives the solution of the

transformed system in the form U(k, y)=F (k) cos(k2y). The inverse Fourier

transform together with the Fourier convolution gives the solution u(x, y)=

 ∞ 2 √ 1 − ξ − π 4πy −∞ f(x ξ) cos( 4y 4 ) dξ. 24.

∞ ∞ 1  1  u(x, y, t)= F (k, ) cos c k2 + 2 2 t 2π −∞ −∞   × exp i(kx + y) dk d .

25. Application of the joint Laplace and Fourier transform gives U¯(k, s)=

(s + κk2)−1Q¯(k, s). The use of the inverse Laplace transform combined with

the convolution theorem yields

− 2 ∗ U(k, t)=exp κk t Q(k, t) t = exp −κk2(t − τ) Q(k, τ) dτ. 0 1.15 Exercises 771

Application of the inverse Fourier transform and its convolution theorem gives

t   u(x, t)= F −1 P (k, t − τ)Q(k, τ) dτ 0 t = p(x, t − τ) ∗ q(x, τ) dτ 0 1 t ∞ = √ p(x − ξ,t − τ)q(ξ,τ) dξ dτ 2π −∞ 0 t ∞ 2 1 − 1 (x − ξ) √ − 2 − = (t τ) dτ q(ξ,τ)exp − dξ, 4πκ 0 −∞ 4κ(t τ)

2 F −1{ − 2 } √ 1 − x where p(x, τ)= exp( κk τ) = exp( 4κτ ).  2κτ 1 ∞ { G(k) } ikt 2 2 27. u(x, t)= 2π −∞ F (k) cos(xα)+ α sin(xα) e dk, where α = α (k)= 1 2 − − c2 (k iak b).

28. Hint: Seek a solution of the form ψ(x, y, t)=φn(x, t)sin(nπy) with ψ0(x, y)=

2 ∂ ∂ φn − 2 ψ0n(x)sin(nπy), so that φn(x, t) satisfies the equation ∂t[ ∂x2 α φn]+

∂φn 2 2 2 β ∂x =0, where α =(nπ) +κ . Apply the Fourier transform of φn(x, t) with  ∞ respect to x, and use Ψ (k, 0) = F{ψ (x)}. φ (x, t)= √1 Ψ (k, 0) × n 0n n 2π −∞ n exp[i{kx − ω(k)t}] dk, where ω(k)=−βk(k2 + α2)−1.

29. Divide the first equation by L and the second equation by C to obtain the third R − 1 G − 1 and the fourth equations It + L I = L Vx, and Vt + C V = C Ix. Differentiate

the third equation with respect to time t and replace Vt and Vx on the right- hand side to derive a second order equation telegraph equation for I in the form − 2 2 −1 R G Itt c Ixx +(p + q)It + pqI =0, where c =(LC) , p = L , and q = C . Similar calculation can be used to obtain the same equation for V . Thus, u = I

or V satisfies the above telegraph equation with coefficients c2, p, and q, or with

coefficients c2, a, and b.

− − 30. (a) V (x, t)=V erfc( √x ), κ = a 1 =(RC) 1. I(x, t)= Vo √ 1 × 0 2 κt R πκt − x2 exp( 4κt ). √   √   1 −x b { x a bt } 1 −x b { x a − bt } (b) V (x, t)= 2 e erfc 2 t + a + 2 e erfc 2 t a . 772 C Answers and Hints to Selected Exercises

− kx − x − x 31. V (x, t)=V0 exp( c )f(t c )H(t c ). 32. u(x, t)=x cos ωt. k − πct πx 33. u(x, t)= (πc)2 [1 cos( a )] sin( a ). ω 1 z 34. u(z,t)U exp[iωt − ( ) 2 (1 + i)z], u(z,t)=Uerfc( √ ). 2ν 2 νt 35. u(z,t)=Ut[(1 + 2ζ2)erfc(ζ) − √2ζ exp(−ζ2)], ζ = √z . π 2 νt 36.   a − 1 q(z,t)= eiωt e λ1zerfc ζ − it(2Ω + ω) 2 2  1  + eλ1zerfc ζ + it(2Ω + ω) 2   b − − 1 + e iωt e λ2zerfc ζ − it(2Ω − ω) 2 2  1  + eλ2zerfc ζ + it(2Ω + ω) 2 ,

i(2Ω±ω) 1 { } 2 where λ1,2 = ν . Thus,

1 ν 2 q(z,t) ∼ a exp(iω − λ z)+b exp(−iωt − λ z),δ = . 1 2 1,2 |2Ω ± ω|

˜ Q 43. (b) Hint: f(k)=(πak )J1(ak).  ∞ ˜ 2 45. u(r, t)= 0 k f(k) cos(btk )J0(kr) dk. − r2 ˜ a2 − a2k2 If f(r)=exp( a2 ), then f(k)= 2 exp( 4 ). Using the self-reciprocity of the Hankel transform gives the solution 1 a2k2 u(r, t)= a2H exp − cos btk2 (r) 2 0 4 = a2Ω(t)exp −a2Ω(t)r2 a2 cos 4btΩ(t)r2 +4bt sin 4btΩ(t)r2 ,

where Ω(t)=(a4 +16b2t2)−1.

48. Hint: The solution of the dual integral equations

kJ0(kr)A(k) dk = u0, 0 ≤ r ≤ a, 0 ∞ 2 k J0(kr)A(k) dk =0,a

2u0 sin(ak) is given by A(k)=( π ) k2 . 1.15 Exercises 773

49. Hint: See Debnath (1994, pp. 103Ð105).  1 ∞ −1 − 50. u(r, z)=(πa ) 0 k J1(kr)J0(kr)exp( kz) dk. √ −1 2 2 − 1 2 2 1 2 2 52. Hint: L [(s + a ) 2 exp{−k(s + a ) 2 }]=H(t − k)J0(a t − k ). Application of the joint Laplace and Hankel transforms

∞ ∞ −st u¯˜(k, z, s)= rJ0(kr) dr e u(r, z, t) dt 0 0

to the given equation and the general boundary condition uz(r, 0,t)=f(r, t)= H(a − r)g(t) gives

d2u¯˜ 1 a − s2 + k2c2 u¯˜ =0, u¯˜ (k, 0,s)= J (ak)¯g(s). dz2 c2 z k 1

The bounded solution of the equation is

 z u¯˜(k, z, s)=A¯˜(k, s)exp − s2 + c2k2 c ac g¯(s)J (ak) with A¯˜(k, s)=− √ 1 . k s2 + c2k2 √ Thus, u¯˜(k, z, s)=−( ac ) √J1(ak) g¯(s)exp[− z s2 + c2k2]. k s2+c2k2 c The inverse Laplace transform gives

 ac −1 g(s) z 2 2 2 u˜(k, z, t)=− J1(ak)L √ exp − s + c k k 2 2 2 c s + c k t ac z z2 − − − 2 − = J1(ak) g(t τ)H τ J0 ck τ 2 dτ. k 0 c c

The inverse Hankel transform leads to the final solution

∞ t z u(r, z, t)=(−ac) J0(kr)J1(ak) dk g(t − τ)H τ − 0 0 c "  # 2 2 2 × J0 k c τ − z dτ. 774 C Answers and Hints to Selected Exercises

This, for g(t)=δ(t), becomes ∞  z 2 2 2 u(r, z, t)=(−ac)H t − J0(kr)J1(ak)J0 k c t − z dk. c 0  ∞ −1 sinh kz 53. u(r, z)=b 0 k ( cosh ka )J1(bk)J0(kr) dk. − 1 sin(ak) H 2 − 2 2 − 54. Hint: 0[(a r ) H(a r)] = k , and

√ √ −1 √ L−1 s( s − a) exp −k s k √ =exp −ak − a2t erfc √ − a t . 2 t

55. Hint: Use the joint Hankel and Laplace transform method.

57. Use the Hankel transform and derive

∞ ∞ 1 r0(t) u(r, z, t)= k exp(kz)J0(kz) αp(α, τ) ρ 0 0 0   × J0(kα) dα cos ω(t − τ) dτ ,

where ω2 = gk.

59. Hint: Use the joint Laplace and Fourier transform.

∞ W sin αt 1 G(x, t)= exp(ikx) dk, α = a2k4 + ω2 2 , 2πm −∞ α

2 EI 2 κ where a = m and ω = m . 61. Hint: Set

∞ ∞ mπx nπy G(x, y; ξ,η)= a sin sin mn a b m=1 n=1

in the original equation to find amn from mπ 2 nπ 2 ab mπξ nπη + a =sin sin . a b 4 mn a b 1.15 Exercises 775

62. Apply the joint Laplace and double Fourier transform.

2 2 63. Hint: Gtt − c Gxx + d G = δ(x)δ(t). The joint Laplace and Fourier transform gives

1 1 1 G¯˜(k, s)=√ ,α= c2k2 + d2 2 . 2π (s2 + α2)

The inverse transforms give ∞ − 1 2 2 2 1 2 d 2 d G(x, t)= k + 2 sin ct k + 2 exp(ikx) dk 2πc −∞ c c  1 d = J c2t2 − x2 H ct −|x| . 2c 0 c

nπ 2 64. Hint: Eigenvalues are λn =( ) , n =0, 1, 2, 3,.... are nπx nπx Xn(x)=An cos(  )+Bn sin(  ). Thus, ∞ ∞ u(x, t)= Xn(x)Tn(t)= un(x, t) n=0 n=0 ∞ 1 nπx nπx nπkt = a + a cos + b sin exp − , 2 0 n n n=1 ∞ a nπx nπx f(x)=u(x, 0) = 0 + a cos + b sin , 2 n n n=1

where 1  nπξ an = f(ξ) cos dξ, n =0, 1, 2,..., −  1  nπξ bn = f(ξ)sin dξ, n =1, 2, 3,.... −

65. (b) Initial data tend to zero as n →∞, but the solution

un(x, y) →∞ as n →∞. 776 C Answers and Hints to Selected Exercises

66. (a) Hint: λ =0, u(x)=A+Bx with the boundary conditions leads to the trivial

solution.

If λ<0, u(x)=A cosh kx + B sinh kx(λ = −k2). The first boundary con-

dition gives A =0, and the second boundary condition yields k = − tanh k.

The graphical representation of y = −k and y = tanh k shows that there is

no intersection of these curves for k>0. Hence, there are no negative eigen-

values. For λ = k2 > 0, u(x)=A cos kx + B sin kx. The boundary con-

ditions give A =0, and B =0 , k = − tan k. The graphical representation

of y = −k and y = tanh k shows that there is an infinite number of values

k = kn (n =1, 2, 3,...) so that there is an infinite number of eigenvalues 2 ≈ 1 2 2 λ = kn 4 (2n +1) π for large n. The corresponding eigenfunctions are

un(x)=sinknx, where n =1, 2, 3,....

2 2 (b) λn = kn =(nπ) , un(x)=An cos nπx, n =0, 1, 2,.... 2 2 { } (c) λn = kn =(2nπ) , un(x)= sin 2πnx, cos 2πnx , (n =0, 1, 2,...) are eigenfunctions. To each eigenvalue, there correspond two eigenfunctions.

Eigenvalues are degenerate.

(d) For 1 − 4λ =0,or> 0, only trivial solutions. − − 2 1 n2π2 For 1 4λ = k < 0, we obtain eigenvalues λn = 4 (1 + a2 ) and eigen- −x nπ functions un(x)=Bne sin knx, (kn = a ,n=1, 2, 3,...). 67. Hint: Multiply the equation by p(x) so that a2(x) p(x)u + p(x)u + q(x)+λρ(x) u =0,

where p(x)= p(x)a1(x) , q(x)= p(x)a0(x) , and ρ(x)= p(x) . a2(x) a2(x) a2(x) 69. Hint: λ = k2 > 0. The general solution is

y(x)=A + Bx + C cos kx + D sin kx.

The first boundary conditions at x =0give A = C =0. 1.15 Exercises 777

The remaining boundary conditions at x = a give

Ba + D sin ka =0,k2D sin ak =0.

 nπ For nontrivial solutions, B = C, D =0, k = a . n2π2 nπx Thus, λn = a2 , and yn(x)=Dn sin( a ). n2π2 The critical buckling loads are Pn = EI( a2 ). The Euler load is the largest π2 load which the beam can withstand before possible buckling: P1 = a2 (EI). πx The corresponding fundamental bucking mode is y1(x)=D1 sin( a ). 71. X +2bX + k2X =0, T˙ + k2T =0, where −k2 is a separation constant.

m = −b ± iα, α2 = k2 − b2 > 0.

X(x)=exp(−bx)(A cos αx + B sin αx). Using boundary conditions, we ob-  nπ tain A =0, sin αa =0, B =0, α =( a ), n =1, 2, 3,.... Hence, T (t)=C exp(−k2t). Thus, the final solution is

∞ − 2 − 2 2 2 u(x, t)= an exp knt bx sin αnx, kn = b + αn. n=1

2 λ 2 72. (a) Eigenvalues are k =(a ) and eigenfunctions are λr R(r)=AJn ,Jn(ka)=0, a λct λct T (t)=B cos + C sin ,Θ(θ)=D cos nθ + E sin nθ, a a ∞ ∞ λ r λ ct u(r, θ, t)= (a cos nθ + b sin nθ)J mn cos mn , mn nm n a a n=0 m=0

where λmn are positive roots of Jn(x)=0.

∞ ∞ λ r f(r, θ)= (a cos nθ + b sin nθ)J mn , where nm nm n a n=0 m=0 a π 1 λm0r ≥ a0n = 2 2 f(r, θ)J0 rdrdθ and n 1, πa J1 (λn0) 0 −π a 778 C Answers and Hints to Selected Exercises π a 2 λmnr (anm,bnm)= 2 2 f(r, θ)Jn πa Jn+1(λmn) −π 0 a × (cos nθ, sin nθ)rdrdθ.

{ πc ≥ ≥ } The set of frequencies is a λmn : n 0,m 1 . (b) Since f is independent of θ,soisu. The solution is

∞ λ r λ ct u(r, t)= a J m cos m ,λ= λ , m 0 a a m m0 m=1 ∞ λ r f(r)= a2 − r2 = u(r, 0) = a J m m 0 a m=1

8a2 so that am = 3 . λmJ1(λm) 73. (a) Hint: Use u(r, z)=R(r)Z(z) so that

r2R + rR + k2r2R =0,R(a)=0; Z = k2Z, Z(0) = 0.

2 2 The eigenvalues of this SturmÐLiouville problem are kn =(λn/a) with the

λnr corresponding eigenfunctions Rn(r)=J0( a ), where λn are the positive roots

of J0(x)=0. !∞ zλn rλn zλn Thus, Zn(z)=sinh( a ). u(r, z)= n=1anJ0( a )sinh( a ), and g(r)= !∞ hλn rλn hλn u(r, h)= n=1 an sinh( a )J0( a ), where bn = an sinh( a )=  a rλn 0 rg(r)J0( a ) dr.  hλn rλn a rλn 2cosech( a ) (b) an = cosech( ) rJ0( ) dr = . a 0 a λnJ1(λn) Hence, the solution u(r, z) follows.

74. (a) Hint: Multiply the left-hand side of the wave equation by 2ut, and the re- sulting expression follows from performing the indicated differentiations on the

right-hand side of the differential equality.

(b) 2∇2 − 2 ··· 2ut c nu utt =2c (utux1 )x1 +(utux2 )x2 + +(utuxn )xn − c2 u2 + u2 + ···+ u2 + u2 . x1 x2 xn t t 1.15 Exercises 779

(c) Perform the indicated differentiation on the right-hand side of (b) so that (c)

can be obtained.

75. Hint: (a) In the context of a stretched string, −d2u can be interpreted as an

additional spring force normal to the string.

Multiply the KleinÐGordon equation by ut to obtain

2 2 ututt − c utuxx + d utu =0, 1 ∂ c2 ∂ ∂ 1 u2 + u2 − c2 (u u )+ d2 u2 =0. 2 ∂t t 2 ∂x x ∂x t x 2

(c) Assume w = u − v and u, v or (ux,vx) are given at x = a, b.

2 wtt = c wxx,a≤ x ≤ b,

w(x, 0) = 0 = wt(x, 0); w(orwx)=0at x = a, b.

Using (b), E(t)=E0 =0, and noting w(x, 0) = 0 implies wx(x, 0) = 0.  1 b 2 2 2 2 2 Therefore, E(t)= 2 a (wt + c wx + d w ) dx =0. Since the integrand is positive, w ≡ 0.

76. (a) Hint: Seek a separable solution u(r, t)=R(r)T (t) so that

r2R +2rR + k2r2R =0,T + c2k2T =0, 1 R(r)=√ A1J 1 (kr)+B1Y 1 (kr) , r 2 2 1 T (t)=C cos(ckt)+D sin(ckt)= (A sin kr + B cos kr). r

We assume that R(r) is finite at r =0, and hence, B =0.

nπ The eigenvalues are k = kn = a , n =1, 2,.... ! ∞ 1 nπr u(r, t)= n=1(an cos cknt + bn sin cknt) r sin( a ).

The initial conditions u(r, 0) = f(r) and ut(r, 0) = g(r) can be satisfied by the Fourier series expansion of rf(r) and rg(r) on (0,a).

8a3 (b) an =0, b2n =0, b2n−1 = cπ4(2n−1)4 . 780 C Answers and Hints to Selected Exercises

77. We seek a separable solution u(r, z)=R(r)Z(z) so that r2R +rR −k2r2R =

 2 2 n2π2 0, and Z + k Z =0with Z(0) = Z(h)=0. k = h2 and Z(z)= nπz nπr an sin( h ). We assume R(r) is finite at r =0, and hence R(r)=anI0( h ), ! ∞ nπr nπz and thus, the solution is u(r, z)= n=1 anI0( h )sin( h ).Wehavef(z)= !  ∞ nπa nπz nπa −1 2 h nπz n=1 anI0( h )sin( a ) so that an =[I0( h )] h 0 f(z)sin( h ) dz. !∞ a0 78. (a) Hint: u(1,θ)= 2 + n=1(an cos nθ + bn sin nθ) = 1 + cos 2θ.

a0 =2, a2 =1, an =0, n =0 ,2.

2 bn =0for all n, u(r, θ)=1+r cos 2θ.    1 π | | 2 − 0 π (b) a0 = π −π 2θ dθ = π [ −πθdθ + 0 θdθ]=2π.  1 π | | − 8 an = π −π 2θ cos θdθ= πn2 for odd n, and 0 for even n.  1 π | | bn = π −π 2θ sin nθ dθ =0. ! − 8 ∞ −2 2n+1 Thus, u(r, θ)=π π n=0(2n +1) r cos(2n +1)θ. !∞ (c) Hint: n=1(an cos nθ + bn sin nθ) = 2 cos 2θ.

a2 =1, an =0, n =2 ; bn =0for all n.

a0 2 Therefore, u(r, θ)= 2 + r cos 2θ.

a0 (d) u(r, θ)= 2 + r(cos θ +sinθ). 79. (a) Hint: Seek a separable solution u(r, θ)=R(r)Θ(θ) =0 so that

r2R(r)+rR(r) − λ2R =0, Θ(θ)+λ2Θ(θ)=0.

Since u(r, θ) is periodic with period 2π,soisΘ(θ).

Eigenvalues: λn = λ = n, n =1, 2,.... The solution of the CauchyÐEuler equation for R(r) is

1 n =0: R (r)= (A + B ln r), 0 2 0 0 n −n n ≥ 1: Rn(r)=Anr + Bnr ,Θn(θ)=Cn cos nθ + Dn sin nθ, ∞ 1 u(r, θ)= (a + b ln r)+ a rn + b r−n cos nθ 2 0 0 n n n=1 n −n + cnr + dnr sin nθ. 1.15 Exercises 781

The Fourier coefficients for r = a are 1 π (a + b ln a)= f(θ) dθ, 0 0 π −π 1 π a an + b a−n = f(θ) cos nθ dθ, n n π −π π n −n 1 cna + dna = f(θ)sinnθ dθ. π −π

The process is similar, when r = b gives the Fourier coefficients.

(b) Use the same method described in Exercise 76(a) to find

r =1: a0 =1,an + bn =0,n≥ 1; c1 + d1 =1,

cn + bn =0,n>1. b r =2: b = −1, 2a + 1 =1, 2na +2−nb =0 for n>1, 0 1 2 n n 2 2 2nc +2−nd =0,n≥ 1; a = ,b= − , n n 1 3 1 3 1 4 c = − ,d= , 1 3 1 3 1 2 1 u(r, θ)= (1 − ln r)+ r − r−1 cos θ − r − 4r−1 sin θ. 2 3 3

(c) Use the solution obtained in Exercise 76(a) with the given boundary condi-

tions.

r =1: b0 =0,an − bn =0,n≥ 1; cn − dn =0,n≥ 1, 1 3 1 3 r =2: b =0,a− b = ,c− d = . 0 1 4 1 4 1 4 1 4

Thus, a1 = b1 =1and c1 = d1 = −1. − − a0 1 − 1 Hence, the solution is u(r, θ)= 2 +(r + r ) cos θ (r + r )sinθ. 1 2 2 ∇2 81. Define v(x, y)= 4 (x + y ) so that φ =1and assume w = u + v so that 2 ∇ w =0, w = v on ∂D, and w(0, 0) = u(0, 0). Use the result min∂Dv ≤

u(0, 0) ≤ max∂Dv. 782 C Answers and Hints to Selected Exercises

a2 r2 Max v = 4 and the minimum of v = 4 , where r is determined from the 2 2 2 x y circle x + y = r which touches ∂D: a + b =1, (x>0,y>0). r2 r2 2 2 2 2 2 −1 Since (x, y)=(4 , 4 ), one has r = a b (a + b ) . 2 82. Hint: We take v = u1 − u2 where u1 and u2 are solutions of ∇ u =0on D. ∇2v =0for x ∈ D and v(x)=0on ∂D.

By the minÐmax principle, v attains its maximum and minimum on ∂D so that

0 ≤ v ≤ 0 for x ∈ D, and hence, v =0on D.

2 91. Hint: At the leading order ∇ u0 =0,u0(1,θ)=sinθ.  1  − 1 Seek a separable solution u0 = f(r)sinθ so that f + r f r2 f =0,f(1) = 1. The solution is f(r)=Ar + Br−1. For the bounded solution, B ≡ 0. Hence

2 2 f(r)=r, and u0 = r sin θ.AtO(ε ), u2 satisfies the equation ∇ u2 =

−r sin θ, u2(1,θ)=0. For the separable solution u2 = g(r)sinθ, g(r) satis-  1  − 1 − r fies g + r g r2 g = A ,g(1) = 0. Using the variation of parameters, the 1 − 3 bounded solution is g(r)= 8 (r r ). 92. Hint: u =0satisfies the given equation and the far field boundary condition, but

not the boundary condition at r =1. We need a boundary layer near r =1so that

we can define r =1+εr with r = O(1) in the boundary layer for ε  1.At

r −r the leading order urr − u =0, which gives solution u = A(θ)e + B(θ)e . This matches with the far field if A ≡ 0 and satisfies the condition at r =0

when B =1. Thus the inner solution and a composite solution are valid at the

leading order for r ≥ a. Hence the solution follows.

93. Hint: Seek a separable solution u(x, t)=X(x)T (t) =0 , where X(x) and

T (t) satisfy X + λX =0, 0

nπ 2 λκT =0,t>0. The eigenvalues are λn =(  ) and the eigenfunctions are nπx Xn(x)=An cos(  ), n =0, 1, 2,.... Thus, the solution is

∞ nπx κn2π2 u(x, t)=a + a cos exp − t , 0 n 2 n=1 1.15 Exercises 783

∞ nπx 1  f(x)=u(x, 0) = a + a cos , where a = f(x) dx, 0 n 0 n=1 0 2  nπx an = f(x) cos dx, n =1, 2, 3,.... 0

1 2 − n − (b) a0 = 2 , an = n2π2 [( 1) 1]. 96. The solution follows from (1.9.15), when q(ξ,τ)=sin(kξ − ωτ).  ω In case (a), when c = k ,

−1 u(x, t)= k2c2 − ω2 sin(kx − ωt) −1 +(kc − ω) 2kc ω2 − k2c2 sin(kt + kct) −1 +(kc + ω) 2kc ω2 − k2c2 sin(kt − kct).

Thus, the solution consists of three sinusoidal waves that propagate with differ- ent amplitudes and with velocities ±c and the phase velocity (ω/k).

ω In case (b), when c = k , the solution is given by

1 1 t u(x, t)= sin(x − t) − sin(x + t)+ cos(x − t). 4 4 2

Thus, the solution consists of two harmonic waves that propagate with ve- locities ±1 and another harmonic wave whose amplitude grows linearly with time t.

98. Use the joint Laplace and finite Hankel transform of order one defined by

a ∞ −st V¯ (km,s)= rJ1(rkm) dr e v(r, t) dt, 0 0

where V¯ (km,s) is the Laplace transform of V (km,t), and km are the roots of

the equation J1(akm)=0. The solution of the transformed system is 784 C Answers and Hints to Selected Exercises

2 ¯  ¯ a νkmΩf(s)J1(akm) V (km,s)= 2 . (s + νkm)

(See Myint-U and Debnath 2007, Chapter 12, p. 507.)

The solution is

∞ k J (rk ) t v(r, t)=−2νΩ m 1 m f(t − τ)exp −νk2 τ dτ. J  (ak ) m m=1 1 m 0

When f(t) = cos ωt, the solution is given by

∞ k J (rk ) t v(r, t)=−2νΩ m 1 m cos ω(t − τ)exp −νk2 τ dτ. J  (ak ) m m=1 1 m 0

When ω =0, the solution becomes

∞ J (rk )exp(−νtk2 ) v(r, t)=rΩ − 2Ω 1 m m . k J (ak ) m=1 m 2 m

In the limit as t →∞, the transients die out and the ultimate steady-state is

attained as the rigid body rotation about the axis of the cylinder.

99. (b) The Cauchy data tend to zero as n →∞. But, for t>0, the solution

un(x, t) →∞as n →∞for certain values of x and t. So, the problem is ill-posed.

100. (b) The initial data tend to zero as n →∞. However, for y =0 , the solution

un(x, y) →∞as n →∞. Thus, the problem is not well-posed. 101. (b) For y =0 , the amplitude of the solution tends to infinity as n →∞due √ to the factor sinh(ny), even though the initial data uy(x, 0) = exp(− n) ×

sin nx → 0 as n →∞. However, the solution un(x, y) and all of its derivatives tend to zero as n →∞uniformly throughout the half-strip in the (x, y) plane.

102. Without the last term in the first equation, the equation is known as the Eu-

ler equation. The second equation is the continuity equation for a certain vir- 2.9 Exercises 785

tual fluid. The square of the amplitude a2 plays the role of density ρ and

aV (x) plays the role of pressure. The second term on the right-hand side of

the first equation plays the role of dispersion. Thus, the transformation of the

Schrödinger equation into two equations in fluid dynamics is usually referred

to as the hydrodynamic analogy of quantum mechanics.

103. (b) uxx = −n cos nx cosh ny, uyy = n cos nx cosh ny, and hence, uxx +

uyy =0. The boundary data is changed by only a small amount as u(0,y) → 0 as n →∞. Yet the solution u(x, y) is changed from zero by a large amount. 1 →∞ Along the line x =0, the solution is u(0,y)= n cosh ny as y →∞. Thus, a small change of the boundary data produces a large change in

the solution. So, the problem is ill-posed.

2 2 2 2 104. (a) We have ut = κn exp(κn t)sinnx and uxx = −n exp(κn t)sinnx,

and hence, ut + κuxx =0. 1 → →∞ →∞ →∞ (b) Thus, u(x, 0) = n sin nx 0 as n , yet u(x, t) as n for any positive t. Hence, the problem is ill-posed. 1 2− 4 105. (b) It is easy to verify that u(x, t)= n sin nx exp(κn δn )t is the solution of the equation. It also satisfies the initial condition. The solution is well behaved

for large n, and also it is bounded for all n for any finite t. However, the solution

is unstable as n → 0. For small δ, the negative diffusion equation is obviously

ill-posed.

2.9 Exercises    t2 − t2 − t2 · · 1. (i) Hint: 0=δ t (T V ) dt = t (δT δV ) dt = t (mr˙ δr˙ + F δr) dt.  1 1 1 (ii) 0=δ t2 ( 1 mx˙ 2 − 1 mω2x2) dt,orx¨ + ω2x =0. t1 2 2 2. Hint: Apply the variational principle t2 1  δ (T − V ) dt =0, where T = ρ y˙2 dx and 2 t1 0 1  V = EIy2 dx. 2 0 786 C Answers and Hints to Selected Exercises

Thus, ρy¨ + EIy(iv) =0.

3. ηt +6ηηx + ηxxx =0. 10. (a) We have ∇4u =0(biharmonic equation).

2 2 2 (b) utt − α ∇ u + β u =0(KleinÐGordon equation).

(c) φt + αφx + βφxxx =0 (φ = ux, KdV equation).

2 (d) utt + α uxxxx =0(elastic beam equation).

d  (e) dx (pu )+(r + λs)u =0(SturmÐLiouville equation). 2 ∇2 − 11. ( 2m ) ψ +(E V )ψ =0. ∗ − 2 2 T 14. utt c uxx = F (x, t), c = ρ . 18. Hint: (a) Use the vector identity ·∇ ∇ 1 · − × ∇× (u )u = ( 2 u u) u ( u). (b) Use the fact that u · (u × ω)=0to get the desired result. (c) Use ∇·u =0and add the following result: 1 · p ∇· ∂ 1 · ∇· ( 2 u u + ρ + Ω)( u)=0to the equation in (b) to find ∂t( 2 u u)+ 1 · p ·∇ ·∇ ∇· · [u( 2 u u + ρ + Ω)] = 0, where (u )φ +(u )φ = (φu) ∂Ω Adding a zero contribution ∂t gives the energy equation. The first term represents the rate of change of the total energy (kinetic and po-

tential), and the second term describes the energy flow carried by the velocity combined with the contribution from the rate of working of the pressure forces. 19. Hint: Follow Example 2.4.2 to obtain

2 2 2 2 2 2 1+q + r px + 1+p + r qy + 1+p + q rz

− 2(pqpy + qrqz + rprx)=0.

− 2 − −  − uy 2 1 A (y1 y) 22. (a) uy uxy 2 =0,(b)y = 2 . 1+y A (y1−y) 24. (a) Hint: For a conservative system, T + V = C.

Putting V = C − T in (2.4.25) gives the principle of least action. 2.9 Exercises 787

(b) The principle of least action asserts that time action is stationary for any

conservative system. − 1 2 − 27. (a) In one dimension, the Lagrangian is L = T V = 2 mx˙ V (x) so that ∂L − ∂V ∂L ∂L − d ∂L ∂x = ∂x and ∂x˙ = mx˙. The EulerÐLagrange equation is ∂x dt ( ∂x˙ )=0, − ∂V or equivalently, mx¨ = ∂x = F . This is Newton’s law of motion. − 1 2 2 − 2 2 (b) The Lagrangian L = T V = 2 m(˙x +˙y ) V (x + y ).TheEulerÐ d ∂L ∂L d ∂L ∂L Lagrange equations are dt ( ∂x˙ )= ∂x and dt ( ∂y˙ )= ∂y . In this case, these − ∂V − ∂V equations give mx¨ = ∂x and my¨ = ∂y . In this formulation, conserved quantities are not obvious.

(c) In polar coordinates (r, θ), x = r cos θ, y = r sin θ, x˙ =˙r cos θ − rθ˙ sin θ,

y˙ =˙r sin θ + rθ˙ sin θ. Thus, x2 + y2 = r2 and x˙ 2 +˙y2 =˙x2 + r2θ˙2. Thus, 1 2 2 ˙2 − 2 the Lagrangian becomes L = 2 m(˙r + r θ ) V (r ). The EulerÐLagrange equations are d ( ∂L)= ∂L,or, dpr = mr¨ = mrθ˙2 − ∂V , d ( ∂L)= ∂L,or, dt ∂r˙ ∂r dt ∂r dt ∂θ˙ ∂r dpθ = d (mr2θ˙)=0because ∂L = − ∂V + mrθ˙2, ∂L =0, and p = ∂L = dt dt ∂r ∂r ∂θ˙ r ∂r˙ mr˙, p = ∂L = mr2θ˙. Since dpθ =0, one gets mr2θ˙ = constant which shows θ ∂θ˙ dt that the angular momentum is conserved and the radial equation of motion is ˙2 − ∂V mr¨ = mrθ ∂r . The first term in the radial equation on the right-hand side represents the centrifugal force, while the second term gives the dynamical radial

force.

−brn 28. In the linearized limit, f(r)=ae − a ≈−abrn so that the nonlinear Toda

lattice equation mr¨ =2f(rn)−f(rn−1)−f(rn+1) becomes mr¨n = ab(rn+1 +

rn−1 − 2rn). Substituting the traveling wave solution into the linearized Toda 2 − 2 k lattice equation gives mω cos θ =2ab cos θ(1 cos k)=4ab sin 2 . Thus, 2 4ab 2 k the dispersion relation is ω = m sin 2 , where k corresponds to the discrete wavenumber that is similar to the continuous wavenumber. 788 C Answers and Hints to Selected Exercises 3.6 Exercises

2. (a) xp − yq = x − y,(d)yp − xq = y2 − x2.

3. (a) u = f(y),(b)u = f(bx − ay),(c)u = f(ye−x), − −1 x2−y2 (d) u = f(y tan x),(e)u = f( x ), x+u 2 − 2 x+u 2 − 2 (f) y = C1, (u + y) x = C2, f( y , (u + y) x )=0, 2 2 x + y = C1,y(u − y)=C2, dx − dy du d(u−y) −1 2 2 (g) We have y2 = xy = xu−2xy = x(u−y) , u = y + y f(x + y ), (h) u +logx = f(xy),(i)f(x2 + u2,y3 + u3)=0. − 3 2 − 2 5. (a) u =sin(x 2 y),(b)u =exp(x y ), y − y 3 − 1 2 (c) u = ⎧xy + f( x ), u = xy +2 ( x ) ,(d)u =sin(y 2 x ). ⎨⎪ 1 2 − 2 − 2 2 y +exp[ (x y )] for x>y, (e) u = ⎪ ⎩ 1 2 − 2 − 2 2 x +exp[ (y x )] for x

  − 1 u = 1+(x + y)2 e 2y − (x + y)2 2 .

dy − y d y 1 y (i) dx x =1, dx ( x )= x which implies that x = C1 exp( x ). u+1 u+1 − y x = C2, f( x ,xexp( x )) = 0. x2+1 1 Initial data imply x = C1 and = C2. Hence C2 = C1 + . x C1 u+1 − y 1 y 2 − y y − x = x exp( x )+ x exp( x ). Thus, u = x exp( x )+exp(x ) 1. √ 6. We find u2 − 2ut +2x =0, and hence, u = t ± t2 − 2x.

x 7. u(x, y)=exp(x2−y2 ). 3.6 Exercises 789

y z x−y d(x−y) dz x−z 8. (a) u = f( x , x ), (b) Hint: u1 = xy = C1, x2−y2 = z(x+y) gives u = z = x−y x−y C2, u = f( xy , z ).(c)φ =(x + y + z)=C1. dx ( dy ) dz dx + dy + dz ( z ) y ( z ) x y z d log(xyz) Hint: y−z = z−x = x−y = 0 = 0 , ψ = xyz = C2, u = f(x + y + z,xyz) is the general solution.

2 2 2 2 (d) Hint: xdx+ ydy=0, x + y = C1, zdz= −(x + y )ydy= −C1ydy,

2 2 2 2 2 2 2 2 2 2 z +(x + y )y = C2, u = f(x + y ,z +(x + y )y ).

− − − x 1dx y 1dy z 1dz d(log xyz) 2 2 2 (e) y2−z2 = z2−x2 = y2−x2 = 0 . Thus, u = f(x + y + z ,xyz) is a general solution. − x2 − x3 − x3 − x2 9. (a) Hint: y 2 = C1, u = xy 3 + C2,φ(u xy + 3 ,y 2 )=0. − x3 − x2 − x3 − x2 2 u = xy 3 + f(y 2 ), u = xy 3 +(y 2 ) . − 1 3 − x2 5 (b) u = xy 3 x + y 2 + 6 . x+u 2 − − 2 2 − 2u − − 2 − 2 − 11. y = C1, u (x y) = C2, u y (x y) y (x y)=0. 2 − Thus, u = y +(x y), y>0. τ 2 (2x−2y+y2) 12. (a) x = 2 + τs+ s, y = τ +2s, u = τ + s = 2(y−1) . τ 2 2 − 2 − 2 (b) x = 2 + τs + s , y = τ +2s, u = τ + s, (y s) =2x s ,asetof parabolas.

1 2 (c) x = 2 (τ + s) , y = u = τ + s. 13. Hint: The initial curve is a characteristic, and hence, no solution exists.

xy x2−y2+1 1 2 14. (a) u =exp(x+y ),(b)u = sin[( 2 ) ], dx dy du − − (c) x = −y = −1 gives xy = c1 and u ln y = c2 = f(xy). Hence, 2x  √ xy 1 y 2 t − 2 1 ln(3x)=f(3x ).Or,f(t)=2 3 ln( 3t). Thus, u =2(3 ) + 2 log( 3x ), dx dy du x xdx+ydy du (e) d = y = x2+y2 gives y = c1, and x2+y2 = x2+y2 yields 2u = 2 2 2 2 x 2 − x + y + c2.Or,2u = x + y + f( y ). Hence, f(x)=x 1. Thus, 2u = 2 2 x2 − x + y + y2 1. dx dy du 2 − 2 − 2 − 2 (f) y2 = xy = x gives x y = c1 and u ln y = c2 = f(x y ). Hence, f(t)=t +1. Thus, u =lny +(x2 − y2)+1. 790 C Answers and Hints to Selected Exercises

2 dx dy du dy c1x (g) x = y = xy gives x = c1 and du = ydx =(c1x)dx, u = 2 + c2 = xy xy y xy y 2 + c2. u = 2 + f( x ). Hence, f(1) = 0. Thus, u = 2 + f( x ), where f is an arbitrary function such that f(1) = 0.

xdx ydy udu xdx+ydy+udu 2 2 2 15. x(u2−y2) = xy2 = −xu2 = 0 , and hence, x + y + u = c1. dy − du 2 2 2 And y = u gives uy = c2. Thus, x + y + u = f(uy), and hence, 3u2 = f(u2). Thus, 3uy = u2 + x2 + y2.

τ 2 16. (a) x(s, τ)=τ, y(s, τ)= 2 + aτs + s, u(s, τ)=τ + as. τ = x, s =(1+ −1 − 1 2 −1{ 1 2 } ax) (y 2 x )a, and hence, u(x, y)=x+as =(1+ax) x+a(y + 2 x ) , − 1 singular at x = a . √ u2 − 2 − 2 (b) y = 2 + f(u x), 2y = u +(u x) , u(0,y)= y. d(x+y+u) d(y−u) d(u−x) − 2 17. (a) Hint: 2(x+y+u) = −(y−u) = −(u−x) , (x + y + u)(y u) = c1 and 2 (x + y + u)(u − x) = c2.

dx dy dx du dx u(u2+a) (b) Hint: x = −y . Hence, xy = a. xu(u2+a) = x4 . So, du = x3 giving x4 = u4 +2au2 + b and, thus, x4 − u4 − 2u2xy = b. dx dy dy 2 − − 2 (c) x+y = x−y = 0 (exact equation). u = f(x 2xy y ). 2 − 2 − 1 2 2 − 2 (d) f(x y ,u 2 y (x y )) = 0. (e) f(x2 + y2 + z2,ax+ by + cz)=0.

dx dy dz x y 2 2 2 −1 y 18. Hint: x = y = z , and hence, z = c, z = d. x +y = a and z = tan ( x ) 2 2 2 2 −1 d a a give (c + d )z = a and z = b tan ( c ). c =(z ) cos θ, d =(z )sinθ, and z = b tan−1(tan θ)=bθ. Thus, the curves are xbθ = az cos θ and ybθ=

az sin θ. (dx−2dy) du { − 2 2} 19. Hint: 9u = −3(x−2y) . F x + y + u, (x 2y) +3u =0. Thus, (x − 2y)2 +3u2 =(x + y + u)2.

20. F (x2 + y, yu)=0, (x2 + y)4 = yu. − dz (dx+dy+dz) 2 21. Hint: x y + z = c1, −(x+y+z) = 8z , and hence, 8z +(x + 2 2 2 y + z) = c2. F {(x − y + z), 8z +(x + y + z) } =0. 2 2 − 2 2 2 2 c1 + c2 =2a ,or(x y + z) +(x + y + z) +8z =2a . 3.6 Exercises 791

22. F (x2 + y2 + z2,y2 − 2yz − z2)=0. √ (a) y2 − 2yz − z2 =0, two planes are y =(1± 2)z.

(b) x2 +2yz +2z2 =0, a quadric cone with vertex at the origin.

(c) x2 − 2yz +2y2 =0, a quadric cone with vertex at the origin.

23. Use the Hint of 17(c). dx dy − d2x dt = x + y, dt = x y, dt2 =2x. √ dx 2 2 dx ( dt ) =2x + c. When x =0=y, dt = 2x. √ 2 u =lnx + x2 − 2xy +2y.

3 24. (a) a = f(x + 2 y). ct − a cy (b) x = at + c1, y = bt, u = c2e , c2 = f(c1), u(x, y)=f(x b y)exp( b ). x − c (c) u = f( 1−y )(1 y) . 1 2 1 −1 − 2 (d) x = 2 t + αst + s, y = t, and u = y + 2 α(αy +1) (2x y ). √ 26. (a) Hint: (f )2 =1− (g)2 = λ2; f (x)=λ and g(y)= 1 − λ2. √ √ 2 2 f(x)=λx + c1 and g(y)=y 1 − λ + c2. u(x, y)=λx + y 1 − λ + c. (b) Hint: (f )2 +(g)2 = f(x)+g(y) or (f )2 − f(x)=g(y) − (g)2 = λ.  Hence, (f )2 = f(x)+λ and (g)= g(y) − λ.

√df √dg Or, f+λ = dx and g−λ = dy.

x+c1 2 − y+c2 2 f(x)+λ =( 2 ) and g(y) λ =( 2 ) .

x+c1 2 y+c2 2 u(x, y)=( 2 ) +( 2 ) . (c) Hint: (f )2 + x2 = −g(y)=λ2. √  2 2 2 Or, f (x)= λ − x , and g(y)=−λ y + c2. Putting x = λ sin θ, we obtain √ 1 2 −1 x x 2 − 2 f(x)= 2 λ sin ( λ )+ 2 λ x + c1, √ 1 2 −1 x x 2 − 2 − 2 u(x, y)= 2 λ sin ( λ )+ 2 λ x λ y +(c1 + c2). (d) Hint: x2(f )2 = λ2 and 1 − y2(g)2 = λ2. √ 2 Or, f(x)=λ ln x + c1 and g(y)= 1 − λ ln y + c2. 1 · 1 · 27. (a) Hint: v =lnu gives vx = u ux, vy = u uy. 792 C Answers and Hints to Selected Exercises

2 ux 2 2 uy 2 x ( u ) + y ( u ) =1. 2 2 2 2 2  2 2  2 Or, x vx + y vy =1gives x (f ) + y (g ) =1. x2{f (x)}2 =1− y2(g)2 = λ2. √ 2 Or, f(x)=λ ln x + c1 and g(y)= 1 − λ (ln y)+c2. √ 2 Thus v(x, y)=λ ln x + 1 − λ (ln y)+lnc, (c1 + c2 =lnc). √ u(x, y)=cxλy 1−λ2 .

(b) Hint: v = u2 and v(x, y)=f(x)+g(y) may not work.

  Try u = u(s), s = λxy, so that ux = u (y) · (λy) and uy = u (s) · (λx).

2 1 du 2 Consequently, 2λ ( u ds ) =1. Or, 1 du = √1 1 . Hence, u(s)=c exp( √s ). u ds 2 λ 1 λ 2 Thus, u(x, y)=c exp( √xy ). 1 2

1 √ux 1 √uy 4  2 2  2 28. Hint: vx = 2 u , vy = 2 u . This gives x (f ) + y (g ) =1. Or, x4(f )2 =1− y2(g)2 = λ2.

Or, x4(f )2 = λ2 and y2(g)2 =1− λ2. √ − λ − 2 Hence, f(x)= x + c1 and g(y)= 1 λ ln y + c2. √ − λ − 2 2 Thus, u(x, y)=( x + 1 λ ln y + c) . 2 v2 ux uy vx y 29. Hint: vx = u , vy = u . x2 + y2 =1, and v = f(x)+g(y). 2 (f ) − 1  2 2 Or, x2 =1 y2 (g ) = λ . √ f (x)=λx, and g(y)= 1 − λ2y. √ λ 2 1 2 − 2 Or, f(x)= 2 x + c1, and g(y)= 2 y 1 λ + c2. 2 √ λ 2 y − 2 v(x, y)= 2 x + 2 1 λ + c =lnu. 2 √ λ 2 y − 2 u(x, y)=c exp[ 2 x + 2 1 λ ],c1 + c2 =lnc. x2 λ x2 e = u(x, 0) = ce 2 , which gives c =1and λ =2.

6x+3at2+5at3 31. (b) v(x, t)=x + at, u(x, t)= 6(1+2t) . − x dt dx dv 32. (a) We have vt avx =0, v(x, 0) = e . So, 1 = −a = 0 gives dv =0,

or, v = const. = c1.Also,dx + adt =0yields x + at = const. = c2. Thus, 3.6 Exercises 793

v = f(x + at), and ex = v(x, 0) = f(x).Or,v = ex+at. The first equation

−x at dt dx du becomes ut + uux = e v = e . This gives 1 = u = eat . − eat eat Or, u a = c1. Thus, dx = udt =( a + c1)dt. eat eat − eat eat − teat Or, x = a2 + c1t + c2 = a2 +(u a )t + c2 = a2 + ut a + c2. − t at − eat − eat − t at − eat Or, x ut + a e a2 = c2. Thus, u(x, t) a = f(x ut + a e a2 ). − 1 at − 1 at − t at − 1 at Hence, u a e = c1 and u(x, t) a e = f(x ut + a e a2 e ). − 1 − 1 1 − 1 Using the initial condition gives x a = f(x a2 ),orf(x)=(x + a2 a ). 1 at − t at − 1 at 1 − 1 Hence, u(x, t)= a e +(x ut + a e a2 e + a2 a ). −1 1 t − 1 at 1 − 1 Thus, u(x, t)=(1+t) [x +(a + a a2 )e +(a2 a )]. √ √dx dy du − 1 − 33. (a) We have x = u = −u2 leads to 2 x u = C1 and y = ln(C2u). √ √ −1 At (x0, 0), u =1so that C1 =2 x0 − 1 and C2 =1. Thus, u =2( x − √ √ √ −y −1 x0)+1and u = e , y =lnu =ln[2( x − x0)+1].

dx dy du 1 y 1 (b) We have ux2 = e−y = −u2 so that x =lnu + C1 and e = u + C2. −y At (x0, 0), u =1, that is, C2 =0and u = e .

1 1 1 1 1 Hence, C1 = . Thus, ln u =( − ) and y = − . x0 x x0 x0 x ∂nu ∂nu ∂u ∂u − ∂u 34. For any function u(ξ,τ),wehave ∂xn = ∂ξn , ∂t = μ ∂τ c ∂ξ , 2 2 utt = μ uττ − 2μcuξ,τ + c uξξ,etc.

n dτ dξ Thus, the equation assumes the form uτ +(αu )uξ =0.Wehave 1 = αun = du du dξ n n 0 or dτ =0and dτ = αu . Thus, u = const. = C1 and ξ = αu τ + C2. Then the general solution is f(u, ξ − αunτ)=0,oru = φ(ξ − αunτ) which

is a Riemann simple wave. Hence, u(ξ,0) = φ(ξ)=u0 sin kξ. Thus, u(ξ,τ)=

u n n u0 sin[kξ − ( ) (αku τ)]. u0 0 dx dy du dy x−y 35. (a) We have x+y = x−y = 0 . So, u = const. = c1. Hence, dx = x+y .Thisis 2 2 an exact equation and hence, f(x, y)=c2,or,x − 2xy − y = c2. Thus, the general solution is u = f(x2 − 2xy − y2), f is an arbitrary function. 794 C Answers and Hints to Selected Exercises

dx dy du dy (b) We have 1 = −(ax+by) = 0 . Thus, u = const. = c1. Hence, dx + by = 2 2 −ax,givingy(b y − abx + a)=c2. Hence, u = f(y(b y − abx + a)) is the general solution. dx dy du 2 − 2 du 2 − 2 (c) We have x−1 = y−1 = x2−y2 . Hence, x y = c1. dx = x(x y )=c1x 1 2 − 1 2 2 − 2 − 1 2 2 − 2 giving u = 2 c1x + c2. Thus, u 2 x (x y )=c2 and u 2 x (x y )= f(x2 − y2). dx dy du 2 − 2 (e) We find that y = −x = 0 . This gives x y = C1 and u = C2. So, u = f(x2 + y2). Hence, y = f(a2 + y2)=f(t), a2 + y2 = t. Therefore, √  f(t)= t − a2. Thus, u = f(x2 + y2)= x2 + y2 − a2. dx dy du 1 u2 − (f) We find that x = x+y = udu,or, dx = xu ,or 2 log x = c1. Thus, dy x+y y y − u2 − dx = x , and hence, x =logx + c2. So, x log x = f( 2 log x). Thus, − − − − −t y x log x = f( log x). Putting t = log x, f(t)=t e . Thus, x = u2 − − u2 2 x exp( 2 ). dt dx du 36. (a) We have, 1 = −x = u gives t +lnx = C1 and xu = C2. 1 Or, g(xu, t +lnx)=0,or,u = x h(t +lnx) is the general solution, where h is 1 an arbitrary function. Hence, u(x, 0) = f(x)= x h(ln x),or,h(ln x)=xf(x), that is, h(x)=exf(ex). Thus, u(x, t)=etf(xet).

4.6 Exercises

1. (a) 16u =(x +4y)2,(b)u = α(x + y). √  2. (a) a log u = x + ay + b,(b)2 u(1 + a2)=x + ay + b,

1 1 2 − 2 2 (d) u = ay + 4 (x + b) ,(g)u = a log x +(4 a ) log y + b, 1 2 2 1 2 (h) u = a(1 + x ) + 2 (ay) + b. − xy 3. (a) log u = x + y 1,(c)u = 2(y−2) which is singular at y =2, (e) u(x, y)=x + y, (f) 4u =(x + y +2)2. (i) u =exp(−act)f(x − ct). Use equation (4.2.19)

x(τ,0) = x0(τ)=τ, t(τ,0) = 0, u(τ,0) = f(τ). 4.6 Exercises 795

4. Hint: At s =0, p(t, x)=q(t, s)=1, then, p(t, s)=q(t, s)=1.

x(t, s)=(t − 2)es +2, y(t, s)=1+es,

u(t, s)=(t − 1)es +2, u(x, y)=x + y − 1.

8. Hint: x(0,s)=0, y(0,s)=s, u(0,s)=−s.

x(t, s)=− sinh t, y(t, s)=s cosh t,

1 − s − 2 2 u(t, s)= 2 (1 + cosh t),u(x, y)= y(x +1) . 10. Hint: Characteristics are x − 2ct = s where s is a parameter. The points on

the characteristic lines travel with speed 2c, whereas points on the wave profile

u = c(x − ct) move with speed c. The wave profile u is not constant on the

characteristic lines.

1 y 11. (a) u = 2 xy + f( x ) where f is an arbitrary function such that f(1) = 0. (b) Characteristics are xy = const. (a family of hyperbolas).

y xy 1 a 2 u = a log y + f(xy), u = 2 log( 3x )+2( 3 ) . 1 t t (c) At t =0, p =0, q = s ; sp = tanh( s ), sq = sech( s ). − 2 t t 2 2 t − 2 x(s, t)= 2s tan( s ) sech( s ), y(s, t)=2s sech ( s ) s . t 2 − 2 2 2 u(s, t)=2s sech( s ), (u 2y) =4(x + y ). (d) u(x, y)=x − y,(e)u(x, t)=x2 tan t.

dx 1 dp 1 dq 12. Hint: Write the characteristic strip equations dt = Fp,.... Since p dt = q dt ,

p and q are proportional to each other. The initial data p0(s) and q0(s) are

2 2 1 the solutions of p0(s)=0and (p0 + q0) 2 = tan θ so that p0(s)=0

and q0(s) = tan θ. Since p0(s)=0, the constant of proportionality must be zero, and so p(t, s)=0. We then find x(t, s)=s and z(t, s) = cos(θ − t). dq − 2 − − Then dt = [q + q cos(θ t)] gives q(t, s) = tan(θ t) y(t, s)= − sin(θ − t)+2sinθ, or equivalently, (y − 2sinθ)2 + z2 =1, which rep-

resents a cylinder.

− 2 1 dz ± 1 1 z 2 14. Hint: ( dξ )= z ( 1+a2 ) , 2 1 x+ay d(1 − z ) 2 = ±d( √ )=±d(x cos θ + y sin θ). a2+1 796 C Answers and Hints to Selected Exercises

dp p 15. (a) Hint: dq = q gives p = c1q. dx − dp du − dt +(u a) dt + p dt =0,ordx +(u a) dp + pdu=0, or d(x +(u − a)p)=0gives x + p(u − a)=const.

Similarly, y + q(u − a)=const.

These equations and F =0give the integral surfaces 2 2 − 2 − (x−ct) x + y +(u a) 1=0, u(x, t)= 1+t(x−ct) . dx 2 dy 2 du − 2 (b) Hint: dt =2pu , dt =2qu , dt = 2(1 u ), dp − 2p dq − 2q dt = u , and dt = u . d − 2 d − 2 (˙pu +˙up)= dt (up)= 2pu , dt (uq)= 2qu . dx 2 − d dy − d Consequently, dt =2pu = dt (up) and dt = dt (uq), and hence, (x − a)2 +(y − b)2 = u2(p2 + q2)=1− u2, where a and b are con-

stants.

2 2 2 (c) (x − x0) +(y − y0) =(u − u0) , where x0, y0, and u0 are constants. This

is a three-parameter⎧ family of solutions. Use equation (4.3.1). ⎪ ⎨ x2 if y =0, 16. (a) u(x, y)= √ ⎩⎪ − (2y2) 1(1 + 2xy − 1+4xy) if y =0 . ⎧ ⎪ ⎨ x if y =0, (b) u(x, y)= √ ⎩⎪ − (2y) 1( 1+4xy − 1) if y =0 .

5.5 Exercises

1. (a) u(x, t)=sinξ, ξ = x − t sin ξ. x →∞ → (b) u(x, t)= 1−t , u as t 1. 1 2 n−1 2. Hint: (u)t +(2 u )x =0. Multiplying it by nu gives the first result. − − 1 − 1 4. ξ = x t exp( ξ ) for x>0; u(x, t)=exp( ξ ). 6. The characteristic diagram in the (x, t)-plane shows that the initial signal f(x)

is focused along the characteristics to a region near x =0as t increases. 5.5 Exercises 797

− t2 7. u = t + A, x = ut 2 + B, where A and B are constants. √ 8. Hint: Shock t =2(x − 1) from (1, 0) to (2, 2) and shock x = 2t from (2, 2). √ ≥ x u =0for x<0, and, when x 0, u = t to the left of t = x and x = 2t, u =0to the right of shocks, and u =1in a triangular region bounded by t =0,

t = x, and t =2(x − 1).

9. u = −1 to the left of the line t + x =0, and u =1to the right of the line

x − t =1. Between these lines, u =(2x − 1)/(1 + 2t). ≤ ≤ 1 1 10. Characteristics from 0 x t, t =0intersect at ( 2 , 2 ). Characteristics from ≤ ≥ ≥ 1 x 0, x 1 also intersect in the region t 2 , and hence, no single-valued 1 1 solution. Shock parallel to the t-axis from ( 2 , 2 ). We find u(x, t)=(2x−1)/(1−2t) in the triangular region bounded by x−t =0, x + t =1 t =0 , . ⎧ ⎨⎪ +1 to the left of shock, u(x, t)=⎪ ⎩ −1 to the right of shock.

11. When a<0, shock along the line at =2x, −a to the left of shock, 2a to the

right. When a>0, −a to the left of the line x = −at and 2a to the right of the

x line x =2at. Between these lines, u =(t ). √ 2 dt dx du 15. Hint: Here c(u)=u , f(x)= x, 1 = c(u) = 0 . Thus, du =0gives u(x, t) = const. on the characteristics. √ u(x, t)=f(ξ)= ξ. √ ξ = x − tF (ξ)=x − tc(f(ξ)) = x − tc( ξ)=x − tξ.

1 x x 2 Thus, ξ = 1+t . Hence, u(x, t)=(1+t ) . 1 3 3 dt dx du 16. c(u)=u , f(x)=x ,wehave 1 = u3 = 0 . u(x, t) = const. on the characteristics.

1 Thus, u(x, t)=f(ξ)=ξ 3 .

1 ξ = x − tF (ξ)=x − tc(f(ξ)) = x − tc(ξ 3 )=x − tξ.

1 x x 3 Hence, ξ = 1+t and u(x, t)=(1+t ) . 798 C Answers and Hints to Selected Exercises

dt dx du du du 17. c(u)=u, f(x)=x; 1 = u = 2t gives dt = u and dt =2t. Hence, u = t2 + A on the characteristic curve x = x(t) joining (x, t) and (ξ,0). dx − 2 2 − 2 2 Also, dt =[u(x, t) t ]+t =[u(ξ,0) 0] + t = ξ + t with ξ = x(0). t3 The equation of the characteristic curve is x(t)=ξt + 3 + B with x(0) = ξ. t3 x(t)=ξ(1 + t)+ 3 . u(x(0), 0) = u(ξ,0) = f(ξ)=ξ. 2 2 3x−t3 Thus, A = ξ, u(x, t)=t + ξ = t + 3(1+t) . dt dx du 18. Hint: 1 = 3t = u , u(x, 0) = f(x) = cos x. dx du 3 2 t Or, dt =3t and u = dt.Or,x = 2 t + A and u(x, t)=Be . − 3 2 B = u(ξ,0) = cos ξ, with x(0) = ξ. Then A = ξ and x 2 t = ξ. t t − 3 2 Consequently, u(x, t)=e cos ξ = e cos(x 2 t ). dt dx du 19. Hint: 2 = 1 = 0 , and hence u(x, t) = const. on the characteristic curve dx 1 t dt = 2 , or equivalently, x = 2 + A. t If x(0) = ξ, then x = ξ + 2 . ⎧ ⎪ ⎨ sin ξ if 0 ≤ ξ ≤ π, u =(x, t)=const. = u(ξ,0) = ⎩⎪ 0 otherwise. ⎧ ⎨⎪ − t ≤ − 1 ≤ sin(x 2 ) if 0 x 2 t π, Or equivalently, u(x, t)= ⎩⎪ 0 otherwise. dt dx du 20. Hint: 1 = 1 = x gives x = t + A, and hence, x = t + ξ,ifx(0) = ξ. du 1 2 dt = x(t)=t + ξ, and hence, u(x, t)= 2 t + ξt + B. − 1 2 − Or, B = u(x, t) 2 t ξt = u(ξ,0) = sin ξ. 1 2 − − If x>t, u(x, t)= 2 t + t(x t)+sin(x t). If (x, t) lies above the line x = t, characteristic passing through this point

never reaches the x-axis, but it reaches the t-axis so that the boundary condi-

tion u(0,t)=t can be used (the initial condition cannot be used in this case, du − − x

With η = t − x, the solution is given by 1 2 − − − 1 − 2 1 2 − u(x, t)= 2 t (t x)t +(t x)+ 2 (t x) = 2 x + t x. t2 On x = t, u(x, t)= 2 . dx dt du dx 2 du dt 21. We have x2 = u = 1 = dz gives dz = x , dz =1, dz = u, whence − −1 1 2 x =(a z) , u = z + b, t = 2 z + bz + c, when a, b, and c are constants. The characteristic equation originating from the initial curve at x = s, t =1− s 1 2 − s(z =0)is x =(1−sz ), u = z(b =0), t = 2 z +1 s. For each x, t, the solution u depends on the parameters s and z. Eliminating 1 2 − 1 2 − s and z gives the answer as follows: s = 2 z +1 t =(2 u +1 t) and x x 1 2 − s = 1+zx =(1+ux ). Thus, ( 2 u +1 t)(1 + ux)=x.

22. The Darcy law for water is Vd = −KHx, K is the hydraulic conductivity and p v2 ≈ p 2 H is the hydraulic head, H = gρ + z + 2g gρ + z for small (v /2g), p is the pressure, g is the acceleration to gravity, and ρ is the density. The Darcy law

describes the assumption that water flows slowly in the soil pores for the head

loss to be proportional to the velocity.

The characteristic equations associated with BuckleyÐLeverett equation are

dt dx ds ds 1 = c = 0 . Or equivalently, dt =0, and hence, s = const. and it is a dx conserved quantity. Hence, dt = c is the speed at which the interface between ∂F water and hydrocarbon moves. Thus, c = ∂s =0when s =0and s =1, and c attains its maximum when 0

known property of hydrocarbons as non-wetting liquids, the mobility of which

is very low for small water saturation.

6.12 Exercises

1. Hint: Use ht +(uh)x =0. 800 C Answers and Hints to Selected Exercises ⎧ ⎪ ⎪ 200 if ξ<−ε, ⎨⎪ 2. ρ(x, t)=f(ξ)= 100(1 − ξ ) if − ε<ξ<ε, ⎪ ε ⎪ ⎩⎪ 0 if ξ>ε, ⎧ ⎪ − − ⎪ ξ 60t if ξ< ε, ⎨⎪ x = ξ +[60− 3 f(ξ)]t = (60t − ε)( ξ ) if − ε<ξ<ε, 5 ⎪ ε ⎪ ⎩⎪ ξ +60t if ξ>ε, ⎧ ⎪ ⎨ 200 if x<−(60t + ε), ρ(x, t)=⎪ ⎩ − x − 100(1 60t+ε ) if (60t + ε)

1 (b) For t< 15 , we eliminate ξ from the above solution to obtain ⎧ ⎪ − ⎪ 25(3 + x 15t ) if − 1+30t ≤ x ≤ 15t, ⎨⎪ 1−15t − ρ(x, t)=⎪ 25(3 − x 15t ) if 15t ≤ x ≤ 1+30t, ⎪ x+15t ⎩⎪ 50 if |x − 30t|≥1.

1 − The solution ρ(x, t) for t = 15 (1 ε) can be found from the result given in 1 Exercise 3(a). Use results in 3(a) to find ρ and x for t = 15 . ⎧ ⎪ ⎨ 25(3 −|ξ|) if |ξ|≤1, ρ = and ⎩⎪ 50 if |ξ>1|, 6.12 Exercises 801 ⎧ ⎪ ⎪ 2+ξ if ξ>1orξ<−1, ⎨⎪ x = 1+2ξ if 0 ≤ ξ ≤ 1, ⎪ ⎪ ⎩⎪ 1 if − 1 ≤ ξ<0.

1 Use these results to draw a graph of ρ(x, 15 ).

4. Hint: Use u = x − c0t and v = t as independent variables. 12. Hint: The equation in matrix form is ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 2 ⎜ ucρ 0 ⎟ ⎜ px ⎟ ⎜ 100⎟ ⎜ pt ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ 1 u 0 ⎟ ⎜ u ⎟ + ⎜ 010⎟ ⎜ u ⎟ =0. ⎝ ρ ⎠ ⎝ x ⎠ ⎝ ⎠ ⎝ t ⎠

00u Sx 001 St

The eigenvalues are the roots of the equation      2   u − λcρ 0      dx  1 u − λ 0  =0 which gives λ = = u, u ± c.  ρ  dt    00u − λ 

13. Hint: du + λ2,1 dv =0along the characteristics C1 and C2, respectively. a(du)2 +2bdudv+ c(dv)2 =0, which corresponds to the characteristics

dx = λdt, a(dx)2 − 2bdxdt+ c(dt)2 =0.

− du+ 1 14. Hint: Along the characteristics C+: η = x ct = const. and dt + 2 au+ =0 − 1 − with the solution u+(t)=u+(0) exp( 2 at) with η = x ct and u−(t)= − 1 u−(0) exp( 2 at) with ξ = x + ct. dρ ∂ρ dx · ∂ρ 15. Hint: ρ = ρ(x(t),t), dt = ∂t + dt ∂x, and then use equations (6.3.1) and (6.3.2).

16. Hint: λ1,2 = u ± c, L1,2 =(1, ±2).

∂ ∂ dx ( ∂t + λ1 ∂x)(u +2c)=Hx along C+: dt = u + c, ∂ ∂ − dx − ( ∂t + λ2 ∂x)(u 2c)=Hx along C−: dt = u c. 802 C Answers and Hints to Selected Exercises

18. Hint: See Jeffrey and Taniuti (1964, pp. 72, 73).

19. Hint: Equate xsr and xrs to derive the EulerÐPoissonÐDarboux equation.

∂ρ 22. Hint: The first equation can be written as ∂t + div(ρu, ρv, ρw)=0. The first and second equations can be combined to find the result ⎛ ⎞ ⎛ ⎞ ⎜ ρu ⎟ ⎜ p + ρu2 ρuv ρuw ⎟ ⎜ ⎟ ⎜ ⎟ ∂ ⎜ ⎟ ⎜ ⎟ ⎜ ρv ⎟ +div⎜ ρuv p + ρv2 ρvw ⎟ =0. ∂t ⎝ ⎠ ⎝ ⎠ ρw ρuw ρvw p + ρw2

The above two results lead to the desired conservation form. ⎛ ⎞ ⎛ ⎞ c u ⎜ 0 0 ⎟ ⎜ ⎟ ⎜ a ⎟ ⎜ a ⎟ ⎜ ⎟ ⎜ ⎟ 25. For (i), A = ⎜ −100⎟ and B = ⎜ 0 ⎟. ⎝ ⎠ ⎝ ⎠ 001 −v − w ⎛ ⎞ ⎛ ⎞ c c u ⎜ − 0 ⎟ ⎜ ⎟ ⎜ a a ⎟ ⎜ a ⎟ ⎜ ⎟ ⎜ ⎟ For (ii), A = ⎜−1 − c c 0 ⎟ and B = ⎜ u ⎟, ⎝ a a ⎠ ⎝ a ⎠ 1 − v − w 002 2 2 and thus, for both cases (i) and (ii), ⎛ ⎞ ⎜ v ⎟ ⎜ ⎟ ⎜ ⎟ U = ⎜ w ⎟ . ⎝ ⎠ u

26. Characteristics drawn from the negative x-axis are vertical lines x = const.,

and along these characteristics, ρ = ρ0 and ρ(x, t)=ρ0 for x<0, t>0. Characteristics drawn from points x>asatisfy x˙(t)=c(ρ(x, 0), 0) =

c(0) = ρm.Ifx>a+ ρmt, t>0, ρ(x, t)=0.

ρ ρ If 0

27. (a) This system of two equations is known to be hyperbolic. The first equa-

tion is already in the one-dimensional divergence form because it becomes ρt +

(ρu)x =0. The one-dimensional form of the second equation is not in diver- gence form, but it is multiplied by ρ and added to u times the first equation to

2 obtain the conservation form (ρu)t +(ρu + p)x =0.

∂ρ ∂u (c) We have ρt +(ρu)x =0, or equivalently, ∂u ∂t +(ρxu + ρux)=0. dρ · ∂u dρ ∂u ∂u 1 ∂p Thus, du ∂t +(ρ + u du )( ∂x)=0. It follows that ∂t +(uux)+ ρ ∂x =0,or ∂u 1 ∂p equivalently, ∂t +(uux + ρ ∂x)=0. ∂u c2(ρ) dρ ∂u Thus, ∂t +(u + ρ du ) ∂x =0.

28. We have xvt +wx =0and close the system by using vx = wt. Thus, the Tricomi

1 v 0 x equation becomes Ut + AUx =0, where U = and A = . This has w −10 2 − 1  eigenvalues λ = x for x =0. When x<0, the eigenvalue are real and distinct, and the system is hyperbolic.

When x>0, the system is elliptic, and the system is parabolic when x =0.

29. The first equation is in conservation form: ht +(uh)x =0. Multiply the sec- ond equation by h and add the result to u times the first equation to obtain the

conservation form.

7.9 Exercises

5. Hint: ∞ ∞ u2 I˙4 = xut dx = − x∂x + Ku˜ dx −∞ −∞ 2 ∞ ∞ ∞ 1 2 1 = u + Ku˜ dx = I2(u)+ dx K(x − s)u(s, t) ds −∞ 2 2 −∞ −∞ 1 = I (u)+c(0)I (u). 2 2 1

− 1 − Integrating with respect to t gives I4(u) 2 tI2(u) tc(0)I1(u)=const. 804 C Answers and Hints to Selected Exercises √ 6. Hint: (a) Multiply the given equation by t to get

√ √ − 2 tu t + t uxx 3u x =0.

(b) Multiply the given equation by 2tu to obtain

2 − 2 − 3 tu t + t 2uuxx ux 4u x =0.

7. Hint: Multiply equation (2.7.67)byu and follow the procedure described by Benney (1974) and Miura (1974) to obtain

1 3 1 4 2 2 u + u + wu uz + u hx =0, 3 t 4 x

1 3 1 4 2 1 3 − 1 3 − or equivalently, ( 3 u )t +(4 u + u h)x +(3 u w)z 3 u wz 2huux =0. Multiply equation (2.7.67)byh to obtain

1 (hu) − uh + huu + hwu + h2 =0. t t xx z 2 x

This equation is added to the previous equation to generate 1 3 2 1 4 1 2 1 3 − hu + u + u h + h + h + u w z huux 3 t 4 2 x 3

+ hwuz − huux − uht =0.

 h Write m = 0 udzso that ht + mx =0, and then 1 1 1 hu + u3 + hu2 + um + u4 + h2 3 3 2 x x 1 + w hu + m + u3 =0. 3 z

This gives the answer. 8.14 Exercises 805

 ∞  ∞ 8. Hint: (a) ( −∞ udx)y =0, and hence, −∞ udx= c(t). Under suitable conditions, c(t) is a constant, and hence, it can be set equal to

zero. To prove (c), we find ∞ ∞ − 2 ∞ udx + uxx 3u −∞ +3 vdx =0. −∞ t −∞ y

Both (b) and (c) represent the conservation of momentum in both x- and y-

directions. H ∂H 10. It follows from the definition of that ∂J = ω, which means that the frequency of the modulated wave is determined by the partial derivative of H with respect

∂k ∂ω to the wave action J. Thus, ∂t + ∂x =0reduces to the Hamiltonian form ∂k ∂ ∂H L ∂t + ∂x( ∂J )=0. We next replace ω by J in the Whitham equation to obtain ∂J ∂ ∂H ∂H − ∂L ∂t + ∂x( ∂k )=0because ∂k = ∂k . Thus, the above equation describes ∂H conservation of the wave action J, and ∂k represents the density of its flux.  ∞ The quantity I = −∞Jdxis conserved in a localized wave packet. It is noted that variables J and k are introduced to describe the modulated wave, and they

play the role similar to the canonical variables of the action-angle in classical

mechanics.

8.14 Exercises

1. (a) α = β =1and γ =2,(b)β =2α,

(c) γ = α − β,(d)β =2α.

2. In D1 and for c ≥ 2, u(ξ)=A exp(m1ξ)+B exp(m2ξ), where m1, m2 = √ 1 − ± 2 − 2 [ c1 c 4].InD2, u(ξ)=1+A1 exp(n1ξ)+B1 exp(n2ξ), where n1, √ 1 − ± 2 n2 = 2 [ c c +4]. 1 To determine A, B, A1, and B1, we use the facts that (i) u(0) = 2 , (ii) the values  of u (0) in D1 and D2 are equal, and (iii) u(−∞)=1and u(∞)=0.InD1, 806 C Answers and Hints to Selected Exercises

for ξ>0,wehave

   1 2 2 u(ξ)= √ c − 4+2c − c +4 exp(m1ξ) 4 c2 − 4   2 2 + c − 4 − 2c + c +4 exp(m2ξ) .

− 1 In D2,forξ<0, we find u(ξ)=1 2 exp(n1ξ).

When c =2, we find solutions in D1 and in D2.

1 − − √1 − In D1,forξ>0, u(ξ)= 2 exp( ξ)+(1 )ξ exp( ξ), and in D2,forξ<0, √ 2 − 1 − u(ξ)=1 2 exp[( 2 1)ξ]. 8. Hint: ψ˜ = aβ+1ψ, and set β =0to find the similarity solutions.

9. Hint: The boundary conditions are u(η =0)=0and u(η →∞)=1,

v(η =0)=vω.

 c2 2   11. v + 4 (η v +5ηv +3v)=0. η γ −1  − α 1 β − Hint: ηt = ( β ) t , ut = β t (γv αηv), γ −2  2γ  γ γ β { α 2 2 α − α − } utt = t ( β ) η v + β ( β + β +1)ηv +(β 1)( β )v , γ − 1  γ −2  ux = t β 2 v , uxxxx = t β v . 13. Hint:

a a ˙ a − Q(t)=2 uxuxt dx =2[uxut]0 2 uxxut dx 0 0 a = −2 uxx uxx + F (u) dx 0 a a − 2 2  = 2 uxx dx +2 uxF (u) dx. 0 0

Using the boundary condition gives the Poincaré inequality

a a 2 ≥ 2 2 uxx dx π ux dx 0 0

and 9.14 Exercises 807 a a   a 2  ≤ 2    ≤ 2 uxF (u) dx ux F (u) dx A ux dx, 0 0 0 Q˙ (t) ≤ 2 A − π2 Q(t)=μQ(t).

Integrating from 0 to a gives the inequality.

14. See Murray (1997), p. 357.

2 20. Combining ut +(ρu)x =0with (ρu)t +(ρu )x =0gives ut + uux =0.

1 2 dt Or in other words, ut +(2 u )x =0. The characteristic equations are 1 = dx du dx u = 0 , which leads to u = const. for dt = u. Thus, u is invariant, and ρ 1 2 1 2 and ρu are conserved quantities. Writing U = u and F = 2 u = 2 U gives

Ut + Fx =0. Or equivalently, Ut + FU Ux =0, that is, Ut + cUx =0, where

∂F c = ∂U = U = u is the propagation velocity. Differentiating the inviscid

Burgers equation ut + uux =0with respect to x gives (ux)t + u(ux)x =

− 2 dt dx dux ux. Thus, the characteristic equations for ux are = = − 2 , that is, 1 u ux d 2 dx 1 ux = −u for = u. Integrating gives − = −t + A, where A is a dt x dt ux  1 constant. When t = t0, (ux)=u , and A = t0 − . Thus, the solution becomes 0 u0  −  −1 (ux)(t)=u0[1 + (t t0)u0] .

9.14 Exercises

dE 20. Hint: Add two equations in 20(d) and integrate the result to show dt =0.

21. Hint: If u0(x)=(c1 − γ)exp(−|x − x1|)+(c2 − γ)exp(−|x − x2|), x ∈ R

with c1 <γ, c2 >γand x1

m0 = u0 − u0xx =2c1δ(x − x1)+2c2δ(x − x2),

where δ(x) is the Dirac delta function.

22. Hint: u(x, t) is a solution of 808 C Answers and Hints to Selected Exercises T (uφt + F (u)φx) dx dt + u(x, 0)φ(x, 0) dx =0, 0 R R

∈ ∞ × R 1 2 ∗ 3 2 for any T>0 and φ C0 ([0,T] ) with F (u)= 2 u + p ( 2 u )+γu, where p(x) is defined in 21(a). (See Guo 2009.)

10.9 Exercises

10. We seek the solution ψ(x, t)=Ψ(x)e−iωt where ω =(E/) is the frequency

of the De Broglie wave and the function Ψ(x) satisfies the equation

2mE Ψ (x)+ (1 − x)Ψ =0. 2

2 1 Making the change of variable z = −(1 − x)(2mE/ ) 3 reduces the equation

into the form Ψ  − zΨ =0. The bounded solution at |z|→∞can be expressed

in terms of the Airy function

∞ s3 Ψ(z)=CAi(z)=C cos sz + ds, 0 3

where C is a constant. Thus, the solution describing the behavior of the electron

is ψ(z,t)=CAi(z)exp(−iωt). The function |ψ|2 describes the probability of

the electron at a point z.Forz>0, the probability drops to zero suddenly as if

there were an obstacle reflecting the electron at z =0which is referred to as the

turning point. For z<0, the solution ψ(z,t) represents a nonuniform standing

wave. Using the asymptotic expansion of Ai(z) for |z|→∞, in the form ⎧ ⎪ ⎨⎪ 1 − 2 3/2 →∞ √ 1 exp( 3 z ), when z , ∼ πz 4 Ai(z) ⎪ ⎩⎪ 1 2 | |3/2 π →−∞ √ 1 cos( 3 z + 4 ), when z . πz 4 12.10 Exercises 809

The solution for ψ(z,t) can be written as the superposition of two progressive

waves in the form C 2 π ψ(z,t) ∼ √ exp −i ωt + |z|3/2 − 4 3 4 z 2 π +exp −i ωt − |z|3/2 + . 3 4

This represents the De Broglie wave for the particle in free space.

11.14 Exercises

u 6. Hint: φ(x, t) = tan( 4 ), x + Ut x − Ut φ(x, t) ∼±U exp ±√ ∓ U exp ∓√ as t →∓∞. 1 − U 2 1 − U 2

1 γ γ 1 Note that ∓U exp(θ)=± exp{θ + √ }, where = 1(1 − U) 2 log U. 2 1−U 2 2

−1 a1+a2 1 14. (b) u4 = 4 tan [( ) tan{ (u2 − u3)}] for any solutions u2,u3. a1−a2 4 u tan r =exp(θ ),θ=(a x + a−1t + ε ),r=2, 3. 4 r r r r r

15. Hint: Use ux(x, t) instead of u(x, t). 22. v − c2v − a2v =0. tt xx  1 2 − x2 −| | 24. u(x, t)= 2c J0[d t c2 ]H(ct x ).

12.10 Exercises

1. (a) The continuity and the momentum equations for the inviscid Burgers equa- ρ tion can be written in the matrix form Ut + AFx =0by defining U = = ρu ρu u u1 , F = F1 = = 2 . 2 2 u2 F2 ρu u2/u1

∂F1 ∂F1 ∂u1 ∂u2 01 01 Thus, A = = u2 2 2u2 = 2 . ∂F2 ∂F2 −( ) −u 2u u1 u1 ∂u1 ∂u2 810 C Answers and Hints to Selected Exercises   The eigenvalues of A are the roots of 0=|A − λI| =  −λ 1  = λ2 − −u2 2u−λ 2uλ + u2. Thus, A has two equal eigenvalues (λ = u, u) which are not distinct.

Hence, the system is not hyperbolic.  ∂F1 ∂F1 ∂u1 ∂u2 01 01 ∂P (b) A = = ∂P u2 2 2u2 = 2 2 , where c = .The ∂F2 ∂F2 −( ) c −u 2u ∂u1 ∂u1 u1 u1 ∂u1 ∂u2 eigenvalues are real and distinct roots of |A − λI| =0.    −λ 1  Or, |A − λI| = =0, that is, λ = λ1, λ2 = u ∓ c. c2−u2 2u−λ The corresponding eigenvectors are 1 and 1 , and a new matrix B can u−c u+c be defined by B = 11, and hence, B−1 = 1 c+u −1 with B−1AB = u−cu+c 2c c−u 1 − diagonal matrix, D = u c 0 = λ1 0 . 0 u+c 0 λ2 −1 1 u − The Riemann invariants are dR = B dU, and hence, dR1 =(2 + 2c )dU1 1 1 − u 1 R1 2 dU2 and dR2 =(2 2c )dU1 + 2 dU2, where the matrix R = . R2

(c) The 2 × 2 matrix system can be generalized for an n × n system as Ut +

Fx = S. Or equivalently, Ut + AUx = S, where U, F , and S are n × 1 matrices given by ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎢ u1 ⎥ ⎢ F1 ⎥ ⎢ S1 ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ u2 ⎥ ⎢ F2 ⎥ ⎢ S2 ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ U = ⎢ . ⎥ ,F= ⎢ . ⎥ ,S= ⎢ . ⎥ , ⎢ . ⎥ ⎢ . ⎥ ⎢ . ⎥ ⎣ . ⎦ ⎣ . ⎦ ⎣ . ⎦

un Fn Sn

A is the n × n Jacobian matrix of F : ⎡ ⎤ ∂F ∂F ∂F ⎢ 1 1 ··· 1 ⎥ ⎢ ∂u1 ∂u2 ∂un ⎥ ⎢ ⎥ ⎢ ∂F2 ∂F2 ··· ∂F2 ⎥ ⎢ ∂u ∂u ∂u ⎥ A = ⎢ 1 2 n ⎥ . ⎢ . . . . ⎥ ⎢ . . .. . ⎥ ⎣ ⎦ ∂Fn ∂Fn ··· ∂Fn ∂u1 ∂u2 ∂un 12.10 Exercises 811

A hyperbolic system of conservation laws is a system of conservation laws with the following properties: (i) The components of F and S are functions of com- ponents of U and possibly of x and t,butF does not contain any derivative of

U with respect to x and t, and (ii) the matrix A has n real and distinct eigen- values which are roots of |A − λI| =0. The theory of hyperbolic systems of conservation laws with many examples of applications is available in many books including Defermos (2000), Holden and Risebro (2002), Jeffrey (1976),

Lax (1973, 2006), Serre (2000), Sharma (2010), and Zheng (2001). Bibliography1

Abdelkader, M.A. (1982). Travelling wave solutions for a generalized Fisher equa- tion, J. Math. Anal. Appl. 85, 287Ð290. Ablowitz, M.J. and Clarkson, P.A. (1991). Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University Press, Cambridge. Ablowitz, M.J. and Haberman, R. (1975). Nonlinear evolution equations-two and three dimensions, Phys. Rev. Lett. 35, 1185Ð1188. Ablowitz, M.J. and Haut, T.S. (2009). Asymptotic expansions for solitary gravity- capillary waves in two and three dimensions, Proc. R. Soc. Lond. A465, 2725Ð 2749. Ablowitz, M.J. and Haut, T.S. (2010). Asymptotic expansions for solitary gravity- capillary waves in two and three dimensions, J. Phys. A, Math. Theor. 43(43), 1Ð14. #434005 Ablowitz, M.J. and Ladik, J.F. (1976a). Nonlinear differential-difference equations and Fourier analysis, J. Math. Phys. 17, 1011Ð1018. Ablowitz, M.J. and Ladik, J.F. (1976b). A nonlinear difference scheme and inverse scattering, Stud. Appl. Math. 55, 213Ð229. Ablowitz, M.J. and Segur, H. (1979). On the evolution of packets of water waves, J. Fluid Mech. 92, 691Ð715. Ablowitz, M.J. and Segur, H. (1981). Solitons and the Inverse Scattering Transforms, SIAM, Philadelphia. Abramowitz, M. and Stegun, I.A. (1972). Handbook of Mathematical Functions, Dover, New York. Ablowitz, M.J. and Zeppetella, A. (1979). Explicit solutions of Fisher’s equation for a special wave speed, Bull. Math. Biol. 41, 835Ð840. Ablowitz, M.J., Kaup, D.J., Newell, A.C., and Segur, H. (1973). Method for solving the sine-Gordon equation, Phys. Rev. Lett. 30, 1262Ð1264.

1 This bibliography is not, by any means, a complete one for the subject. For the most part, it consists of books and papers to which reference is made in the text. Many other selected books and papers related to material in this book have been included so that they may stimulate new interest in a future study and research.

L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers, DOI 10.1007/978-0-8176-8265-1, c Springer Science+Business Media, LLC 2012 814 Bibliography

Ablowitz, M.J., Kaup, D.J., Newell, A.C., and Segur, H. (1974). The inverse scat- tering transform Fourier analysis for nonlinear problems, Stud. Appl. Math. 53, 249Ð315. Airy, G.B., (1845). Tides and Waves, in Encyclopedia Metropolitana, Article 192. Akylas, T.R. (1993). Envelope solitons with stationary crests, Phys. Fluids 5, 789Ð 791. Akylas, T.R. (1994). Three-dimensional long water-wave phenomena, Annu. Rev. Fluid Mech. 26, 191Ð210. Akylas, T.R. (2007). Solitary waves in rotating fluids, in Solitary Waves in Fluids (ed. R.H.J. Grimshaw), 111Ð124. Akylas, T.R. and Grimshaw, R. (1992). Solitary internal waves with oscillatory tails, J. Fluid Mech. 242, 279Ð298. Akylas, T.R., Dias, F., and Grimshaw, R. (1998). The effect of the induced mean flow on solitary waves in deep water, J. Fluid Mech. 355, 317Ð328. Ames, W.F. (1965). Nonlinear Partial Differential Equations in Engineering,Vol.I, Academic Press, New York. Ames, W.F. (1972). Nonlinear Partial Differential Equations in Engineering,Vol.II, Academic Press, New York. Amick, C. and Kirchgassner, K. (1989). A theory of solitary waves in the presence of surface tension, Arch. Ration. Mech. Anal. 105, 1Ð49. Amick, C.J., Bona, J.L., and Schonbek, M.E. (1989). Decay of solutions of some nonlinear wave equations, J. Differ. Equ. 81, 1Ð49. Amick, C.J., Fraenkel, L.E., and Toland, J.F. (1982). On the Stokes Conjecture for the wave of extreme form, Acta Math. Stockh. 148, 193Ð214. Ammerman, A.J. and Cavalli-Sforva, L.L. (1971). Measuring the rate of spread of early farming, Man 6, 674Ð688. Ammerman, A.J. and Cavalli-Sforva, L.L. (1983). The Neolithic Transition and the Genetics of Populations in Europe, Princeton University Press, Princeton. Aoki, K. (1987). Gene-culture waves of advance, J. Math. Biol. 25, 453Ð464. Arecchi, F.T., Masserini, G.L., and Schwendimann, P. (1969). Electromagnetic prop- agation in a resonant medium, Rev. Nuovo Cimento 1, 181Ð192. Aris, R. (1975). The Mathematical Theory of Diffusion and Reaction in Permeable Catalyst, Oxford University Press, Oxford. Arnold, R., Showalter, K., and Tyson, J.J. (1987). Propagation of chemical reactions in space, J. Chem. Educ. 64, 740Ð742. Aronson, D.G. (1980). Density-dependent interactionÐdiffusion systems, in Dynam- ics and Modelling of Reactive Systems (eds. W.E. Stewart, W.H. Ray, and C.C. Conley). Academic Press, Boston, 161Ð176. Aronson, D.G. (1986). The porous medium equation, in Nonlinear Diffusion Prob- lems, Lecture Notes in Mathematics, Vol. 1224, Springer, New York, 1Ð46. Asano, N. (1970). Reductive perturbation method for nonlinear wave propagation in inhomogeneous media III, J. Phys. Soc. Jpn. 29, 220Ð224. Asano, N. (1974). Modulation for nonlinear wave in dissipative or unstable media, J. Phys. Soc. Jpn. 36, 861Ð868. Asano, N. and Ono, H. (1971). Nonlinear dispersive or dissipative waves, J. Phys. Soc. Jpn. 31, 1830Ð1836. Bibliography 815

Asano, N. and Taniuti, T. (1970). Reductive perturbation method for nonlinear wave propagation in inhomogeneous media II, J. Phys. Soc. Jpn. 29, 209Ð214. Asano, N., Taniuti, T., and Yajima, N. (1969). A perturbation method for a nonlinear wave modulation II, J. Math. Phys. 10, 2020Ð2024. Atiyah, M., Gibbon, J.D., and Wilson, G. (1985). New developments in the theory and applications of solitons, Philos. Trans. R. Soc. Lond. 315, 333Ð469. Avilov, V.V., Krichever, I.M., and Novikov, S.P. (1987). Evolution of the Whitham zone in the KortewegÐde Vries Theory, Sov. Phys. Dokl. 32, 345Ð349. Balmforth, N.J. (1995). Solitary waves and homoclinic orbits, Annu. Rev. Fluid Mech. 27, 335Ð373. Barcilon, A. and Drazin, P.G. (2001). Nonlinear waves of vorticity, Stud. Appl. Math. 106(4), 437Ð479. Barenblatt, G.I. (1979). Similarity, Self-similarity and Intermediate Asymptotics, Consultants Bureau, New York. Barenblatt, G.I. and Zel’dovich, Y.B. (1972). Self-similar solutions as intermediate asymptotics, Annu. Rev. Fluid Mech. 4, 285Ð312. Barone, A., Esposito, F., Magee, C.J., and Scott, A.C. (1971). Theory and applica- tions of sine-Gordon equation, Rev. Nuovo Cimento 1(2), 227Ð267. Bebernes, J. and Eberly, D. (1989). Mathematical Problems from Combustion The- ory, Springer, New York. Benguria, R. and Depassier, M. (1989). Equations of the KortewegÐde Vries type with nontrivial conserved quantities, J. Phys. A 22, 4135Ð4142. Benjamin, T.B. (1962). The solitary wave on a stream with arbitrary distribution of vorticity, J. Fluid Mech. 12, 97Ð116. Benjamin, T.B. (1967). Instability of periodic wave trains in nonlinear dispersive systems, Proc. R. Soc. Lond. A299, 59Ð75. Benjamin, T.B. (1992). A new kind of solitary wave, J. Fluid Mech. 245, 401Ð411. Benjamin, T.B. and Feir, J.E. (1967). The disintegration of wavetrains on deep water, Part 1, Theory, J. Fluid Mech. 27, 417Ð430. Benjamin, T.B. and Lighthill, M.J. (1954). On cnoidal waves and bores, Proc. R. Soc. Lond. A224, 448Ð460. Benjamin, T.B. and Olver, P.J. (1982). Hamiltonian structure, symmetrics and con- servation laws for water waves, J. Fluid Mech. 125, 137Ð185. Benjamin, T.B., Bona, J.L., and Mahony, J.J. (1972). Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. A272, 47Ð78. Benney, D.J. (1966). Long waves on liquid films, J. Math. Phys. 45, 150Ð155. Benney, D.J. (1974). Long waves, in Nonlinear Wave Motion (ed. A.C. Newell), Am. Math. Soc., Providence, 49Ð60. Benney, D.J. and Roskes, G. (1969). Wave instabilities, Stud. Appl. Math. 48, 377Ð 385. Ben-Jacob, E., Brand, H., Dee, G., Kramer, L., and Langer, J.S. (1985). Pattern prop- agation in nonlinear dissipative systems, Physica D 14, 348Ð364. Benton, E.R. and Platzman, G.W. (1972). A table of solutions of one-dimensional Burgers equation, Q. Appl. Math. 30, 195Ð212. Berezin, Y.A. and Karpman, V.I. (1966). Nonlinear evolution of disturbances in plas- mas and other dispersive media, Sov. Phys. JETP 24, 1049Ð1056. 816 Bibliography

Bespalov, V.I. and Talanov, V.I. (1966). Filamentary structure of light beams in non- linear liquids, JETP Lett. 3, 307Ð310. Bhatnagar, P.L. (1979). Nonlinear Waves in One-Dimensional Dispersive Systems, Oxford University Press, Oxford. Bhatnagar, P.L. and Prasad, P. (1970). Study of the self-similar and steady flows near singularities, Part I, Proc. Roy Soc. London A315, 569Ð584. Bhatnagar, P.L. and Prasad, P. (1971). Study of the self-similar and steady flows near singularities, Part II, Proc. Roy Soc. London A322, 45Ð62. Bhatta, D. and Debnath, L. (2003). Small amplitude wave in shallow water over linear and quadratic sloping beds, J. Appl. Math. Comput. 13, 53Ð65. Biodini, G. and Kodama, Y. (2003). On a family of solutions of the KadomtsevÐ Petviashvili equation which also satisfy the Toda lattice hierarchy, J. Phys. A, Math. Gen. 36, 10519Ð10536. Biondini, G. and Wang, D. (2010). On the soliton solutions of the two-dimensional Toda Lattice, J. Phys. A, Math. Theor. 43(43), 1Ð20. #43007 Birkhoff, G. (1950). Hydrodynamics, Princeton University Press,Princeton. Birkhoff, G.D. (1927). Dynamical Systems, Am. Math. Soc., Providence. Blackstock, D.T. (1964). Thermoviscous attenuation of plane, periodic finite- amplitude sound waves, J. Acoust. Soc. Am. 36, 534Ð542. Bluman, G.W. and Kumei, S. (1989). Symmetries and Differential Equations, Springer, New York. Bodini, G. (2007). Line soliton interactions of the KadomtsevÐPetviashvili equation, Phys. Rev. Lett. 99, 064103. Bodini, G., Maruno, K., Oikawa, M., and Tsuji, H. (2009). Soliton interactions of the KadomtsevÐPetviashvili equation and generation of large-amplitude waves, Stud. Appl. Math. 122, 377Ð394. Bogdanov, L.V. (2010). Non-Hamiltonian generalizations of the dispersionless 2DTL hierarchy, J. Phys. A, Math. Theory 43, 1Ð8, #434008. Bogoyavlensky, O.I. (1976). On perturbations of the periodic Toda Lattice, Commun. Math. Phys. 51, 201Ð209. Bona, J.L. and Schonbek, M.E. (1985). Travelling-wave solution to the KortewegÐ de VriesÐBurgers equation, Proc. R. Soc. Edinb., Sect. A 101, 207Ð226. Born, M. and Infeld, L. (1934). Foundations of a new field theory, Proc. R. Soc. Lond. A144, 425Ð451. Bouchut, F., Le Sommer, J., and Zeitlin, V. (2005). Breaking of balanced and unbal- anced equatorial waves, Chaos 15(1), 013503. Boussinesq, J. (1871a). Théorie de l’intumescene liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire, Comptes Rendus 72, 755Ð759. Boussinesq, M.J. (1871b). Théorie generale des mouvements qui sont propagés dans un canal rectangulaire horizontal, Comptes Rendus 72, 256Ð260. Boussinesq, M.J. (1872). Théorie des ondes et des rumous qui se propagent le long d’un canal rectagulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pures Appl. Ser. (2) 17, 55Ð108. Bibliography 817

Boussinesq, M.J. (1877). Essai sur la théorie des eaux courants. Mémoires présentes par diviers savants à l’Académie des Sciences Inst. France (Series 2) 23, 1Ð630. Boyd, J.P. (1980). The nonlinear equatorial Kelvin wave, J. Phys. Oceanogr. 10, 1Ð11. Boyd, J.P. (1983). Equatorial solitary waves. Part 2: Envelope solitons, J. Phys. Oceanogr. 13, 428Ð449. Boyd, J.P. (2007). Planetary solitary waves, in Solitary Waves in Fluids (ed. R.H.J. Grimshaw), 125Ð158. Boyd, J.P. and Ma, H. (1990). Numerical study of elliptical modons by a spectral method, J. Fluid Mech. 221, 597Ð611. Bramson, M. (1983). Convergence of solutions of the Kolmogorov equation to trav- elling waves, Mem. Am. Math. Soc. 285, 1Ð190. Bressan, A. (2000). Hyperbolic Systems of Conservation Laws. The One- Dimensional Cauchy Problem, Oxford University Press, Oxford. Bressan, A. (2007). Global dissipative solutions of the CamassaÐHolm equation, Anal. Appl. 5, 1Ð27. Bressan, A. and Constantin, A. (2007). Global conservative solutions of the CamassaÐHolm equation, Arch. Ration. Mech. Anal. 183, 215Ð239. Britton, N.F. (1986). Reaction-Diffusion Equations and Their Applications to Biol- ogy, Academic Press, New York. Buckley, S.E. and Leverett, M.C. (1942). Mechanisms of fluid displacement in sands, Trans. AIME 146, 107Ð116. Burgers, J.M. (1948). A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech. 1, 171Ð199. Burgers, J.M. (1974). The Nonlinear Diffusion Equation, Reidel, Dordrecht. Burton, C.V. (1893). On plane and spherical sound waves of finite amplitude, Philos. Mag. 35, 317Ð333. Calogero, F. and Degasperis, A. (1978). Solution by the spectral-transform method of a nonlinear evolution equation including as a special case the cylindrical KdV equation, Lett. Nuovo Cimento 19, 150Ð154. Calogero, F. and Degasperis, A. (2005). Novel solution of the system describing the resonant interaction of three waves, Physica D 200, 242Ð256. Calvo, D.C. and Akylas, T.R. (2002). Stability of steep gravity-capillary solitary waves in deep water, J. Fluid Mech. 452, 123Ð143. Calvo, D.C., Yang, T.S., and Akylas, T.R. (2000). On the stability of solitary waves with decaying oscillatory tails, Proc. R. Soc. 456, 469Ð487. Camassa, R. and Holm, D.D. (1993). An integrable shallow water equation with peaked solitons, Phys. Rev. Lett. 71, 1661Ð1664. Camassa, R., Holm, D.D., and Hyman, J.M. (1994). A new integrable shallow water equation, Adv. Appl. Mech. 31, 1Ð33. Campbell, G.A. and Foster, R.M. (1948). Fourier Integrals for Practical Applica- tions, Van Nostrand, New York. Canosa, J. (1969). Diffusion in nonlinear multiplicative media, J. Math. Phys. 10, 1862Ð1868. Canosa, J. (1973). On a nonlinear diffusion equation describing population growth, IBM J. Res. Dev. 17, 307Ð313. 818 Bibliography

Carpinteri, A. and Mainardi, F. (1997). Fractals and Fractional Calculus in Contin- uum Mechanics, Springer, New York. Case, K.M. and Chiu, C.S. (1969). Burgers’ turbulence models, Phys. Fluids 12, 1799Ð1808. Cercignani, C. (1977). Solitons. Theory and application, Rev. Nuovo Cimento 7, 429Ð 469. Chakraborty, S. and Kodama, Y. (2009). Soliton solutions of the KP equation and application to shallow water waves, Stud. Appl. Math. 123, 83Ð151. Champneys, A.R., Vanden-Broeck, J.M., and Lord, G.J. (2002). Do true elevation gravity-capillary solitary waves exist? A numerical investigation, J. Fluid Mech. 454, 403Ð417. Chen, Y. and Liu, P.L.-F. (1994). A pseudospectral approach for scattering of water waves, Proc. R. Soc. Lond. A445, 619Ð636. Chen, Y. and Liu, P.L.-F. (1995a). The unified KadomtsevÐPetviashvili equation for interfacial waves, J. Fluid Mech. 288, 383Ð408. Chen, Y. and Liu, P.L.-F. (1995b). Modified Boussinesq equations and associated parabolic models for water wave propagation, J. Fluid Mech. 228, 351Ð381. Chen, Y. and Wen, S. (1987). Traveling wave solutions to the two-dimensional KortewegÐde Vries equation, J. Math. Anal. Appl. 127, 226Ð236. Choi, W. and Camassa, R. (1999). Fully nonlinear internal waves in a two-fluid sys- tem, J. Fluid Mech. 396, 1Ð36. Choudhury, S.R. and Debnath, L. (1994). Painlevé analysis, similarity reductions, and special solutions of nonlinear evolution equations, in Ocean Waves Engineer- ing (ed. M. Rahman), Vol. 2, 115Ð133. Christov, O. and Hakkaev, S. (2009). On the Cauchy problem for the periodic b- family of equations and of the non-uniform continuity of DegasperisÐProcesi equation, J. Math. Anal. Appl. 360, 47Ð56. Chu, V.H. and Mei, C.C. (1970). On slowly varying Stokes waves, J. Fluid Mech. 41, 873Ð887. Chu, V.H. and Mei, C.C. (1971). The nonlinear evolution of Stokes waves in deep water, J. Fluid Mech. 47, 337Ð351. Claude, Ch., Kivshar, Yu.S., Kluth, O., and Spataschek, K.H. (1993). Liapunov Sta- bility of Generalized Langmuir Solitons, Phys. Rev. B47, 228Ð234. Coclite, G.M. and Karlsen, K.H. (2006). On the well-posedness of the DegasperisÐ Procesi equation, J. Funct. Anal. 233, 60Ð91. Cole, J.D. (1951). On a quasilinear parabolic equation occurring in aerodynamics, Q. Appl. Math. 9, 225Ð236. Collins, M.A. (1981). A quasi-continuum approach for solitons in an atomic chain, Chem. Phys. Lett. 77, 342Ð347. Constantin, A. (2000). Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier 50, 321Ð362. Constantin, A. (2001). On the scattering problem for the CamassaÐHolm equation, Proc. R. Soc. Lond. A 457, 953Ð970. Constantin, A. and Escher, J. (1998a). Wave breaking for nonlinear nonlocal shallow water equations, Acta. Math. 181, 229Ð243. Bibliography 819

Constantin, A. and Escher, J. (1998b). Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation, Commun. Pure Appl. Math. 51, 475Ð504. Constantin, A. and Escher, J. (1998c). On the structure of family of quasilinear equa- tions arising in shallow water theory, Math. Ann. 312, 403Ð416. Constantin, A. and Escher, J. (2000). On the blow-up rate and blow-up set of break- ing waves for a shallow water equation, Math. Z. 233, 75Ð91. Constantin, A. and Lannes, D. (2009). The hydrodynamical relevance of the CamassaÐHolm and DegaperisÐProcesi Equation, Arch. Ration. Mech. Anal. 192, 165Ð186. Constantin, A. and McKean, H.P. (1999). A shallow water equation on the circle, Commun. Pure Appl. Math. 52(8), 949Ð982. Constantin, A. and Strauss, W. (2000). Stability of peakons, Commun. Pure Appl. Math. 53, 603Ð610. Constantin, A. and Strauss, W. (2002). Stability of the CamassaÐHolm solitons, J. Nonlinear Sci. 12, 415Ð422. Constantin, A., Gerdjikov, V.S., and Ivanov, R.I. (2006). Inverse scattering transform for the CamassaÐHolm equation, Inverse Probl. 22, 2197Ð2207. Cooper, F., Hyman, J.M., and Khare, A. (2001). Compacton solutions in a class of generalized fifth-order KortewegÐde Vries equations, Phys. Rev. E64, 1Ð13. Cornish, V. (1934). Ocean Waves and Kindred Geophysical Phenomena, Cambridge University Press, Cambridge. Courant, R. and Friedrichs, K.O. (1948). Supersonic Flow and Shock Waves, Inter- science, New York and London Courant, R. and Hilbert, D. (1953). Methods of Mathematical Physics,Vol.1,Wiley- Interscience, New York. Courant, R. and Hilbert, D. (1962). Methods of Mathematical Physics,Vol.2,Wiley- Interscience, New York. Craig, W., Guyenne, P., and Kalisch, H. (2004). A new model for large amplitude long internal waves, C. R., Méc. 332, 525Ð530. Craik, A.D.D. (2004). The origins of water wave theory, Annu. Rev. Fluid Mech. 36, 1Ð28. Cramer, M.S. and Sen, R. (1992). A general scheme for the derivation of evolution equations describing mixed nonlinearity, Wave Motion 15, 333Ð355. Crandall, R.E. (1991). Mathematica for the Sciences, Addison-Wesley, Redwood City. Crank, J. (1975). The Mathematics of Diffusion, 2nd edition, Oxford University Press, Oxford. Crighton, D.G. (1979). Model equations of nonlinear acoustics, Annu. Rev. Fluid Mech. 11, 11Ð23. Crighton, D.G. and Scott, J.F. (1979). Asymptotic solution of model equations in nonlinear acoustics, Philos. Trans. R. Soc. Lond. A292, 101Ð134. Crowdy, D.G. (1999). Exact solutions for steady capillary waves on a fluid annulus, J. Nonlinear Sci. 9, 615Ð640. Das, A. (1989). Integrable Models, World Scientific, Singapore. 820 Bibliography

Davey, A. (1972). The propagation of a weak nonlinear wave, J. Fluid Mech. 53, 769Ð781. Davey, A. and Stewartson, K. (1974). On three dimensional packets of surface waves, Proc. R. Soc. Lond. A338, 101Ð110. Davis, H.T. (1962). Introduction to Nonlinear Differential and Integral Equations, Dover, New York. Davis, R.E. and Acrivos, A. (1967). Solitary internal waves in deep water, J. Fluid Mech. 29, 593Ð607. De Leonardis, R.M. and Trullinger, S.E. (1980). Theory of boundary effects on sine- Gordon solitons, J. Appl. Phys. 51, 1211Ð1226. Debnath, L. (1983a). Nonlinear Waves, Cambridge University Press, Cambridge. Debnath, L. (1983b). Nonlinear dynamics of water waves and the nonlinear Schrödinger equation, Diamond Jubilee Volume, Calcutta Mathematical Society, 63Ð93. Debnath, L. (1984). Advance in Nonlinear Waves, Vol. I, Pitman, London. Debnath, L. (1985a). Advance in Nonlinear Waves, Vol. II, Pitman, London. Debnath, L. (1985b). Nonlinear dispersive waves and variational principles, in Dif- ferential Geometry, Calculus of Variations and Their Applications (eds. G.M. Rassias and T.M. Rassias), Dekker, New York, 149Ð176. Debnath, L. (1987). Bifurcation and nonlinear instability in applied mathematics, in Nonlinear Analysis (ed. T.M. Rassias), World Scientific, Singapore, 161Ð266. Debnath, L. (1989). The linear and nonlinear CauchyÐPoisson wave problems for an inviscid or viscous liquid, in Topics in Mathematical Analysis (ed. T.M. Rassias), World Scientific, Singapore, 123Ð155. Debnath, L. (1992a). Nonlinear Dispersive Wave Systems, World Scientific, Singa- pore. Debnath, L. (1992b). Solitons and the inverse scattering transforms, Bull. Calcutta Math. Soc. 84, 475Ð504. Debnath, L. (1994). Nonlinear Water Waves, Academic Press, Boston. Debnath, L. (1995). Integral Transforms and Their Applications, CRC Press, Boca Raton. Debnath, L. (2000). Some nonlinear evolution equations in water waves, J. Math. Anal. Appl. 251, 488Ð503. Debnath, L. (2002). Nonlinear dynamics of water waves and breaking phenomena, Proc. Indian Natl. Sci. Acad., 683Ð753. Debnath, L. (2003a). Fractional integral and fractional partial differential equation in fluid mechanics, Fract. Calc. Appl. Anal. 6, 119Ð155. Debnath, L. (2003b). Recent applications of fractional calculus to science and engi- neering, Int. J. Math. Sci. 54, 3413Ð3442. Debnath, L. (2007a). A brief historical introduction to solitons and inverse scattering transform—a vision of Scott Russell, Int. J. Math. Educ. Sci. Technol. 38, 1003Ð 1028. Debnath, L. (2007b). On linear and nonlinear Rossby Waves, J. Math. Anal. Appl. 333, 164Ð190. Bibliography 821

Debnath, L. (2009). Water waves and the Korteweg and de Vries equation, in En- cyclopedia of Complexity and System Science, Vol. 23, Springer, Berlin, 9967Ð 10005. Debnath, L. and Bhatta, D. (2004). On solutions to a few linear fractional inhomo- geneous partial differential equations in fluid mechanics, Fract. Calc. Appl. Anal. 7, 21Ð36. Debnath, L. and Bhatta, D. (2007). Integral Transforms and Their Applications, 2nd edition, Chapman & Hall/CRC Press, Boca Raton. Debnath, L. and Bhatti, M. (2004). On Fractional Schrödinger and Dirac equations, Int. J. Pure Appl. Math. 15, 1Ð11. Debnath, L. and Choudhury, S.R. (1997). Nonlinear Instability Analysis,Vol.1, Computational Mechanics Publications, Southampton. Debnath, L. and Mikusinski, P. (1999). Introduction to Hilbert Spaces with Applica- tions, 2nd edition, Academic Press, Boston. Debnath, L. and Mikusinski, P. (2005). Introduction to Hilbert Spaces with Applica- tions, 3rd edition, Elsevier Academic Press, London. Debnath, L. and Rahman, M. (1981). A theory of nonlinear wave loading on offshore structures, Int. J. Math. Math. Sci. 4, 589Ð613. Debnath, L. and Shivamoggi, B.K. (1985). Some nonlinear model equations in dis- persive systems and their solitary wave solutions in fluids and plasmas, in Ad- vances in Nonlinear Waves II (ed. L. Debnath), Pitman Advance Publishing Pro- gram, Boston, 309Ð347. Debnath, L. and Shivamoggi, B.K. (1986). Three-dimensional nonlinear Schrödinger equation for finite-amplitude gravity waves in a fluid, Nuovo Cimento 94B, 140Ð 148. (1987) 99B, 247. Debnath, L. and Shivamoggi, B.K. (1990). Pseudo-variational principles and nonlin- ear surface waves in a dissipative fluid, Int. J. Non-Linear Mech. 25, 61Ð65. Defermos, C.M. (2000). Hyperbolic Conservation Laws in Continuum Physics, Springer, Berlin. Degasperis, A. (2010). Integrable models in nonlinear optics and soliton solutions, J. Phys. A 43(43), 1Ð18, #434001. Degasperis, A. and Procesi, M. (1999). Asymptotic Integrability, in Symmetry and Perturbation Theory (eds. A. Degasperis and G. Gaeta), World Scientific, Singa- pore. Degasperis, A., Holm, D., and Hone, A. (2002). A new integral equation with peakon solutions, Theor. Math. Phys. 133, 1461Ð1472. Degasperis, A., Conforti, M., Baronio, F., and Wabnitz, S. (2007). Effects of nonlin- ear wave coupling: accelerate solitons, Eur. Phys. J. Spec. Top. 147, 233Ð252. Dias, F. and Bridges, T. (2005). Weakly nonlinear wave packets and the nonlinear Schrödinger equation (Chapter 2), in Nonlinear Waves in Fluids: Recent Ad- vances and Modern Applications (ed. R. Grimshaw), CISM Courses and Lectures, Vol. 483, Springer, Wien and New York, 29Ð67. Dias, F. and Kharif, C. (1999). Nonlinear gravity and capillary-gravity waves, Annu. Rev. Fluid Mech. 31, 301Ð346. 822 Bibliography

Dias, F. and Milewski, P. (2010). On the fully-nonlinear shallow-water generalized Serre equations, Phys. Lett. A 374, 1049Ð1053. Dickey, L.A. (2000). Soliton Equations and Hamiltonian Systems, World Scientist, Singapore. Dinda Tchofo, P. and Remoissenet, M. (1999). Breather compactons in nonlinear KleinÐGordon systems, Phys. Rev. E60, 6218Ð6221. Ditkin, V.A. and Prudnikov, A.P. (1965). Integral Transforms and Operational Cal- culus, Pergamon Press, Oxford. Dodd, R.K. and Fordy, A.P. (1983). The prolongation structures of quasipolynomial flows, Proc. R. Soc. Lond. A385, 389Ð429. Dodd, R.K. and Fordy, A.P. (1984). Prolongation structures of complex quasipoly- nomial evolution equations, J. Phys. A, Math. Gen. 17, 3249Ð3266. Dodd, R.K. and Gibbon, J.D. (1997). The prolongation structures of a higher order KortewegÐde Vries equation, Proc. R. Soc. Lond. A358, 287Ð296. Doetsch, G. (1970). Introduction to the Theory and Applications of the Laplace Transformation, Springer, New York. Drazin, P.G. (1983). Solitons, Cambridge University Press, Cambridge. Drazin, P.G. and Johnson, R.S. (1989). Solitons: An Introduction, Cambridge Uni- versity Press, Cambridge. Dresner, L. (1983). Similarity Solutions of Nonlinear Partial Differential Equations, Pitman Books, London Dressler, R.F. (1949). Mathematical solution of problem of roll waves in inclined open channels, Commun. Pure Appl. Math. 2, 149Ð194. Dullin, H., Gottwald, G., and Holm, D. (2003). CamassaÐHolm, KortewegÐde Vries- 5 and other asymptotically equivalent shallow water waves, Fluid Dyn. Res. 33, 73Ð95. Dullin, H., Gottwald, G., and Holm, D. (2004). On asymptotically equivalent shallow water wave equations, Physica D 190, 1Ð14. Dunbar, S.R. (1983). Travelling wave solutions of diffusive LotkaÐVolterra equa- tions, J. Math. Biol. 17, 11Ð32. Duncan, D.B., Eilbeck, J.C., Feddersen, H., and Wattis, J.A.D. (1993). Solitons on Lattices, Physica D 68, 1Ð11. Dusuel, S., Michaux, P., and Remoissnet, M. (1998). From kinks to compactionlike kinks, Phys. Rev. E57, 2320Ð2326. Dutta, M. and Debnath, L. (1965). Elements of the Theory of Elliptic and Associated Functions with Applications, World Press Pub. Ltd., Calcutta. Eilbeck, J.C. and Flesch, B. (1990). Calculation of families of solitary waves on discrete lattices, Phys. Lett. A149, 200Ð202. El, G.A. (2007). KortewegÐde Vries equation: Solitons and undular bores, in Solitary Waves in Fluids (ed. R.J.H. Grimshaw), 19Ð54. El, G.A., Grimshaw, R.H.J., and Pavlov, M.V. (2001). Integrable shallow water equa- tions and undular bores, Stud. Appl. Math. 107, 157Ð186. El-Sherbiny, H.M. and Debnath, L. (1997). Equivalence between Bäcklund transfor- mation and inverse scattering methods for a class of nonlinear differential equa- tions, Int. J. Non-Linear Mech. 31, 51Ð58. Bibliography 823

Engelbrecht, J. (1981). On theory of pulse transmission in a nerve fibre, Proc. R. Soc. Lond. A375, 195Ð209. Engelbrecht, J. and Peipman, T. (1992). Nonlinear waves in a layer with energy in- flux, Wave Motion 16, 173Ð181. Engelbrecht, J.K., Fridman, V.E., and Pelinovski, E.N. (1988). Nonlinear Evolution Equations, Longman, London. Enz, U. (1963). Discrete mass, elementary length, and a topological invariant as a consequence of relativistic invariant principles, Phys. Rev. 131, 1392Ð1394. Erdélyi, A. (1955). Higher Transcendental Functions, Vol. 3, McGraw-Hill, New York. Erdélyi, A., Magnus, W., Oberhettinger, F., and Tricomi, F. (1954). Tables of Integral Transforms, Vols. 1 and 2, McGraw-Hill, New York. Escher, J., Liu, Y., and Yin, Z. (2006). Global weak solution and blow-up structure for the DegasperisÐProcesi equation, J. Funct. Anal. 241, 457Ð485. Estrada, R. and Kanwal, R.P. (1994). Asymptotic Analysis, Birkhäuser, Boston. Evans, D.J. and Sahimi, M.S. (1989). The alternative group explicit (AGE) itera- tive method to solve parabolic and hyperbolic partial differential equations, Annu. Numer. Fluid Mech. Heat Transf. 2, 259Ð283. Fang, G.C., Chen, W.Y., and Hu, Z. (2008). Well-posedness of the solution to the D-P equation with dispersive term, Int. J. Nonlinear Sci. 5, 125Ð132. Feigenbaum, M.J. (1978). Qualitative universality for a class of nonlinear transfor- mation, J. Stat. Phys. 19, 25Ð52. Fermi, E., Pasta, J., and Ulam, S. (1955). Studies of nonlinear problems I, Los Alamos Report LA 1940, in Lectures in Applied Mathematics (ed. A.C. Newell), Vol. 15, Am. Math. Soc., Providence, 143Ð156. Fickett, W. and Davies, W.C. (1979). Detonation, University of California Press, Berkeley. Fife, P.C. (1979). Mathematical Aspects of Reacting and Diffusing Systems, Lecture Notes in Biomathematics, Vol. 28, Springer, Berlin. Fisher, R.A. (1936). The wave of advance of advantageous genes, Ann. Eugen. 7, 335Ð369. FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane, Biophys. J. 1, 445Ð466. Flaschka, H. (1974a). The Toda lattice: II. Existence of Integrals, Phys. Rev. B 9, 1924Ð1925. Flaschka, H. (1974b). On the Toda lattice: II. Inverse-scattering solutions, Prog. Theor. Phys. 51, 703Ð716. Fokas, A.S. (2008). A Unified Approach to Boundary Value Problems,SIAM, Philadelphia. Fokas, A.S. and Ablowitz, M.J. (1981). Linearization of the KortewegÐde Vries and Painlevé II equations, Phys. Rev. Lett. 47, 1096Ð1100. Fokas, A.S. and Ablowitz, M.J. (1983). The inverse scattering transform for the BenjaminÐOno equation-pivot to multidimensional equations, Stud. Appl. Math. 68, 1Ð10. Fokas, A.S. and Fuchssteiner, B. (1981). Symplectic structures, their bäcklund trans- formations and hereditary symmetries, Physica D 4, 47Ð66. 824 Bibliography

Ford, J., Stoddard, S.D., and Turner, J.S. (1973). On the integrability of the Toda lattice, Prog. Theor. Phys. 50, 1547Ð1560. Fordy, A.P. (1990). Prolongation structures of nonlinear evolution equations, in Soli- ton Theory: A Survey of Results (ed. A.P. Fordy), Manchester University Press, Manchester, 403Ð404. Fornberg, B. and Whitham, G.B. (1978). A numerical and theoretical study of certain nonlinear wave phenomena, Philos. Trans. R. Soc. Lond. A289, 373Ð404. Freeman, N.C. (1980). Soliton interactions in two dimensions, Adv. Appl. Mech. 20, 1Ð37. Freeman, N.C. (1984). Soliton solutions of nonlinear evolution equations, IMA J. Appl. Math. 32, 125Ð145. Freeman, N.C. and Nimmo, J.J.C. (1983). Soliton-solutions of the KortewegÐde Vries and KadomtsevÐPetviashvili equations: the Wronskian technique, Phys. Lett. A 95, 1Ð3. Frenkel, J. and Kontorova, T. (1939). On the theory of plastic deformation and twin- ning, Fix. Zh. 1, 137Ð139. Frieman, E.A. (1963). On a new method in the theory of irreversible process, J. Math. Phys. 4, 410Ð418. Fuchssteiner, B. (1981). The Lie algebra structure of nonlinear evolution equations and infinite dimensional Abelian symmetry groups, Prog. Theor. Phys. 65, 861Ð 876. Fulton, T.A. (1972). Aspects of vortices in long Josephson junctions, Bull. Am. Phys. Soc. 17, 46Ð49. Fusco, D. and Manganaro, N. (1994). A method for determining exact solutions to a class of nonlinear models based on introduction of differential constraints, J. Math. Phys. 35, 3659Ð3667. Fusco, D. and Manganaro, N. (1996). A method for finding exact solutions to hyper- bolic systems of first-order partial differential equations, IMA J. Appl. Math. 57, 223Ð240. Garabedian, P.R. (1986). Partial Differential Equations, 2nd edition, Chelsea, New York. Gardner, C.S. and Morikawa, G.K. (1960). Similarity in the asymptotic behavior of collision-free hydromagnetic waves and water waves, Courant Inst. Math. Sci. Rep. NYO-9082, 1Ð30. Gardner, C.S., Greene, J.M., Kruskal, M.D., and Miura, R.M. (1967). Method for solving the KdV equation, Phys. Rev. Lett. 19, 1095Ð1097. Gardner, C.S., Greene, J.M., Kruskal, M.D., and Miura, R.M. (1974). KortewegÐ de Vries equation and generalizations, VI, Methods for exact solution, Commun. Pure Appl. Math. 27, 97Ð133. Gazdag, J. and Canosa, J. (1974). Numerical solution of Fisher’s equation, J. Appl. Probab. 11, 445Ð457. Gazis, D.C. (1974). Traffic Science, John Wiley, New York. Gelfand, I.M. and Levitan, B.M. (1951). On the determination of a differential equa- tion from its spectral function, Am. Math. Transl. (2) 1, 253Ð304. Bibliography 825

Gentile, G. and Procesi, M. (2009). Periodic solutions for a class of nonlinear partial differential equations in higher dimension, Commun. Math. Phys. 289, 863Ð906. Ghez, R. (1988). A Primer of Diffusion Problems, Wiley, New York. Ghosh, K.K. and Debnath, L. (1997). Some exact solutions of nonlinear shallow water equations, Int. J. Nonlinear Mech. 31, 104Ð108. Gibbon, J.D. (1985). A survey of the origins and physical importance of soliton equations, Philos. Trans. R. Soc. Lond. A315, 335Ð365. Gibbon, J.D., James, I.N. and Moroz, I.M. (1979). An example of soliton behaviour in a rotating fluid, Proc. R. Soc. Lond. A367, 185Ð219. Gibbons, J., Thornhill, S.G., Wardrop, M.J., and ter Haar, D. (1977). On the theory of Langmuir solitons, J. Plasma Phys. 17, 153Ð170. Gillbarg, D. and Trudinger, N.S. (1983). Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer, Berlin. Goldstein, S. (1953). On the mathematics of exchange processes in fixed columns, Parts I and II, Proc. R. Soc. Lond. A219, 151Ð185. Goldstein, H. (1965). Classical Mechanics, Addison-Wesley, Cambridge. Goldstein, S. and Murray, J.D. (1959). On the mathematics of exchange processes in fixed colums, Parts III, IV, V, Proc. R. Soc. Lond. A252, 334Ð375. Gómez-Ullate, et al. (eds.) (2010). Current trends in integrability and nonlinear phe- nomena, J. Phys. A. Math. Theor. 43, IOP Publishing, Bristol. Gordon, W. (1926). Der Comptoneffekt nach der Schrödingerchen Theorie, Zeit. Für Physik 40, 117Ð133. Gorschkov, K.A., Ostrovsky, L.A., and Pelinovsky, E.N. (1974). Some problems of asymptotic theory of nonlinear waves, Proc. IEEE 62, 1511Ð1517. Greenberg, H. (1959). An analysis of traffic flow, Oper. Res. 7, 79Ð85. Grimshaw, R. (1985). Evolution equations for weakly nonlinear, long internal waves in a rotating fluid, Stud. Appl. Math. 73, 1Ð33. Grimshaw, R. (2007a). Solitary Waves in Fluids, WIT Press, Southampton. Grimshaw, R.H.J. (2007b). Envelope solitary waves, in Solitary Waves in Fluids (ed. R.H.J. Grimshaw), 159Ð174. Grimshaw, R., Pelinovsky, D., Pelinovsky, E. and Slunyaev, A. (2002). Generation of large-amplitude solitons in the extended KortewegÐde Vries equation, Chaos 12, 1070Ð1076. Grindrod, P. (1991). Patterns and Waves, Oxford University Press, Oxford. Groves, M.D. (2004). Steady water waves, J. Nonlinear Math. Phys. 11, 435Ð460. Gui, G., Lui, Y., and Tian, L. (2008). Global existence and blow-up phenomena for the peakon b-family of equations, Indiana Univ. Math. J. 57, 1209Ð1234. Guo, F. (2009). Global weak solutions and wave breaking phenomena to the periodic DegasperisÐProcesi equation with strong dispersion, Nonlinear Anal. 71, 5280Ð 5295. Gao, F. (2009). Global weak solutions and breaking waves to the DegasperisÐProcesi equation with linear dispersion, J. Math. Anal. Appl. 360, 345Ð362. Gurney, W.S.C. and Nisbet, R.M. (1975). The regulation of inhomogeneous popula- tions, J. Theor. Biol. 52, 441Ð457. Gurtin, M.E. and MacCamy, R.C. (1977). On the diffusion of biological populations, Math. Biosci. 33, 35Ð49. 826 Bibliography

Haberman, R. (1977). Mathematical Models: Mechanical Vibrations, Population Dy- namics and Traffic Flow, Prentice-Hall, Englewood Cliffs. Haberman, R. (1988). The modulated phase shift for weakly dissipated nonlinear oscillatory waves of the KortewegÐde Vries type, Stud. Appl. Math. 78, 73Ð90. Hagstrom, T. and Keller, H.B. (1986). The numerical calculations of traveling wave solutions of nonlinear parabolic equations (Preprint) Haight, F.A. (1963). Mathematical Theories of Traffic Flow, Academic Press, New York. Hammack, J.L. and Segur, H. (1974). The KortewegÐde Vries equation and water waves, Part 2, Comparison with experiments, J. Fluid Mech. 65, 289Ð314. Hansen, A.G. (1964). Similarity Analyses of Boundary Value Problems in Engineer- ing, Prentice-Hall, Englewood Cliffs. Hasegawa, A. (1990). Optical Solitons in Fibers, 2nd edition, Springer, Berlin. Hasegawa, A. and Tappert, F. (1973). Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers I: Anomalous dispersion, Appl. Phys. Lett. 23, 142Ð144. Hasimoto, H. (1972). A soliton on a vortex filament, J. Fluid Mech. 51, 477Ð485. Hasimoto, H. and Ono, H. (1972). Nonlinear modulation of gravity waves, J. Phys. Soc. Jpn. 33, 805Ð811. Hayes, W.D. (1973). Group velocity and nonlinear dispersive wave propagation, Proc. R. Soc. Lond. A332, 199Ð221. Henon, M. (1974). Integrals of the Toda lattice, Phys. Rev. B 9, 1921Ð1923. Henry, D. (2005). Infinite propagation speed for the DegasperisÐProcesi equation, J. Math. Anal. Appl. 311, 755Ð759. Herman, R.L. (1990). Resolution of the motion of a perturbed KdV solition, Inverse Probl. 6, 43Ð54. Herman, R., Montroll, E.W., Potts, R.B., and Rothery, R.W. (1959). Traffic dynam- ics: Analysis of stability in a car following, Oper. Res. 7, 86Ð106. Hernandez, J. (1986). Qualitative methods for nonlinear differential equations, in Nonlinear Diffusion Problems, Lecture Notes in Mathematics, Vol. 1224, Springer, New York, 47Ð118. Himonas, A. and Misiolek, G. (2005). High-frequency smooth solutions and well- posedness of the CamassaÐHolm equation, Int. Math. Res. Not. IMRN 51, 3135Ð 3151. Hiraoka, Y. and Kodama, Y. (2009). Normal forms and solitons, in Integrability (ed. A.V. Mikhailov), Springer, New York. Hirota, R. (1971). Exact solution of the KortewegÐde Vries equation for multiple collisions of solitons, Phys. Rev. Lett. 27, 1192Ð1194. Hirota, R. (1973a). Exact envelope-soliton solutions of a nonlinear wave equation, J. Math. Phys. 14, 805Ð809. Hirota, R. (1973b). Exact N-solutions of the wave equation of long waves in shallow water and in nonlinear lattices, J. Math. Phys. 14, 810Ð814. Hirota, R. (1981). Discrete analogue of a generalized Toda equation, J. Phys. Soc. Jpn. 50, 3785Ð3791. Hirota, R. (2004). The Direct Method in Soliton Theory, Cambridge University Press, Cambridge. Bibliography 827

Hirota, R. and Suzuki, K. (1970). Studies on lattice solitons by using electrical net- works, J. Phys. Soc. Jpn. 28, 1366Ð1367. Hirota, R. and Suzuki, K. (1973). Theoretical and experimental studies of lattice solitons in nonlinear lumped networks, Proc. IEEE 61, 1483Ð1491. Hirota, R., Ito, M., and Kako, F. (1988). Two-dimensional Toda Lattice Equations, Prog. Theor. Phys. Suppl. 94, 42Ð58. Hodgkin, A.L. and Huxley, A.F. (1952). A qualitative description of membrane cur- rent and its applications to conduction and excitation in nerve, J. Physiol. (Lond.) 117, 500Ð544. Holden, H. and Risebro, N.H. (2002). Front Tracking for Hyperbolic Conservation Laws, Springer, New York. Holliday, D. (1973). Nonlinear gravity-capillary surface waves in a slowly varying current, J. Fluid Mech. 57, 797Ð802. Holm, D.D. and Ivanov, R.I. (2010). Smooth and peaked solitons of the CH equation, J. Phys. A, Math. Theor. 43(43), 1Ð18, #434003. Holm, D.D. and Staley, M.F. (2003). Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in a 1+1nonlinear evolutionary PDE, Phys. Lett. A 308, 437Ð444. Hopf, E. (1950). The partial differential equation ut + uux = μuxx, Commun. Pure Appl. Math. 3, 201Ð230. Hoppensteadt, F.C. (1975). Mathematical Theories of Populations: Demographics, Genetics, and Epidemic, CBMS Lectures, Vol. 20, SIAM, Philadelphia. Hunter, J.K. and Scherule, J. (1988). Existence of perturbed solitary wave solutions to a model equation for water waves, Physica D 32, 253Ð268. Hunter, J.K. and Vanden-Broeck, J.M. (1983). Solitary and periodic gravity-capillary waves of finite amplitude, J. Fluid Mech. 134, 205Ð219. Ichikawa, Y.H. (1979). Topics on solitons in plasmas, Phys. Scr. 20, 296Ð305. Ichikawa, V.H., Imamura, T., and Taniuti, T. (1972). Nonlinear wave modulation in collisionless plasma, J. Phys. Soc. Jpn. 33, 189Ð197. Iizuka, T. and Wadati, M. (1992). Shallow water waves over an uneven bottom and an inhomogeneous KP equation, Chaos Solitons Fractals 2, 575Ð582. Ilichev, A.T. and Marchenko, A.B. (1989). Propagation of the long nonlinear waves in a ponderable fluid beneath an ice sheet, Fluid Dyn. 24, 88Ð95. Infeld, E. (1980). On three-dimensional generalizations of the Boussinesq and KortewegÐde Vries equations, Q. Appl. Math. XXXVIII, 277Ð287. Infeld, E. and Rowlands, G. (1990). Nonlinear Waves, Solitons and Chaos,Cam- bridge University Press, Cambridge. Infeld, E., Ziemkiewicz, J., and Rowlands, G. (1987). The two surface dimensional stability of periodic and solitary wavetrains on a water surface over arbitrary depth, Phys. Fluids 30, 2330Ð2338. Inoue, Y.and Matsumoto, Y.(1974). Nonlinear wave modulation in dispersive media, J. Phys. Soc. Jpn. 36, 1446Ð1455. Iooss, G. and Kirchgassner, K. (1990a). Bifurcation d’ondes solitaires en presence« d’une faible tension superficielle, C. R. Acad. Sci., Paris 311, 265Ð268. Iooss, G. and Kirchgassner, K. (1990b). Water waves for small surface tension: an approach via normal form, Proc. R. Soc. Edinb. 122A, 267Ð299. 828 Bibliography

Jeffrey, A. (1976). Quasilinear Hyperbolic Systems and Waves, Research Notes in Mathematics, Vol. 5, Pitman Publishing Company, London. Jeffrey, A. and Engelbrecht, J. (1994). Nonlinear Waves in Solids, Springer, New York. Jeffrey, A. and Kakutani, T. (1972). Weak nonlinear dispersive waves: A discussion centered around the KdV equation, SIAM Rev. 14, 582Ð643. Jeffrey, A. and Kawahara, T. (1982). Asymptotic Methods in Nonlinear Wave Theory, Pitman Advance Publishing Program, Boston. Jeffrey, A. and Taniuti, T. (1964). Nonlinear Wave Propagation, Academic Press, New York. Jeffrey, A. and Xu, S. (1989). Exact solution to the KortewegÐde VriesÐBurgers equation, Wave Motion 11, 559Ð564. John, F. (1982). Partial Differential Equations, 4th edition, Springer, New York. Johnson, R.S. (1970). A nonlinear equation incorporating damping and dispersion, J. Fluid Mech. 42, 49Ð60. Johnson, R.S. (1980). Water waves and KortewegÐde Vries equations, J. Fluid Mech. 97, 701Ð719. Johnson, R.S. (1983). The KdV equation and related problems in water wave theory, in Nonlinear Waves (ed. L. Debnath), Cambridge University Press, Cambridge, 25Ð43. Johnson, R.S. (1997). A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge University Press, Cambridge. Johnson, R. (2002). CamassaÐHolm, KortewegÐde Vries and related models for wa- ter waves, J. Fluid Mech. 455, 63Ð82. Johnson, R. (2003). On solutions of the CamassaÐHolm Equation, in Proceedings: Mathematical, Physical and Engineering Sciences, Vol. 459 (No. 2035). Jones, D.S. (1966). Generalized Functions, Academic Press, New York. Jones, D.S. (1982). Theory of Generalized Functions, Cambridge University Press, Cambridge. Jones, D.S. and Sleeman, B.D. (1983). Differential Equations and Mathematical Bi- ology, Allen and Unwin, London. Josephson, B.D. (1965). Supercurrents through the barriers, Adv. Phys. 14, 419Ð451. Kadomtsev, B.B. and Petviashvili, V.I. (1970). On stability of solitary waves in weakly dispersive media, Dokl. Akad. Nauk SSSR 192, 753Ð756; Sov. Phys. Dokl. 15, 539Ð541. Kako, F. and Yajima, N. (1980). Interaction of ion-acoustic solitons in multidimen- sional space, J. Phys. Soc. Jpn. 49, 2063Ð2071. Kakutani, T. (1971a). Effect of an uneven bottom on gravity waves, J. Phys. Soc. Jpn. 30, 272Ð276. Kakutani, T. (1971b). Weak nonlinear magneto-acoustic waves in an inhomogeneous plasma, J. Phys. Soc. Jpn. 31, 1246Ð1248. Kakutani, T. and Ono, H. (1969). Weak nonlinear hydromagnetic waves in a cold collision-free plasma, J. Phys. Soc. Jpn. 26, 1305Ð1318. Kakutani, T., Ono, H., Taniuti, T., and Wei, C.C. (1968). Reductive perturbation method in nonlinear wave propagation II. Application to hydromagnetic waves in cold plasma, J. Phys. Soc. Jpn. 24, 1159Ð1166. Bibliography 829

Kaliappan, P. (1984). An exact solution for travelling waves, Physica D11, 368Ð374. Kambe, T. (2007). Elementary Fluid Mechanics, World Scientific, Singapore. Kametaka, Y. (1976). On the nonlinear diffusion equation of KolmogorovÐ PetrovskiiÐPiskunov type, Osaka J. Math. 13, 11Ð66. Karpman, V.I. (1967). An asymptotic solution of the KortewegÐde Vries equations, Phys. Lett. 25A, 708Ð709. Karpman, V.I. (1971). High frequency electromagnetic field in plasma with negative dielectric constant, Plasma Phys. 13, 477Ð490. Karpman, V.I. (1975a). Nonlinear Waves in Dispersive Media, Pergamon Press, Lon- don. Karpman, V.I. (1975b). On the dynamics of sonic-Langmuir solitons, Phys. Scr. 11, 263Ð265. Karpman, V.I. and Krushkal, E.M. (1969). Modulated waves in nonlinear dispersive media, Sov. Phys. JETP 28, 277Ð281. Karpman, V.I. and Maslov, E.M. (1978). Structure of tails produced under the action of perturbations on solitons, Sov. Phys. JETP 48, 252Ð258. Kato, T. (1987). On nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Phys. Théor. 46, 113Ð129. Katsis, C. and Akylas, T.R. (1987). Solitary internal waves in a rotating channel: A numerical study, Phys. Fluids 30, 297Ð301. Kaup, D.J. (1980). The EstabrookÐWahlquist method with examples of applications, Physica ID, 391Ð411. Kaup, D.J. and Newell, A.C. (1978). Solitons as particles and oscillators and in slowly changing media: A singular perturbation theory, Proc. R. Soc. Lond. A361, 413Ð446. Kaup, D.J. and Van Gorder, R.A. (2010). The inverse scattering transform and squared eigenfunctions for the nondegenerate 3 × 3 operator and its soliton struc- ture, Inverse Probl. 26, 055005. Kawahara, T. (1972). Oscillatory solitary waves in dispersive media, J. Phys. Soc. Jpn. 33, 260Ð264. Kawahara, T. (1973). The derivative-expansion method and nonlinear dispersive waves, J. Phys. Soc. Jpn. 35, 1537Ð1544. Kawahara, T. (1975a). Nonlinear self-modulation of capillary-gravity waves on liq- uid layer, J. Phys. Soc. Jpn. 38, 265Ð270. Kawahara, T. (1975b). Derivative-expansion method for nonlinear waves on a liquid layer of slowly varying depth, J. Phys. Soc. Jpn. 38, 1200Ð1206. Kawahara, T. and Toha, S. (1987). Pulse interactions in an unstable dissipative dis- persive nonlinear system, Phys. Fluids 31, 2103Ð2111. Keady, G. and Norbury, J. (1978). On the existence theory for irrotational water waves, Math. Proc. Camb. Philos. Soc. 83, 137Ð157. Kelley, P.L. (1965). Self-focusing of laser beams, Phys. Rev. Lett. 15, 1005Ð1008. Kevorkian, J. (1990). Partial Differential Equations, Brooks/Cole, Pacific Grove. Kevorkian, J.K. and Cole, J.D. (1996). Multiple Scale and Singular Perturbation Methods, Springer, New York. Kinnersley, W. (1976). Exact large amplitude capillary waves on sheets of fluid, J. Fluid Mech. 77, 229Ð241. 830 Bibliography

Kivshar, Y. (1993). Intrinsic localized modes as solitons with a compact support, Phys. Rev. B48, R43ÐR45. Kivshar, Y.S. and Malomed, B.A. (1989). Dynamics of solitons in nearly integrable systems, Rev. Mod. Phys. 61, 763Ð916. Klein, O. (1927). Elektrodynamik und Willenmechanik vom Standpunkt des Korre- spondenzprinzips, Zeit. Für Physik 41, 407Ð442. Ko, K. and Kuehl, H.H. (1980). Energy loss of KortewegÐde Vries solitary wave in a slowly varying medium, Phys. Fluids 23, 834Ð836. Kodama, Y. (1985). Normal forms for weakly dispersive wave equations, Phys. Lett. A 112, 193Ð196. Kodama, Y. (2010). KP Solitons in shallow water, J. Phys. A, Math. Theor. 43(43), 1Ð54, #434004. Kolev, B. (2007). Bi-Hamiltonian systems on the dual of the Lie Algebra of vector fields of the circle and periodic shallow water equations, Philos. Trans. R. Soc. Lond. Ser. A 365, 2333Ð2357. Kolmogorov, A., Petrovsky, I., and Piscunov, N. (1937). A study of the equation of diffusion with increase in the quantity of matter and its application to a biological problem, Bull. Univ. Moscow, Ser. Int. Sec. A1, 1Ð25. Konno, K. and Wadati, M. (1975). Simple derivation of the Bäcklund transformation from the Riccati form of the inverse method, Prog. Theor. Phys. 53, 1652Ð1656. Kopell, N. and Howard, L.N. (1973). Plane wave solutions to reactionÐdiffusion equations, Stud. Appl. Math. 42, 291Ð328. Korteweg, D.J. and de Vries, G. (1895). On the change of form of long waves ad- vancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag. (5) 39, 422Ð443. Krasovskii, Y.P. (1960). On the theory of steady waves of not all small amplitude (in Russian), Dokl. Akad. Nauk SSSR 130, 1237Ð1252. Krasovskii, Y.P. (1961). On the theory of permanent waves of finite amplitude, Zh. Vychisl. Mat. Fiz 1, 836Ð855 (in Russian). Kriess, H.O. and Lorenz, J. (1989). Initial-Boundary Value Problems and the NavierÐ Stokes Equations, Academic Press, New York. Kruskal, M. (1975). Nonlinear wave equations, in Dynamical Systems, Theory and Applications (ed. J. Moser), Lecture Notes in Physics, Vol. 38, Springer, Heidel- berg, 310Ð354. Kulikovskii, A.G. and Slobodkina, F.A. (1967). Equilibrium of arbitrary steady flows at the transonic points, Prikl. Mat. Meh. 31, 623Ð630. Kundu, A. (1984). LandauÐLifschitz and higher order nonlinear systems gauge gen- erated from nonlinear Schrödinger type equations, J. Math. Phys. 25, 3433Ð3438. Kundu, A. (1987). Exact solutions to higher order nonlinear equations through gauge transformations, Physica 25D, 399Ð406. Kuramoto, Y. (1984). Chemical Oscillations, Waves and Turbulence, Vol. 19, Springer, New York. Kynch, G.F. (1952). A theory of sedimentation, Trans. Faraday Soc. 48, 166Ð176. Lai, S. and Wu, Y. (2011). A model containing both the CamassaÐHolm and DegasperisÐProcesi equations, J. Math. Anal. Appl. 374, 458Ð469. Bibliography 831

Lake, B.M., Yuen, H.C., Rundgaldier, H., and Ferguson, W.E. (1977). Nonlinear deep-water waves: Theory and experiment, Part 2, Evolution of a continuous wave train, J. Fluid Mech. 83, 49Ð74. Lakshmanan, M. (2007). Nonlinear wave equations and possible connections to tsunami dynamics, in Tsunami and Nonlinear Waves, Springer, New York. Lamb, H. (1904). On the propagation of tremors over the surface of elastic solid, Philos. Trans. R. Soc. Lond. A203, 1Ð42. Lamb, H. (1932). Hydrodynamics, 6th edition, Cambridge University Press, Cam- bridge. Lamb, G.L. (1967). Propagation of ultrashort optical pulses, Phys. Lett. 25A, 181Ð 182. Lamb, G.L. (1971). Analytical descriptions of ultrashort optical pulse propagation in a resonant medium, Rev. Mod. Phys. 49, 99Ð124. Lamb, G.L. (1973). Phase variation in coherent-optical-pulse propagation, Phys. Rev. Lett. 31, 196Ð199. Lamb, G.L. (1980). Elements of Soliton Theory, Wiley, New York. Landau, L.D. and Lifshitz, E.M. (1959). Fluid Mechanics, Pergamon Press, New York. Langerstrom, P.A., Cole, J.D., and Trilling, L., (1949). Problems in theory of visous compressible fluids, Calif. Inst. Tech. Monograph, Pasadena. Lardner, R.W. (1976). The development of shock waves in nonlinear viscoelastic media, Proc. R. Soc. Lond. A347, 329Ð344. Lardner, R.W. (1986). Third order solutions of Burgers equation, Q. Appl. Math. 44, 293Ð302. Lardner, R.W. and Arya, J.C. (1980). Two generalisations of Burgers equation, Acta Mech. 37, 179Ð190. Larson, D.A. (1978). Transient bounds and time asymptotic behaviour of solutions, SIAM J. Appl. Math. 34, 93Ð103. Lax, P.D. (1954a). Weak solutions of nonlinear hyperbolic equations and their nu- merical computation, Commun. Pure Appl. Math. 7, 159Ð193. Lax, P.D. (1954b). The initial-value problem for nonlinear hyperbolic equations in two independent variables, Ann. Math. Stud. (Princeton) 33, 211Ð299. Lax, P.D. (1957). Hyperbolic systems of conservation law, II, Commun. Pure Appl. Math. 10, 537Ð566. Lax, P.D. (1964). Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Phys. 5, 611Ð613. Lax, P.D. (1968). Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure Appl. Math. 21, 467Ð490. Lax, P.D. (1972). The formation and decay of shock waves, Am. Math. Mon. 79, 227Ð241. Lax, P.D. (1973). Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, Society for Industrial and Applied Mathematics, Philadel- phia. Lax, P.D. (1975). Periodic solutions of the KortewegÐde Vries equation, Commun. Pure Appl. Math. 28, 141Ð188. 832 Bibliography

Lax, P.D. (1978). A Hamiltonian approach to the KdV and other equations, in Non- linear Evolution Equations (ed. M. Crandall), Academic Press, New York, 207Ð 224. Lax, P.D. (2006). Hyperbolic Partial Differential Equations, Am. Math. Soc., Provi- dence. Leibovich, S. (1970). Weakly nonlinear waves in rotating fluids, J. Fluids Mech. 42, 803Ð822. Leibovich, S. and Seebass, A.R. (1972). Nonlinear Waves, Cornell University Press, Ithaca. Lenells, J. (2005). Conservation laws of the CamassaÐHolm equation, J. Phys. A 38, 869Ð880. Le Veque, R.J. (1990). Numerical Methods for Conservation Laws, Birkhäuser Ver- lag, Boston. Leo, M., Leo, R.A., Soliani, G., and Solombrino, L. (1983). Lie–Bäcklund symmet- rics for the Harry Dym equation, Phys. Rev. D 27, 1406Ð1408. Li, Y.A. (2006). A shallow-water approximation to the full water wave problem, Commun. Pure Appl. Math. 59, 1225Ð1285. Li, Y.A. and Olver, P.J. (1997). Convergence of solitary-wave solutions in a perturbed bihamiltonian dynamical system: I. Compactons and peakons, Discrete Contin. Dyn. Syst. 3(3), 419Ð427. Li, Y.A. and Olver, P.J. (2000). Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Differ. Equ. 162, 27Ð63. Lighthill, M.J. (1956). Viscosity effects in sound waves of finite amplitude, in Sur- veys in Mechanics (eds. G.K. Batchelor and R.M. Davies), Cambridge University Press, Cambridge, 250Ð351. Lighthill, M.J. (1957). River waves, Naval hydrodynamics publication 515, National Academy of SciencesÐNational Research Council, Washington, D.C. Lighthill, M.J. (1958). An Introduction to Fourier Analysis and Generalized Func- tions, Cambridge University Press, Cambridge. Lighthill, M.J. (1965). Group velocity, J. Inst. Math. Appl. 1, 1Ð28. Lighthill, M.J. (1967). Some special cases treated by the Whitham theory, Proc. R. Soc. Lond. A299, 38Ð53. Lighthill, M.J. (1978). Waves in Fluids, Cambridge University Press, Cambridge. Lighthill, M.J. and Whitham, G.B. (1955). On kinematic waves: I. Flood movement in long rivers; II. Theory of traffic flow on long crowded roads, Proc. R. Soc. Lond. A229, 281Ð345. Lin, Z.W. and Liu, Y. (2009). Stability of peakons for the DegasperisÐProcesi equa- tion, Commun. Pure Appl. Math. 62, 151Ð163. Liu, Y. and Yin, Z.W. (2006). Global existence and blow-up phenomena for the DegasperisÐProcesi equation, Commun. Math. Phys. 267, 801Ð820. Logan, J.D. (1994). An Introduction to Nonlinear Partial Differential Equations, Wiley-Interscience, New York. Logan, J.D. and Dunbar, S.R. (1992). Travelling waves in model reacting flows with reversible kinetics, IMA J. Appl. Math. 49, 103Ð121. Bibliography 833

Logan, J.D. and Shores, T.S. (1993a). Steady state solutions in a model reacting flow problem, Appl. Anal. 48, 273Ð286. Logan, J.D. and Shores, T.S. (1993b). On a system of nonlinear hyperbolic conser- vation laws with sources, Math. Models Methods Appl. Sci. 3, 341Ð358. Longuet-Higgins, M.S. (1974). On mass, momentum, energy and a circulation of a solitary wave, Proc. R. Soc. Lond. A337, 1Ð13. Longuet-Higgins, M.S. (1978a). The instability of gravity waves of finite amplitude in deep water I, Superharmonics, Proc. R. Soc. Lond. A360, 471Ð488. Longuet-Higgins, M.S. (1978b). The instabilities of gravity waves of finite amplitude in deep water II, Subharmonics, Proc. R. Soc. Lond. A360, 489Ð505. Longuet-Higgins, M.S. and Cocklet, E.D. (1976). The deformation of steep surface waves on water I. A numerical method of computation, Proc. R. Soc. Lond. A350, 1Ð26. Longuet-Higgins, M.S. and Fox, M.J.H. (1977). Theory of the almost highest wave: The inner solution, J. Fluid Mech. 80, 721Ð742. Lorenz, E.N. (1963a). Deterministic nonperiodic flow, J. Atmos. Sci. 20, 130Ð141. Lorenz, E.N. (1963b). The predictability of hydrodynamic flow, Trans. N. Y. Acad. Sci. Ser. II 25, 409Ð432. Lorenz, E.N. (1963c). The mechanics of vacillation, J. Atmos. Sci. 20, 448Ð464. Lorenz, E.N. (1964). The problem of deducing the climate from the governing equa- tions, Tellus 16, 1Ð11. Lou, D.H. (2000). Planetary-scale baroclinic envelope Rossby solitons in a two-layer model and their interaction with synoptic-scale eddies, Dyn. Atmos. Oceans 32(1), 27Ð74. Ludu, A. and Draayer, J.P. (1998). Patterns on liquid surfaces: Cnoidal waves, com- pactons and scaling, Physica D123, 82Ð91. Ludu, A., Stoitcheva, G. and Draayer, J.P. (2000). Similarity analysis of nonlinear equations and bases of finite wavelength solitons, Int. J. Mod. Phys. E9, 263Ð 278. Luke, J.C. (1966). A perturbation method for nonlinear dispersive wave problems, Proc. R. Soc. Lond. A292, 403Ð412. Luke, J.C. (1967). A variational principle for a fluid with a free surface, J. Fluid Mech. 27, 395Ð397. Lundmark, H. (2007). Formation and dynamics of shock waves in the DegasperisÐ Procesi equation, J. Nonlinear Sci. 17, 169Ð198. Lundmark, H. and Szmigielski, J. (2003). Multi-peakon solutions of the DegasperisÐ Procesi equation, Inverse Probl. 9, 1241Ð1245. Ma, Y.-C. (1979). The perturbed plane-wave solution of the cubic Schrödinger equa- tion, Stud. Appl. Math. 60, 43Ð58. Madsen, P.A., Murray, R. and Sorensen, O.R. (1991). A new form of the Boussinesq equations with improved linear dispersion characteristics, Coast. Eng. 15, 371Ð 388. Madsen, P.A. and Sorensen, O.R. (1992). A new form of the Boussinesq equa- tions with improved linear dispersion characteristics. Part 2. A slowly varying bathymetry, Coast. Eng. 18, 183Ð204. 834 Bibliography

Madsen, P.A. and Sorensen, O.R. (1993). Bound waves and triad interactions in shal- low water, Ocean Eng. 20, 359Ð388. Mainardi, F. (1994). On the initial-value problem for the fractional diffusionÐwave equation, in Waves and Stability in Continuous Media (eds. S. Rionero, and T. Ruggeri), World Scientific, Singapore, 246Ð251. Mainardi, F. (1995). The time fractional diffusionÐwave equation, Radiofisika 38, 20Ð36. Mainardi, F. (1996a). Fractional relaxationÐoscillation and fractional diffusionÐwave phenomena, Chaos Solitons Fractals 7, 1461Ð1477. Mainardi, F. (1996b). The fundamental solitons for the fractional diffusionÐwave equations, Appl. Math. Lett. 9, 23Ð28. Makhankov, V.G. (1978). Dynamics of classical solitons, Phys. Rep. 35, 1Ð128. Manoranjan, V.S. and Mitchell, A.R. (1983). A numerical study of the BelousovÐ Zhabotinskii reaction using Galerkin finite element methods, J. Math. Biol. 16, 251Ð260. Marichev, O.I. (1983). Handbook of Integral Transforms of Higher Transcendental Functions, Theory and Algorithmic Table, Ellis Hoorwood, West Sussex. Maruno, K. and Biondini, G. (2004). Resonance and web structure in discrete soliton systems: the two-dimensional Toda lattice and its fully discrete and ultra-discrete analogue, J. Phys. A, Math. Gen. 37, 11819Ð11839. Maslow, S.A. (1986). Critical layers in shear flows, Annu. Rev. Fluid Mech. 18, 405Ð 432. Matsuno, Y. (2005a). Multisoliton solutions of the DegasperisÐProcesi equation and their peakon limit, Inverse Probl. 21, 1553Ð1570. Matsuno, Y. (2005b). The N-soliton solution of the DegasperisÐProcesi equation, Inverse Probl. 21, 2085Ð2101. Maxon, S. and Viecelli, J. (1974). Cylindrical solitons, Phys. Fluids 17, 1614Ð1616. McCall, S.L. and Hahn, E.L. (1967). Self-induced transparency by pulsed coherent light, Phys. Rev. Lett. 18, 908Ð911. McCall, S.L. and Hahn, E.L. (1969) Self-induced transparency, Phys. Rev. 183, 457Ð 485. McKean, H.P. (1970). Nagumo’s equation, Adv. Math. 4, 209Ð223. McKean, H.P. (1975). Application of Brownian motion to the equations of KolmogorovÐPertovskiiÐPiskunov, Commun. Pure Appl. Math. 28, 323Ð331. McKean, H.P. (2003). Fredholm determinants and the CamassaÐHolm hierarchy, Commun. Pure Appl. Math. 56, 638Ð680. McKean, H.P. (2004). Breakdown of the CamassaÐHolm equation, Commun. Pure Appl. Math. 57, 416Ð418. Medina, E. (2002). An N soliton resonance solution for the KP equation: interaction with change of form and velocity, Lett. Math. Phys. 62, 91Ð99. Mei, C.C. (1989). The Applied Dynamics of Ocean Surface Waves, World Scientific, Singapore. Mikhailov, A.V. and Novikov, V.S. (2002). Perturbative symmetry approach, J. Phys. A, Math. Gen. 35, 4775Ð4790. Miles, J.W. (1980). Solitary waves, Annu. Rev. Fluid Mech. 12, 11Ð43. Bibliography 835

Miles, J.W. (1981). The KortewegÐde Vries equation: A historical essay, J. Fluid Mech. 106, 131Ð147. Miura, R.M. (1968). Korteweg de Vries equation and generalizations. I. Remarkable explicit transformation, J. Math. Phys. 9, 1202Ð1204. Miura, R.M. (1974). Conservation laws for the fully nonlinear long wave equations, Stud. Appl. Math. L111, 45Ð56. Miura, R.M., Gardner, C.S., and Kruskal, M.D. (1968). KortewegÐde Vries equations and generalizations, II; Existence of conservation laws and constants of motion, J. Math. Phys. 9, 1204Ð1209. Miwa, T., Jimbo, M., and Date, E. (2000). Solitons: Differential Equations, Sym- metries and Infinite-Dimensional Algebras, Cambridge University Press, Cam- bridge. Molinet, L. (2004). On well-posedness results for the CamassaÐHolm equation on the line: a survey, J. Nonlinear Math. Phys. 11, 521Ð533. Mollenauer, L.F., Gordon, J.P., and Islam, M.N. (1986). Soliton propagation in long fibres with periodically compensated loss, IEEE J. Quantum Electron. 22, 1284Ð 1286. Montroll, E.W. and West, B.J. (1973). Models of population growth, diffusion, com- petition and rearrangement, in Synergetic (ed. H. Haken), B.G. Teubner, Stuttgart, 143Ð156. Munier, A., Burgen, J.R., Gutierrez, J., Fijalkow, E., and Feix, M.R. (1981). Group transformations and the nonlinear heat diffusion equation, SIAM J. Appl. Math. 40, 191Ð207. Murray, J.D. (1968). Singular perturbations of a class of nonlinear hyperbolic and parabolic equations, J. Math. Phys. 47, 111Ð133. Murray, J.D. (1970a). Perturbation effects on the decay of discontinuous solutions of nonlinear first order wave equations, SIAM J. Appl. Math. 19, 273Ð298. Murray, J.D. (1970b). On the Gunn-effect and other physical examples of perturbed conservation equations, J. Fluid Mech. 44, 315Ð346. Murray, J.D. (1973). On Burgers’ model equation for turbulence, J. Fluid Mech. 59, 263Ð279. Murray, J.D. (1993). Mathematical Biology, 2nd corrected edition, Springer, Berlin. Murray, J.D. (1997). Nonlinear-Differential Equation Models in Biology, Oxford University Press, Oxford. Myint-U, T. and Debnath, L. (2007). Linear Partial Differential Equations for Sci- entists and Engineers, 4th edition, Birkhäuser, Boston. Nagumo, J.S., Arimoto, S., and Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon, Proc. Inst. Radio Eng. 50, 2061Ð2071. Nangolnykh, K.A. and Ostrovsky, L.A. (1990). Nonlinear Wave Process in Acous- tics, Nauka, Moscow. Naumkin, P.I. and Shishmarev, I.A. (1994). Nonlinear Nonlocal Equations in the Theory of Waves, Vol. 133, Am. Math. Soc., Providence. Nayfeh, A.H. (1965a). A perturbation method for treating nonlinear oscillation prob- lems, J. Math. Phys. 44, 368Ð374. Nayfeh, A.H. (1965b). Nonlinear oscillations in a hot electron plasma, Phys. Fluids 8, 1896Ð1898. 836 Bibliography

Nayfeh, A.H. (1971). Third-harmonic resonance in the interaction of capillary and gravity waves, J. Fluid Mech. 48, 385Ð395. Nayfeh, A.H. (1973). Perturbation Methods, Wiley, New York. Nayfeh, A.H. and Hassan, S.D. (1971). The method of multiple scales and nonlinear dispersive waves, J. Fluid Mech. 48, 463Ð475. Nayfeh, A.H. and Saric, W.H. (1971). Nonlinear KelvinÐHelmholtz instability, J. Fluid Mech. 55, 311Ð327. Newell, A.C. (1980). The inverse scattering transform, in Topics in Current Physics (eds. R. Bullough, and P. Caudrey), Vol. 17, Springer, Berlin, 177Ð242. Newell, A.C. (1985). Solitons in Mathematics and Physics, SIAM, Philadelphia. Newell, A.C. and Kaup, D.J. (1978). Solitons as particles, oscillations, and in slowly changing media: A singular perturbation theory, Proc. R. Soc. Lond. A361, 413Ð 446. Newell, A.C. and Moloney, J.V. (1992). Nonlinear Optics, Addison-Wesley, New York. Newman, W.I. (1980). Some exact solutions to a nonlinear diffusion problem in pop- ulation genetics and combustion, J. Theor. Biol. 85, 325Ð334. Newman, W.I. (1983). Nonlinear diffusion: Self-similarity and travelling waves, Pure Appl. Geophys. 121, 417Ð441. Nigmatullin, R.R. (1986). The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Status Solidi (b) 133, 425Ð430. Nimmo, J.J.C. and Freeman, N.C. (1983). The use of Bäcklund transformations in obtaining N-soliton solutions in Wronskian form, J. Phys. A, Math. Gen. 17, 1415Ð1424. Novick-Cohen, A. and Sivashinsky, G.I. (1986). On the solidification front of a dilute binary alloy: Thermal diffusivity effects and breathing solutions, Physica D20, 237Ð258. Nozaki, K. and Taniuti, T. (1973). Propagation of solitary pulses in interactions of plasma waves, J. Phys. Soc. Jpn. 34, 796Ð800. Nunziato, J.W., Walsh, E.K., Schuler, K.W., and Baker, L.M. (1974). Wave propa- gation in nonlinear viscoelastic solids in Encyclopedia of Physics (ed. S. Flügge), Vol. V1a/4, Springer, Berlin. Nwogu, O. (1993). Alternative form of Boussinesq equations for nearshore wave propagation, J. Waterw., Port, Coastal, Ocean Eng., ASCE 119, 618Ð638. Nye, J.F. (1960). The response of glaciers and ice-sheets to seasonal and climatic changes, Proc. R. Soc. Lond. A256, 559Ð584. Nye, J.F. (1963). The response of a glacier to changes in the rate of nourishment and wastage, Proc. R. Soc. Lond. A275, 87Ð112. Oberhettinger, F. (1972). Tables of Bessel Transforms, Springer, New York. Ohta, Y., Maruno, K.I., and Feng, B.F. (2008). An integrable semi-discretization of CamassaÐHolm equation and its determinant solution, J. Phys. A, Math. Theor. 41, 1Ð30. Oikawa, M. and Yajima, N. (1973). Interactions of solitary waves—A perturbation approach to nonlinear systems, J. Phys. Soc. Jpn. 34, 1093Ð1099. Oikawa, M. and Yajima, N. (1974a). A class of exactly solvable nonlinear evolution equations, Prog. Theor. Phys. Suppl. 54, 1576Ð1577. Bibliography 837

Oikawa, M. and Yajima, M. (1974b). A perturbation approach to nonlinear systems II. Interaction of nonlinear modulated waves, J. Phys. Soc. Jpn. 37, 486Ð496. Okubo, A. (1980). Diffusion and Ecological Problems: Mathematical Models, Springer, Berlin. Olver, P.J. (1984a). Hamiltonian and non-Hamiltonian models for water waves, in Trends and Applications of Pure Mathematics to Mechanics (eds. P.G. Ciarlet, and M. Roseau), Lecture Notes in Physics, Vol. 195, Springer, New York. Olver, P.J. (1984b). Hamiltonian perturbation theory and water waves, Contemp. Math. 28, 231Ð249. Olver, P.J. (1993). Applications of Lie Groups to Differential Equations, 2nd edition, Springer, New York. Ono, H. (1975). Algebraic solitary waves in stratified fluids, J. Phys. Soc. Jpn. 39, 1082Ð1091. Oron, A. and Rosenau, P. (1989). Evolution of the coupled Bérnard-Marangoni con- vection, Phys. Rev. A39, 2063Ð2069. Ostrovsky, L.A. (1976). Short-wave asymptotics for weak shock waves and solitons in mechanics, Int. J. Non-Linear Mech. 11, 401Ð406. Ostrovsky, L.A. and Pelinovsky, E.N. (1971). Averaging method for nonsinusoidal waves, Sov. Phys. Dokl. 15, 1097Ð1099. Ostrovsky, L.A. and Pelinovsky, E.N. (1972). Method of averaging and the gener- alized variational principle for nonsinusoidal wave, J. Appl. Math. Mech. (Prikl. Math. Mech.) 36, 63Ð78. Otto, E. and Sudan, R.N. (1971). Nonlinear theory of ion acoustic waves with Landeu damping, Phys. Fluids 13, 2388Ð2394. Pack, D.C. (1960). A note on the breakdown of continuity in the motion of a com- pressible fluid, J. Fluid Mech. 8, 103Ð108. Page, B. (1990). Asymptotic solutions for localized vibrational modes in strongly anharmonic periodic systems, Phys. Rev. B41, 7835Ð7837. Palais, R.S. (1997). The symmetrics of solitons, Bull. Am. Math. Soc. 34, 339Ð403. Pao, C.V. (1992). Nonlinear Elliptic and Parabolic Equations, Plenum, New York. Parau, E.I., Vanden-Broeck, J.M., and Cooker, M.J. (2005). Nonlinear three- dimensional gravity-capillary solitary waves, J. Fluid Mech. 536, 99Ð105. Parker, D.F. (1980). The decay of saw-tooth solutions to the Burgers equation, Proc. R. Soc. Lond. A369, 409Ð424. Parker, A. (2004). On the CamassaÐHolm equation and a direct method of solution: I. Bilinear form and solitary waves, Proc. R. Soc. Lond. 460, 2929Ð2957. Parker, A. (2005a). On the CamassaÐHolm equation and a direct method of solution: II. Soliton solutions, Proc. R. Soc. Lond. 461, 3611Ð3632. Parker, A. (2005b). On the CamassaÐHolm equation and a direct method of solution: III. N-soliton solutions, Proc. R. Soc. Lond. 461, 3893Ð3911. Pattle, R.E. (1959). Diffusion from an instantaneous point source with a concentration-dependent coefficient, Q. J. Mech. Appl. Math. 12, 407Ð409. Pawlik, M. and Rowlands, G. (1975). The propagation of solitary waves in piezo- electric semiconductors, J. Phys. C8, 1189Ð1204. Peipman, T., Valdek, U., and Engelbrecht, J. (1992). Nonlinear two-dimensional lon- gitudinal and shear waves in solids, Acoustica 76, 84Ð94. 838 Bibliography

Pelinovsky, D. and Grimshaw, R. (1997). Structural transformation of eigenvalues for a perturbed algebraic soliton potential, Phys. Lett. A 229, 165Ð172. Pelinovsky, E., Polukhina, O., Slunyaev, A., and Talipova, T. (2007). Internal Soli- tary Waves, in Solitary Waves in Fluids (ed. R.H.J. Grimshaw), 85Ð110. Penel, P. and Brauner, C.M. (1974). Identification of parameters in a nonlinear self- consistent system including a Burgers equation, J. Math. Anal. Appl. 45, 654Ð 681. Peregrine, D.H. (1967). Long waves on a beach, J. Fluid Mech. 27, 815Ð827. Peregrine, D.H. (1983). Water waves, nonlinear Schrödinger equations and their so- lutions, J. Aust. Math. Soc. B25, 16Ð43. Perring, J.K. and Skyrme, T.H.R. (1962). A model of unified field equation, Nucl. Phys. 31, 550Ð555. Phillips, O.M. (1981). Wave interactions—the evolution of an idea, J. Fluid Mech. 106, 215Ð227. Plotnikov, P.I. and Tolland, J.F. (2004). Convexity of Stokes waves of extreme form, Arch. Ration. Mech. Anal. 17, 349Ð416. Podlubny, I. (1999). Fractional Differential Equations, Vol. 198, Academic Press, Boston. Prasad, P. (1973). Nonlinear wave propagation on an arbitrary steady transonic flow, J. Fluid Mech. 57, 721Ð737. Prasad, P. (1975). Approximation of perturbation equations of a quasi-linear hyper- bolic system in a neighbourhood of a bicharacteristic, J. Math. Anal. Appl. 50, 470Ð482. Prasad, P. and Ravindran, R. (1977). A theory of nonlinear waves in multi- dimensions: with special reference to surface water waves, J. Inst. Math. Appl. 20, 9Ð20. Pullin, D.I. and Grimshaw, R.H.J. (1988). Finite amplitude solitary waves at the interface between two homogeneous fluids, Phys. Fluids 31, 3550Ð3559. Qiao, Z. (1995). Generation of the hierarchies of solitons and generalized structure of the commutator representation, Acta Math. Appl. Sin. 18, 287Ð301. Qiao, Z. (2001). Generalized matrix structure and algebro-geometric solution for integrable systems, Rev. Math. Phys. 13, 545Ð586. Qiao, Z. (2002). Finite-dimensional Integrable Systems and Nonlinear Evolution Equations, Chinese Higher Education Press, Beijing. Qiao, Z. (2003). The CamassaÐHolm hierarchy, related N-dimensional integrable systems and algebro-geometric solution on a symplectic submanifold, Commun. Math. Phys. 239, 309Ð341. Qiao, Z.J. (2006). A new integrable equation with cuspons and W/M-shape-peaks solitons, J. Math. Phys. 47, 112701Ð112709. Qiao, Z.J. and Li, S. (2004). A new integrable hierarchy, parametric solution, and traveling wave solution, Math. Phys. Anal. Geom. 7, 289Ð308. Qiao, Z. and Strampp, W. (2002). Negative order MKdV hierarchy and a new inte- grable Neumann-like system, Physica A 313, 365Ð380. Qiao, Z.J. and Zhang, G. (2006). On peaked and smooth solitons for the CamassaÐ Holm equation, Europhys. Lett. 73, 657Ð663. Bibliography 839

Ramasami, E.K. and Debnath, L. (1994). Similarity solutions of the nonlinear Schrödinger equation, J. Math. Anal. Appl. 187, 851Ð863. Ravindran, R. and Prasad, P. (1979). A mathematical analysis of nonlinear waves in a fluid filled viscoelastic tube, Acta Mech. 31, 253Ð280. Rayleigh, L. (1876). On waves, Philos. Mag. 1, 257Ð279. Redekopp, L.G. and Weidman, P.D. (1968). Solitary Rossby waves in zonal shear flows and their interactions, J. Atmos. Sci. 35, 790Ð804. Riabouchinsky, D. (1932). Sur l’analogie hydraulique des mouvements d’un fluide compressible, Acad. Sci., Comptes Rendus 195, 998Ð1015. Richards, P.I. (1956). Shock waves on the highway, Oper. Res. 4, 42Ð51. Riemann, B., (1858). Uber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Göttingen Abhandlunger, Vol. viii, p. 43 (Werke, 2te Aufl., Leipzig, 1892, p. 157). Rodin, E.Y. (1970). On some approximate and exact solutions of boundary value problems for Burgers equations, J. Math. Anal. Appl. 30, 401Ð414. Rodriguez-Blanco, G. (2001). On the Cauchy problem for the CamassaÐHolm equa- tion, Nonlinear Anal. 46, 309Ð327. Rogers, C. and Ames, W.F. (1989). Nonlinear Boundary Value Problems in Science and Engineering, Academic Press, New York. Rosales, R.R. (1978). The similarity solution for the KortewegÐde Vries equation and the related Painlevé transcendent, Proc. R. Soc. Lond. A361, 265Ð275. Rosenau, P. (1982). A nonlinear thermal wave in a reacting medium, Physica 5D, 136Ð144. Rosenau, P. (1994). Nonlinear dispersion and compact structures, Phys. Rev. Lett. 73, 1737Ð1741. Rosenau, P. (1997). On nonanalytical solitary waves formed by a nonlinear disper- sion, Phys. Lett. A230, 305Ð318. Rosenau, P. (2000). Compact and noncompact dispersive patterns, Phys. Lett. A275, 193Ð198. Rosenau, P. and Hyman, J.M. (1993). Compactons: Solitons with finite wavelength, Phys. Rev. Lett. 70, 564Ð567. Rosenau, P. and Levy, D. (1999). Compactons in a class of nonlinearity quintic equa- tions, Phys. Lett. A252, 297Ð304. Rowland, H.L., Lyon, J.G., and Papadopoulus, K. (1981). Strong Langmuir turbu- lence in one and two dimensions, Phys. Rev. Lett. 46, 346Ð349. Rudenko, O.V. and Soluyan, S.I. (1977). Theoretical Foundations of Nonlinear Acoustics, Consultants Bureau (Plenum), New York. (English translation by R.T. Beyer.) Russell, J.S., (1844). Report on waves, Report on the 14th Meeting of the British Association for the Advancement of Science (ed. J. Murray), London, 311Ð390. Sabini, K. and Serebryany, A. (2005). Intense short-period internal waves in the ocean, J. Mar. Resour. 63, 227Ð261. Sachdev, P.L. (1987). Nonlinear Diffusive Waves, Cambridge University Press, Cam- bridge. Sagdeev, R.Z. (1966). Review of Plasma Physics Vol. IV, Consultants Bureau, New York (ed. M.A. Leontovich). 840 Bibliography

Sandri, G. (1963). The foundations of nonequilibrium statistical mechanics I, II, Ann. Phys. 24, 332Ð379. Sandri, G. (1965). A new method of expansion in mathematical physics—I, Nuovo Cimento B36, 67Ð93. Sandri, G. (1967). Uniformization of asymptotic expansions, in Nonlinear Partial Differential Equations: In A Symposium on Methods of Solutions (ed. W.F. Ames), Academic Press, New York, 259Ð277. Sandusky, K.W., Page, J.B., and Schmidt, K.E. (1992). Stability and motion of in- trinsic localized modes in nonlinear periodic lattices, Phys. Rev. B46, 6161Ð6170. Sanuki, H., Shimizu, K., and Todoroki, J. (1972). Effects of Landau damping on nonlinear wave modulation in plasma, J. Phys. Soc. Jpn. 33, 198Ð205. Satsuma, J. (1987a). Topics in Soliton Theory and Exactly Solvable Nonlinear Equa- tions, World Publishing Company, Singapore (eds. M.A. Ablowitz, et al.). Satsuma, J. (1987b). Explicit solutions of nonlinear equations with density dependent diffusion, J. Phys. Soc. Jpn. 56, 1947Ð1950. Schiff, L.I. (1951). Nonlinear meson theory of nuclear forces, Phys. Rev. 84, 1Ð11. Schimizu, K. and Ichikawa, V.H. (1972). Automodulation of ion oscillation modes in plasma, J. Philos. Soc. Jpn. 33, 789Ð792. Schmidt, G. (1975). Stability of envelope solitons, Phys. Rev. Lett. 34, 724Ð726. Schneider, W.R. and Wyss, W. (1989). Fractional diffusion and wave equations, J. Math. Phys. 30, 134Ð144. Scott, A.C. (1969). A nonlinear KleinÐGordon equation, Am. J. Phys. 37, 52Ð61. Scott, A.C. (1970). Active and Nonlinear Wave Propagation in Electronics, Wiley- Interscience, New York. Scott, A.C. (1977). Neurophysics, Wiley, New York. Scott, A.C. (2003). Nonlinear Science, 2nd edition, Oxford University Press, Ox- ford. Scott, A.C., Chu, F.Y.F., and McLaughlin, D.W. (1973). The soliton—A new concept in applied science, Proc. IEEE 61, 1443Ð1483. Seddon, J.A. (1900). River hydraulics, Trans. Am. Soc. Civ. Eng. 43, 179Ð243. Segur, H. (1973). The KortewegÐde Vries equation and water waves. I. Solutions of the equation, J. Fluid Mech. 59, 721Ð736. Seliger, R.L. (1968). On the breaking of waves, Proc. R. Soc. Lond. A303, 493Ð496. Sen, A.R. (1963). Surface waves due to blasts on and above liquids, J. Fluid Mech. 16, 65Ð81. Serre, D. (2000). Systems of Conservation Laws, II, Cambridge University Press, Cambridge. Sharma, V.D. (2010). Quasilinear Hyperbolic Systems, Compressible Flows and Waves, CRC Press, Boca Raton. Shigesada, N. (1980). Spatial distribution of dispersing animals, J. Math. Biol. 9, 85Ð96. Shimizu, K. and Ichikawa, V.H. (1972). Automodulation of ion oscillation modes in plasma, J. Phys. Soc. Jpn. 33, 789Ð792. Shinbrot, M. (1970). The shallow water equations, J. Eng. Math. 4, 293Ð304. Shinbrot, M. (1976). The initial-value problem for surface waves under gravity, I: The simplest case, Indiana Univ. Math. J. 25, 281Ð300. Bibliography 841

Shinbrot, M. and Friedman, A. (1968). The initial-value problem for the linearized equations of water waves, J. Math. Mech. 18, 1177Ð1193. Shivamoggi, B.K. and Debnath, L. (1983). Modulational stability of KortewegÐ de Vries and Boussinesq wavetrains, Int. J. Math. Math. Sci. 6, 811Ð817. Short, M. (1955). The initiation of detonation from general non-uniformly distributed initial conditions, Philos. Trans. R. Soc. Lond. A353, 173Ð203. Showalter, K. and Tyson, J.J. (1987). Luther’s 1906 discovery and analysis of chem- ical waves, J. Chem. Educ. 64, 742Ð744. Sievers, A.J. and Takeno, S. (1988). Intrinsic localized modes in anharmonic crystals, Phys. Rev. Lett. 61, 970Ð973. Simmen, J.A. and Saffman, P.G. (1985). Steady deep water waves on a linear shear current, Stud. Appl. Math. 75, 35Ð57. Skyrme, T.H.R. (1958). A nonlinear theory of strong interactions, Proc. R. Soc. Lond. A247, 260Ð278. Skyrme, T.H.R. (1961). Particle states of a quantized meson field, Proc. R. Soc. Lond. A262, 237Ð245. Sleeman, B.D. (1982). Small amplitude periodic waves for the FitzHughÐNagumo equation, J. Math. Biol. 14, 309Ð325. Smoller, J. (1994). Shock Waves and ReactionÐDiffusion Equations, 2nd edition, Springer, New York. Sneddon, I.N. (1951). Fourier Transforms, McGraw-Hill, New York. Soewono, E. and Debnath, L. (1990). Asymptotic stability of solutions of the gener- alized Burgers equation, J. Math. Anal. Appl. 153, 179Ð189. Soewono, E. and Debnath, L. (1994). Classification of self-similar solutions to a generalized Burgers equation, J. Math. Anal. Appl. 184, 389Ð398. Sparrow, E.M., Quack, H., and Boerner, C.J. (1970). Local nonsimilarity boundary- layer solutions, AIAA J. 8, 1342Ð1350. Stakgold, I. (1971). Branching of solutions on nonlinear equation, SIAM Rev. 13, 289Ð332. Stakgold, I. (1979). Green’s Functions and Boundary Value Problems, Wiley- Interscience, New York. Stakgold, I. and Payne, L.E. (1973). Nonlinear problems in nuclear reactor analysis, in Nonlinear Problems in the Physical Sciences and Biology, Lecture Notes in Mathematics, Vol. 322, Springer, New York, 298Ð307. Stewartson, K. and Stuart, J.T. (1971). A nonlinear instability theory for wave system in plane Poiseuille flow, J. Fluid Mech. 48, 529Ð545. Stoker, J.J. (1957). Water Waves, Interscience, New York. Stokes, G. (1847). On the theory of oscillatory waves, Trans. Camb. Philos. Soc. 8, 197Ð229. Strauss, W. (2010). Steady Water Waves, Bull. Am. Math. Soc. 47,2. Struik, D.J. (1926). Détermination rigoureuse des ondes irrotationnelles périodiques dans un canal á profondeur finie, Math. Ann. 95, 595Ð634. Stuart, J.T. (1960). On the nonlinear mechanics of wave disturbances in stable and unstable parallel flows, Part 1. The basic behaviour in plane Poiseuille flow, J. Fluid Mech. 9, 353Ð370. 842 Bibliography

Stuart, J.T. and DiPrima, R.C. (1978). The Eckhaus and BenjaminÐFeir resonance mechanisms, Proc. R. Soc. Lond. A362, 27Ð41. Sturrock, P.A. (1957). Nonlinear effects in electron plasma, Proc. R. Soc. Lond. A242, 277Ð299. Su, C.S. and Gardner, C.S. (1969). The KortewegÐde Vries equation and generaliza- tions, III. Derivation of the KortewegÐde Vries equation and Burgers’ equation, J. Math. Phys. 10, 536Ð539. Sun, S.M. (1999). Non-existence of truly solitary waves in water with small surface tension, Proc. R. Soc. Lond. A455, 2191Ð2228. Talanov, V.I. (1965). Self-focusing of wave beams in nonlinear media, JETP Lett. 2, 138Ð141. Tang, S. and Webber, R.O. (1991). Numerical study of Fisher’s equation by a PetrovÐ Galerkin finite element method, J. Aust. Math. Soc. B33, 27Ð38. Taniuti, T. (1974). Reductive perturbation method and far fields of wave equations, Prog. Theor. Phys. Suppl. 55, 1Ð35. Taniuti, T. and Nishihara, K. (1983). Nonlinear Waves, Pitman Advanced Publishing Program, Boston. Taniuti, T. and Washimi, H. (1968). Self-trapping and instability of hydromagnetic waves along the magnetic field in a cold plasma, Phys. Rev. Lett. 21, 209Ð212. Taniuti, T. and Wei, C.C. (1968). Reductive perturbation method in nonlinear wave propagation-I, J. Phys. Soc. Jpn. 24, 941Ð946. Taniuti, T. and Yajima, N. (1969). Perturbation method for a nonlinear wave modu- lation I, J. Math. Phys. 10, 1369Ð1372. Taniuti, T. and Yajima, N. (1973). Perturbation method for a nonlinear wave modu- lation III, J. Math. Phys. 14, 1389Ð1397. Tao, T. (2002). Low-regularity global solutions to nonlinear dispersive equations, Surveys in Analysis and Operator Theory, Proc. Centre Math. Appl, Austral. Nat. Univ., 19Ð48. Tao, T. (2006). Nonlinear Dispersive Equations, Local and Global Analysis, Am. Math. Soc., Providence. Tappert, F. and Varma, C.M. (1970). Asymptotic theory of self-trapping of heat pulses in solids, Phys. Rev. Lett. 25, 1108Ð1111. Teles Da Silva, A.F. and Peregrine, D.H. (1988). Steep solitary waves in water of finite depth with constant vorticity, J. Fluid Mech. 195, 281Ð305. Thyagaraja, A. (1979). Recurrent motions in certain continuum dynamical system, Phys. Fluids 22, 2093Ð2096. Thyagaraja, A. (1981). Recurrence, dimensionality, and Lagrange stability of solu- tions of the nonlinear Schödinger equation, Phys. Fluids 24, 1973Ð1975. Thyagaraja, A. (1983). Recurrence phenomena and the number of effective degrees of freedom in nonlinear wave motions, in Nonlinear Waves (ed. L. Debnath), Cambridge University Press, Cambridge, 308Ð325. Tien-Yien, L. and Yorke, J.A. (1975). Period three implies chaos, Am. Math. Mon. 82(10), 985Ð992. Toda, M. (1967a). Vibration of a chain with nonlinear interaction, J. Phys. Soc. Jpn. 22, 431Ð436. Bibliography 843

Toda, M. (1967b). Wave propagation in anharmonic lattices, J. Phys. Soc. Jpn. 23, 501Ð506. Toda, M. (1975). Studies of a Nonlinear Lattice, Phys. Rep. 18, 1Ð123. Toda, M. and Wadati, M. (1973). A soliton and two solitons in an exponential lattice and related equations, J. Phys. Soc. Jpn. 34, 18Ð25. Toland, J.F. (1978). On the existence of a wave of greatest height and Stokes’ con- jecture, Proc. R. Soc. Lond. A363, 469Ð485. Turin, A.M. (1952). The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. B237, 37Ð72. Vakhnenko, V. and Parkes, E. (2004). Periodic and solitary-wave solutions of the Degasperis-Procesi equation, Chaos Solitons Fractals 20, 1059Ð1073. Valenti, A. (1988). The asymptotic analysis of nonlinear waves in magneto-thermo- elastic solids with thermal relaxation, ZAMP 39, 299Ð312. Vanden-Broeck, J.M. (1994). Steep solitary waves in water of finite depth with con- stant vorticity, J. Fluid Mech. 274, 339Ð348. Vanden-Broeck, J.M. (1995). New families of steep solitary waves in water of finite depth with constant vorticity, Eur. J. Mech. B, Fluids 14, 761Ð774. Vanden-Broeck, J.M. (1996a). Periodic waves with constant vorticity in water of infinite depth, IMA J. Appl. Math. 56, 207Ð217. Vanden-Broeck, J.M. (1996b). Numerical calculations of the free-surface flow under a sluice gate, J. Fluid Mech. 330, 339Ð347. Vanden-Broeck, J.M. (2004). Nonlinear capillary free-surface flows, J. Eng. Math. 50, 415Ð426. Vanden-Broeck, J.M. (2007). Solitary Waves in Water: Numerical Methods and Re- sults, in Solitary Waves in Fluids (ed. R.H.J. Grimshaw), 55Ð84. Vanden-Broeck, J.M. (2010). Gravity-Capillary Free-Surface Flows, Cambridge University Press, London. Vanden-Broeck, J.M. and Dias, F. (1992). Gravity-capillary solitary waves in water of infinite depth and related free-surface flows, J. Fluid Mech. 240, 549Ð557. Van Saarloos, W. (1989). Front propagation into unstable states: Marginal stability as a dynamical mechanism for velocity selection, Phys. Rev. A 37, 211Ð229. Van Wijngaarden, L. (1968). On the equation of motion for mixtures of liquid and gas bubble, J. Fluid Mech. 33, 465Ð474. Wadati, M. (1972). The exact solution of the modified KortewegÐde Vries equation, J. Phys. Soc. Jpn. 32, 1681Ð1687. Wadati, M. (1973). The modified KortewegÐde Vries equation, J. Phys. Soc. Jpn. 34, 1289Ð1296. Wadati, M. and Toda, M. (1972). The exact N-soliton solution of the KortewegÐ de Vries equation, J. Phys. Soc. Jpn. 32, 1403Ð1411. Wadati, M., Ichikawa, Y.H., and Shimizu, T. (1980). Cusp soliton of a new integrable evolution equation, Prog. Theor. Phys. 64, 1959Ð1967. Wadati, M., Konno, K., and Ichikawa, Y.H. (1979). New integrable nonlinear evolu- tion equations, J. Phys. Soc. Jpn. 47, 1698Ð1700. Wahlquist, H.D. and Estabrook, F.B. (1973). Bäcklund transformations for solutions of the KortewegÐde Vries equation, Phys. Rev. Lett. 23, 1386Ð1389. 844 Bibliography

Wahlquist, H.D. and Estabrook, F.B. (1975). Prolongation structures and nonlinear evolution equations, J. Math. Phys. 16, 1Ð17. Wahlquist, H.D. and Estabrook, F.B. (1976). Prolongation structures and nonlinear evolution equations, J. Math. Phys. 17, 1403Ð1411. Walsh, R.A. (1969). Initial-value problems associated with ut(x, t)=δuxx(x, t) − u(x, t)ux(x, t), J. Math. Anal. Appl. 26, 235Ð247. Wang, X.Y. (1985). Nerve propagation and wall in liquid crystals, Phys. Lett. 112A, 402Ð406. Wang, X.Y. (1986). BrochardÐLeger wall in liquid crystals, Phys. Rev. A34, 5179Ð 5182. Wang, X.Y., Shu, Z.S., and Lu, Y.K. (1990). Solitary wave solutions of the general- ized BurgersÐHuxley equation, J. Phys. Math. Gen. 23, 271Ð274. Ward, R.S. (1984). The Painlevé property for the self-dual gauge-field equations, Phys. Lett. 102A, 279Ð282. Ward, R.S. (1985). Integrable and solvable systems and relations among them, Phi- los. Trans. R. Soc. Lond. A315, 451Ð457. Ward, R.S. (1986). Multi-dimensional integrable systems, in Field Theory, Quantum Gravity, and Strings, II Proceedings, Meudon and Paris, VI, France 1985/1986 (eds. H.J. de Vega and N. Sanchez), Lect. Notes Phys., Vol. 280, Springer, Berlin, 106Ð110. Washimi, H. and Taniuti, T. (1966). Propagation of ion-acoustic solitary waves of small amplitude, Phys. Rev. Lett. 17, 996Ð998. Watson, J. (1960). On the nonlinear mechanics of wave disturbances in stable and unstable parallel flows, Part 2. The development of a solution for plane Poiseuille flow and for plane Couette flow, J. Fluid Mech. 9, 371Ð389. Wazwaz, A.M. (2002). Partial Differential Equation Methods and Applications,A.A. Balkema Publishers, Tokyo. Wehausen, J.V. and Laitone, E.V. (1960). Surface waves, in Handbuch der Physik (ed. W. Flügge), Vol. 9, Springer, Berlin, 446Ð778. Weidman, P.D. and Maxworthy, T. (1978). Experiments on strong interactions be- tween solitary waves, J. Fluid Mech. 85, 417Ð431. Weiland, J. and Wiljelmsson, H. (1977). Coherent Nonlinear Interaction of Waves in Plasmas, Pergamon Press, Oxford. Weiland, J., Ichikawa, Y.H., and Wiljelmsson, H. (1978). A perturbation expansion for the NLS equation with application to the influence of nonlinear Landau damp- ing, Phys. Scr. 17, 517Ð522. Whitham, G.B. (1956). On the propagation of weak shock waves, J. Fluid Mech. 1, 290Ð318. Whitham, G.B. (1965a). A general approach to linear and nonlinear dispersive waves using a Lagrangian, J. Fluid Mech. 22, 273Ð283. Whitham, G.B. (1965b). Nonlinear dispersive waves, Proc. R. Soc. Lond. A283, 238Ð 261. Whitham, G.B. (1967a). Nonlinear dispersion of water waves, J. Fluid Mech. 27, 399Ð412. Whitham, G.B. (1967b). Variational methods and application to water waves, Proc. R. Soc. Lond. A299, 6Ð25. Bibliography 845

Whitham, G.B. (1970). Two-timing, variational principles and waves, J. Fluid Mech. 44, 373Ð395. Whitham, G.B. (1974). Linear and Nonlinear Waves, Wiley, New York. Whitham, G.B. (1975). A new approach to problems of shock dynamics. Part I. Two dimensional problems, J. Fluid Mech. 2, 146Ð171. Whitham, G.B. (1984). Comments on periodic waves and solitons, IMA J. Appl. Math. 32, 353Ð366. Witting, J.M. (1984). A unified model for the evolution of nonlinear water waves, J. Comput. Phys. 56, 203Ð236. Wyss, W. (1986). The fractional diffusion equation, J. Math. Phys. 27, 2782Ð2785. Yajima, N. and Outi, A. (1971). A new example of stable solitary waves, Prog. Theor. Phys. 45, 1997Ð2005. Yin, Z.Y. (2003a). Global existence for a new periodic integrable equation, J. Math. Anal. Appl. 283, 129Ð139. Yin, Z.Y. (2003b). On the Cauchy problem for an integrable equation with peakon solutions, Ill. J. Math. 47, 649Ð666. Yin, Z.Y. (2004a). On the blow-up scenario for the generalized CamassaÐHolm equa- tion, Commun. Partial Differ. Equ. 29, 867Ð877. Yin, Z.Y. (2004b). Global solutions to a new integrable equation with peakons, Indi- ana Univ. Math. J. 53, 1189Ð1210. Yorke, J. and Li, T.-Y. (1975). Period three implies chaos, Am. Math. Mon. 82(10), 985Ð992. Yuen, H.C. and Ferguson, W.E., Jr. (1978a). Relationship between BenjaminÐFeir instability and recurrence in the nonlinear Schrödinger equation, Phys. Fluids 21, 1275Ð1278. Yuen, H.C. and Ferguson, W.E., Jr. (1978b). FermiÐPastaÐUlam recurrence in the two space dimensional nonlinear Schrödinger equation, Phys. Fluids 21, 2116Ð 2118. Yuen, H.C. and Lake, B.M. (1975). Nonlinear deep water waves: Theory and exper- iment, Phys. Fluids 18, 956Ð960. Yuen, H.C. and Lake, B.M. (1979). A new model for nonlinear wind waves, Part 2, Theoretical, Stud. Appl. Math. 60, 261Ð270. Yuen, H.C. and Lake, B.M. (1980). Instabilities of wave on deep water, Annu. Rev. Fluid Mech. 12, 303Ð334. Yuen, H.C. and Lake, B.M. (1982). Nonlinear dynamics of deep-water gravity waves, Adv. Appl. Mech. 22, 67Ð229. Zabusky, N.J. (1967). A synergetic approach to problems of nonlinear dispersive wave propagation and interaction, in Proc. Symp. on Nonlinear Partial Differen- tial Equations (ed. W.F. Ames), Academic Press, Boston. Zabusky, N.J. and Galvin, C.J. (1971). Shallow water waves, the KortewegÐde Vries equation and solitons, J. Fluid Mech. 47, 811Ð824. Zabusky, N.J. and Kruskal, M.D. (1965). Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett. 15, 240Ð243. Zakharov, V.E. (1968a). Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 9, 86Ð94. 846 Bibliography

Zakharov, V.E. (1968b). Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Appl. Mech. Tech. Phys. 2, 190Ð194. Zakharov, V.E. and Faddeev, L.D. (1971). KortewegÐde Vries equation, a completely integrable Hamiltonian system, Funct. Anal. Appl. 5, 280Ð287. Zakharov, V.E. and Shabat, A.B. (1972). Exact theory of two-dimensional self focus- ing and one-dimensional self modulation of waves in nonlinear media, Sov. Phys. JETP 34, 62Ð69. Zakharov, V.E. and Shabat, A.B. (1973). Interaction between solitons in a stable medium, Sov. Phys. JETP 37, 823Ð828. Zakharov, V.E. and Shabat, A.B. (1974). A scheme for integrating the nonlinear equations of mathematical physics by the method of the inverse scattering prob- lem, Funct. Anal. Appl. 8, 226Ð235. Zakharov, V.E. and Shulman, E.I. (1982). To the integrability of the system of two coupled nonlinear Schrödinger equations, Physica 4D, 270Ð274. Zauderer, E. (1989). Partial Differential Equations of Applied Mathematics, 2nd edi- tion, Wiley-Interscience, New York. Zel’dovich, Ya.B. (1980). Regime classification of an exothermic reaction with non- uniform initial conditions, Combust. Flame 39, 211Ð214. Zel’dovich, Ya.B. and Raizer, Yu.P. (1966). Physics of Shock Waves and High Tem- perature Hydrodynamic Phenomena, Academic Press, New York. Zel’dovich, Ya.B. and Raizer, Yu.P. (1968). Elements of Gas Dynamics and the Clas- sical Theory of Shock Waves, Academic Press, New York. Zel’dovich, Ya.B., Barenblat, G.I., Librovich, V.B., and Makhviladzd, G.M. (1985). The Mathematical Theory of Combustion and Explosion, Consultants Bureau, Di- vision Plenum Press, New York. Zel’dovich, Ya.B., Librovich, V.B., Makhviladze, G.M., and Sivashinsky, G.I. (1970). Development of detonation in a non-uniformly preheated gas, Astr. Acta 15, 313Ð321. Zhang, X. (1995). Capillary-gravity and capillary waves generated in a wind wave tank: observations and theories, J. Fluid Mech. 289, 51Ð82. Zhang, G. and Qiao, Z. (2007). Cuspons and smooth solitons of the DegasperisÐ Procesi equation under inhomogeneous boundary condition, Math. Phys. Anal. Geom. 10, 205Ð225. Zheng, Y. (2001). Systems of Conservation Laws: Two Dimensional Riemann Prob- lems, Birkhäuser, Basel. Zhou, Y. (2004a). Wave breaking for a periodic shallow water equation, J. Math. Anal. Appl. 290, 591Ð604. Zhou, Y. (2004b). Wave breaking for a shallow water equation, Nonlinear Anal. 57, 137Ð152. Zhou, Y. (2005). Local well-posedness and blow-up criteria for a rod equation, Math. Nachr. 278, 1726Ð1739. Zhou, X. and Grimshaw, R. (1989). The effect of variable currents on internal solitary waves, Dyn. Atmos. Oceans 14, 17Ð39. Zufira, J.A. (1987). Symmetry breaking in periodic and solitary gravity-capillary waves on water of finite depth, J. Fluid Mech. 184, 183Ð206. Index

Abdelkader, 417 Asano, 153, 625, 633, 636, 645 Abel integral equation of the first kind, 765 Associated Laguerre function, 706, 710, 711 Abel integral equation of the second kind, Associated Laguerre polynomial, 711 766 Associated Legendre function, 486, 703, 705 Abel’s formula, 86 Associated SL problem, 92, 94 Ablowitz, 152, 155, 417, 425, 506, 542 Associative, 730, 752 Ablowitz and Ladik (AL) equation, 199 Asymptotically stable, 401 Absorption isotherm, 300 Average value, 730, 757 Acoustic radiation potential, 9, 65 Averaged conservation equation, 589 Acrivos, 153 Averaged Hamiltonian, 379 Action, 198 Averaged Lagrangian, 592, 594 Action integral, 165 Averaged variational principle, 593 Addition theorems for elliptic functions, 717 Axisymmetric acoustic radiation problem, Adiabatic invariant, 588 65 Airy, 427 Axisymmetric biharmonic equation, 67 Airy differential equation, 570 Axisymmetric CauchyÐPoisson problem, 69 Airy function, 10, 38, 156, 468, 702 Axisymmetric diffusion equation, 64, 135 Airy integral, 38 Axisymmetric Dirichlet problem, 141 AKNS method, 425, 506, 508 Axisymmetric initial value problem, 133 Axisymmetric wave equation, 62, 79 Alfvén wave velocity, 358 Amick, 182 Bäcklund transformations, 494Ð498, 530, Ammerman, 152, 397 605, 606 Amplitude dispersion, 181 Balmforth, 155 Amplitude parameter, 183 Barenblatt, 416Ð418 Angular frequencies, 24 Barone, 151 Anharmonic forces, 515 Ben-Jacob, 155 Antikinks, 431 Benguria, 374 Antisoliton, 597, 600, 605 Benjamin, 153, 173, 527, 547 Aoki, 152, 397 BenjaminÐBonaÐMahony (BBM) equation, Arecchi, 151 154, 357, 528 Aris, 152 BenjaminÐFeir (modulational) instability, Arnold, 152, 283, 397 552, 554 Aronson, 415 BenjaminÐFeir side-band instability, 674

L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers, DOI 10.1007/978-0-8176-8265-1, c Springer Science+Business Media, LLC 2012 848 Index

BenjaminÐOno (BO) equation, 153 BurgersÐHuxley equation, 155 Benney, 152, 153, 550 Burton, 321 Benton, 416 Berezin, 462, 463 Camassa, 518 Bernoulli equation, 175, 182 Camassa and Holm (CH) equation, 157, 518, BernoulliÐEuler equation, 137 522 Bespalov, 153 Canonical form, 12 Bessel, 85, 105, 110, 697 Canonical transformation, 241 Bessel function, 61, 105, 106, 697 Canosa, 152, 397, 417 Bessel’s equation, 85, 105, 110, 698 Capillary solitary wave, 456 Bessel’s inequality, 91, 728 Capillary waves, 190 Beta distribution, 697 Case, 416 Beta function, 692, 694 Cauchy conditions, 6 Bhatnagar, 636 Cauchy data, 210, 214, 331 Bianchi theorem, 497 Cauchy integral formula, 765 Biharmonic equation, 10, 67, 126, 133 Cauchy principal value, 153 Bilinear expansion of Green’s function, 99 Cauchy problem, 6, 7, 17, 18, 36, 42, 49, 50, Birkhoff, 404 52, 126, 134, 209, 210, 222Ð224, 234, Birkhoff theorem, 546 254Ð256, 274 Blackstock, 416 CauchyÐEuler equation, 84 Blasius problem, 131, 142 CauchyÐPoisson problem, 58, 68, 128, 135 Bleakney, 321 CauchyÐRiemann equations, 495 BohrÐSommerfeld rule, 493 Caustic, 569 Boltzmann constant, 438 Cavalli-Sforva, 152 Boltzmann distribution, 438, 638 Chaotic solutions, 346 Boltzmann nonlinear diffusion problem, 406 Characteristic base curve, 207 Boltzmann transformation, 408 Characteristic curves, 12, 207, 316, 435 Bona, 154, 357, 508, 528 Characteristic direction, 207, 229 Bond number, 187, 453 Characteristic equation, 12, 207, 230 Bore, 328 Characteristic function, 755 BornÐInfeld equation, 193 Characteristic shock, 341 Bound state, 478, 605 Characteristic strip, 231 Boundary-value problem, 6, 36, 51, 61, 96, Characteristic strip equations, 231 118, 134, 141, 142, 180, 394, 402, Characteristic velocity, 370 417, 633, 739 Characteristics, 12, 207, 327 Boussinesq, 425, 427, 436 Charpit equations, 230Ð235 Boussinesq equation, 10, 152, 194, 357, 428, Chebyshev polynomial, 708, 709 434Ð436, 451, 452, 467, 513, 651 Chen, 152, 155 Brauner, 416 Chézy formula, 298 Breakers, 299 Chiu, 416 Breather solution, 602, 604 Chromatographic models, 300 Bright soliton, 543 Chu, 153, 378, 549 Brillouin, 569 Circular frequency, 24 Britton, 417 Clairaut equation, 233, 237 Brunt–Väisälä frequency, 358 Classical solution, 3 BuckleyÐLeverett equation, 281 Claude, 517 Burgers, 151 Cnoidal wave, 458, 461, 462 Burgers equation, 151, 296, 382, 630, 637, Cole, 386, 396 638 ColeÐHopf transformation, 387 Index 849

Collins, 618 371, 432, 460, 464, 539, 541, 542, Column isotherm, 300 580, 584, 598, 622 Commutative, 36, 730, 752 Debye, 428 Commutator, 499 Debye length, 439 Compact breather, 514 Deep water waves, 178 Compactons, 509Ð511, 513, 514 Defocusing branch, 509 Complementary error function, 693 Degasperis and Procesi (DP) equation, 157, Complete elliptic integral, 461, 715, 717 518, 525 Complete integral, 203 Delta function, 746 Complete set, 89 Density, 284, 469 Complete solution, 203 Depassier, 374 Complex amplitude, 360 Derivative expansion method, 650 Composition, 751 Deterministic chaos, 342, 345 Compression wave, 262, 302 Developable surface, 238 Concentric KdV equation, 155 Dielectric constants, 567 Conjugate, 751 Differential equation for Conjugate variables, 240 Airy function, 702 Conservation law, 277, 374, 469Ð473, 547, associated Laguerre function, 711 621, 670, 671 associated Legendre function, 705 Conservation of energy, 164, 165, 192, 480 Bessel function, 697, 698 Constant of motion, 469 Chebyshev polynomials, 708, 710 Continuity, 730 Gegenbauer polynomials, 707 Continuous spectrum, 51, 479 Hermite function, 713 Convolution, 36, 521, 730, 762 Hermite polynomials, 712 Convolution theorem, 36, 752, 760 Jacobi polynomials, 707 Laguerre polynomials, 711 Couette flow, 121 Legendre polynomial, 704 Courant, 336 modified Bessel function, 700 Cramer, 637 Weber-Hermite function, 713 Crandall, 491, 529 Diffusion coefficient, 306 Crank, 409, 415 Diffusion equation, 8, 27, 29, 42, 43, 48, 49, Crighton, 416 54, 55, 64, 71Ð73, 109, 112, 114, 117, Cylindrical KdV equation, 155, 529 122, 132, 137, 382, 387 Cylindrical wave equation, 103 Diffusion kernel function, 757 Diffusion length, 348 D’Alembert solution, 18, 37, 332, 434, 758 Diffusive wave, 383, 386 Damped harmonic oscillator, 738 Dipole solution, 393 Darcy law, 347 Dirac, 381, 535, 623, 740 Dark soliton, 543, 575 Dirac delta function, 34, 36, 60, 70, 740, Davey, 153, 156, 550 741, 746 DaveyÐStewartson equation, 156, 663, 668, Dirichlet condition, 6 670 Dirichlet kernel, 731, 732 Davis, 153, 612 Dirichlet problem, 31, 39, 47, 139, 141, 163 De Broglie wave, 45, 358, 577 Discontinuous initial data, 267, 274 De Leonardis, 604 Discontinuous solution, 261, 270, 275Ð277 De Vries, 152, 428 Dispersion relation, 45, 69, 177, 186, 187, Debnath, 52, 55, 58, 60, 62, 68, 69, 83, 88, 246, 355Ð359, 370, 439, 444, 569, 115, 119Ð124, 128, 129, 132, 135, 595, 631, 637, 661, 672 142, 152, 173, 182Ð185, 324, 369, for Alfvén gravity wave, 358 850 Index

for cnoidal wave, 461 Enz, 151 for de Broglie wave, 45 EPDiff equation, 524 for electromagnetic waves, 358 Equation for ion-acoustic wave, 439 Ablowitz and Ladik (AL), 199 for water waves, 69, 178, 357, 426, 540 associated Legendre, 486 Dispersion relation for de Broglie wave, 45, averaged conservation, 589 358 axisymmetric wave, 62 Dispersion relation for the gravity-capillary BenjaminÐBonaÐMahony (BBM), 154, waves, 187 357, 528 Dispersion relation for water waves, 69, 178, BenjaminÐOno (BO), 153 357, 426, 540 Bernoulli, 175, 182 Dispersive wave, 357 BernoulliÐEuler, 137 Dissipative wave equation, 622 Bessel, 85, 105, 110, 698 Distribution, 740, 747 biharmonic, 10, 67, 126, 133 Distributive, 730, 753 BornÐInfeld, 193 Dodd, 503, 504 Boussinesq, 10, 152, 194, 357, 428, Domain of dependence, 18 434Ð436, 451, 452, 467, 513, 651 Drazin, 489, 492, 601 BuckleyÐLeverett, 281 Dressler, 310, 311 Burgers, 151, 296, 382, 630, 637, 638 Duality, 751, 761 BurgersÐHuxley, 155 Duhamel formula, 145, 761 Camassa and Holm (CH), 157, 518, 522 Dunbar, 417 CauchyÐEuler, 84 Duncan et al., 618 CauchyÐRiemann, 495 Dutta, 460, 464, 539, 541, 598 characteristic, 12, 207, 230 Dynamical equation, 587 characteristic strip, 231 Charpit, 230Ð235 Effective mode, 546 Clairaut, 233, 237 Eigenfunctions, 24, 28, 30, 83, 84, 112 concentric KdV, 155 Eigenvalues, 22, 23, 28, 30, 83, 84, 316, 492 continuity, 284, 307, 438, 445 Eikonal equation, 247, 248, 252, 569 cylindrical KdV, 155, 529 Eilbeck, 618 DaveyÐStewartson, 156, 663, 668, 670 Einstein, 149, 425 Degasperis and Procesi (DP), 157, 518, Ekman layer, 132 525 Elastic particles, 604 diffusion, 8, 27, 29, 42, 43, 48, 49, 54, 55, Electrical susceptibility, 568 64, 71Ð73, 109, 112, 114, 117, 122, Electromagnetic wave equation, 10 132, 137, 382, 387 Electron plasma frequency, 439 dynamical, 587 Elliptic equation, 13, 14 eikonal, 247, 248, 252, 569 Elliptic functions, 616, 715 electromagnetic wave, 10 Elliptic integral, 460, 539, 715 elliptic, 13, 14 Energy, 26, 45, 101, 107, 191, 755 Euler, 173, 174, 183, 194, 440, 446, 447, Energy density, 364, 366 451 Energy equation, 192, 197 EulerÐDarboux, 20 Energy flux, 192, 364, 366 EulerÐLagrange, 159, 160, 162, 168, 171, Energy inequality, 107 194, 195, 197 Energy integral, 101, 140 EulerÐPoincaré (EP), 524 Engelbrecht, 636 EulerÐPoissonÐDarboux, 324, 351 Entropy criterion, 277 evolution, 499, 608, 624, 627 Envelope soliton, 430, 542, 543 Fisher, 152, 396 Index 851

FokkerÐPlanck, 226 NavierÐStokes, 307 fractional diffusion, 114, 118, 122 nonlinear diffusion, 382, 406, 408, 409 fractional partial differential, 114 nonlinear evolution, 500, 502 fractional Schrödinger, 124 nonlinear KleinÐGordon (KG), 151, 554 fractional wave, 116, 118, 122, 123 nonlinear partial differential, 150, 203, Gardner, 471 362, 650 GelfandÐLevitanÐMarchenko (GLM), 483 nonlinear reactionÐdiffusion, 412 generalized NLS, 564, 645 nonlinear Schrödinger (NLS), 153, 378, GinzburgÐLandau (GL), 154 503, 505, 529, 550, 552, 555, 558, Hamilton, 163 562, 574, 577, 654, 661, 663, 668, 671 HamiltonÐJacobi, 238Ð240, 243, 244 nonlinear wave, 151, 328, 350 Hamilton’s canonical, 524 OttoÐSudanÐOstrovsky, 508 Harry Dym, 525 Painlevé, 467 heat, 8, 53 parabolic, 13, 14, 383 Helmholtz, 9, 65, 75, 127, 144 paraxial, 571 Hermite differential, 712 Peregrine, 640 Hodgkin and Huxley, 155 Poisson, 9, 73, 195 hyperbolic, 12, 322, 323, 351, 370 PrandtlÐBlasius, 419, 420 hypergeometric, 323 quasi-linear partial differential, 3, 194, internal wave, 358 202, 378 internalÐinertial wave, 358 reactionÐdiffusion, 397, 412 inviscid derivative Burgers, 521 Riccati, 475 Johnson, 155, 447, 449 roll wave, 309 KadomtsevÐPetviashvili (KP), 155, 444, Rossby wave, 130, 358 445, 473, 529 scattering, 608 Kawahara, 376 Schrödinger, 9, 44, 124, 195, 253, 477, KdVÐBurgers, 372, 508, 624, 637 486, 504, 507, 541, 544, 564 kinematic wave, 151, 259, 284 shallow water, 327, 348, 433 KleinÐGordon (KG), 9, 126, 138Ð140, sine-Gordon (SG), 151, 506, 594, 595, 151, 171, 357, 579, 582, 584, 585, 598, 605, 620, 621 592, 619, 622 sinh-Gordon, 506, 621 KortewegÐde Vries (KdV), 10, 38, 152, telegraph, 9, 126, 130, 132, 144, 145, 349 357, 428, 438, 440, 443, 452, 458, Toda lattice, 157, 158 468, 475, 505, 530, 531, 638, 658, 660 traffic flow, 286, 287 KPP, 398 Tricomi, 14, 351 KuramotoÐSivashinsky, 376 water wave, 173, 184, 185, 432, 434 Lagrange, 163, 164 wave, 4, 17, 22, 36, 49, 50, 52, 58, 62, Laplace, 8, 9, 39, 41, 47, 59, 138, 146, 78Ð80, 92, 101Ð104, 115, 122, 140, 663 151, 167Ð170, 444, 613 Lax, 499, 501, 530, 531 Whitham, 157, 193, 364, 372, 375Ð378, linear partial differential, 1Ð3, 10 531, 549, 593 linear scattering, 608 YangÐMills, 158 linear wave, 4, 8, 17, 22, 36, 49, 50, 52, Zakharov, 562 58, 62, 78Ð80, 102, 109, 441, 444 Error function, 693 Lorenz, 343 Estabrook, 495, 497, 503 Maxwell, 438, 567, 613 Euler constant, 690 minimal surface, 163 Euler equation, 173, 174, 183, 194, 440, modified KdV (mKdV), 153, 505, 528, 446, 447, 451 530, 635 EulerÐDarboux equation, 20 852 Index

EulerÐFourier formulas, 720, 725 Fractional StokesÐEkman problem, 142 EulerÐLagrange equation, 159, 160, 162, Fractional unsteady Couette flow, 121 168, 171, 194, 195, 197 Fractional wave equation, 116, 118, 122, 123 EulerÐLagrange variational problem, 159, Freeman, 155, 498, 529 160 Frenkel, 151 EulerÐPoincaré (EP) equation, 524 Fresnel integrals, 693 EulerÐPoissonÐDarboux equation, 324, 351 Friedrichs, 336 Evolution equation, 499, 608, 624, 627 Froude number, 187, 310 Expansive wave, 261, 275 Fulton, 153 Function Factorial function, 689 Airy, 10, 38, 156, 468, 702 Fan, 291, 301 associated Laguerre, 706, 710, 711 Fan centered, 291, 292 associated Legendre, 486, 703, 705 Feigenbaum constant, 345, 346 Bessel, 61, 105, 106, 697 Feir, 371, 547 beta, 692, 694 Ferguson, 546 characteristic, 755 Fermi, 428, 547 complementary error, 693 FermiÐPastaÐUlam recurrence, 428, 547 diffusion kernel, 757 Fife, 152, 415, 417 Dirac delta, 34, 36, 740, 741 Finite Hankel transform, 123, 686 eigen, 24 Fisher, 152, 396 error, 693 Fisher equation, 152, 396 factorial, 689 Fission, 490 gamma, 689 FitzHugh, 155 Gaussian, 742 Flesch, 618 generalized, 740, 744, 747 Flood wave, 297Ð299 good, 743 Flux, 284, 469 Hamilton, 163, 243 Flux transport, 412 Hamilton principle, 238 Focusing branch, 509 Focusing instability, 574 Heaviside, 745 FokkerÐPlanck equation, 226 Hermite, 713 Forcing term, 356 hypergeometric, 323 Fordy, 504 incomplete gamma, 692 Fourier, 381 Jacobi Epsilon, 616 Fourier cosine transforms, 679 Jacobi theta, 395 Fourier integral formula, 749 Laguerre, 710, 711 Fourier integral solution, 49 Legendre, 703 Fourier method, 5, 22 Mittag-Leffler, 114, 713, 766 Fourier series, 719Ð731, 733, 736, 739 modified Bessel, 700 Fourier sine transforms, 677 normal probability density, 696 Fourier transform, 34, 46, 360, 675, 751 ordinary Gaussian, 742 FourierÐBessel series, 111 phase, 360 Fractional Blasius problem, 142 Riemann, 79, 322 Fractional derivative, 55, 764 sawtooth wave, 723 Fractional diffusion equation, 114, 118, 122 smooth, 204 Fractional partial differential equations, 114 special, 689 Fractional Rayleigh problem, 119 square wave, 723, 759 Fractional Schrödinger equation, 124 theta, 464 Fractional Stokes problem, 119 triangular wave, 390, 722, 724 Index 853

WeberÐHermite, 712, 713 Gibbs, 733 Wright, 115 Gibbs phenomenon, 733 Functional, 159Ð162 GinzburgÐLandau (GL) equation, 154 Fundamental harmonic, 25 Glacier flow, 305 Fundamental parameters, 183, 438 Goldstein, 243 Fundamental period, 25 Good function, 743 Fundamental solution, 42, 43, 389, 408 Gordon, 9 Gorschkov, 649 Galvin, 430 GorterÐMellink law, 411 Gamma distribution, 697 GravityÐCapillary surface waves, 187, 452 Gamma function, 689 Green function, 42, 43, 70Ð74, 76Ð82, 97, Gardner, 430, 472, 474, 635 137 Gardner equation, 471 Green signal problem, 292 Gardner transformation, 471 Gregory, 734 GardnerÐMorikawa transformation, 628, Griffith, 321 633, 634 Grimshaw, 527 Gauss formula, 696 Grindrod, 417 , 742 Group velocity, 45, 178, 189, 357, 662 Gazdag, 417 Growth rate, 396 Gegenbauer polynomial, 707, 708 Growth term, 259 GelfandÐLevitanÐMarchenko (GLM) Gurney, 415 equation, 483 Gurtin, 415 General integral, 204 General Parseval’s relation, 754 General solution, 4, 204 Haberman, 152 Generalized Fourier coefficients, 89, 93 Hadamard example, 7 Generalized Fourier series, 89 Hagstrom, 417 Generalized function, 740, 744, 747 Hahn, 612 Generalized Mittag-Leffler function, 713 Haight, 287 Generalized NLS equation, 564, 645 Hamilton equations, 163 Generalized RankineÐHugoniot shock Hamilton function, 163, 243 condition, 340 Hamilton principle, 165, 168 Generalized Riemann invariants, 339 Hamilton principle function, 238 Generalized simple wave, 338Ð340 Hamilton variational principle, 649 Generalized solitary wave, 457, 458 HamiltonÐJacobi equation, 238Ð240, 243, Generalized solution, 3, 257, 271, 272, 275 244 Generating function for Hamiltonian, 44, 163, 173, 375, 524 associated Laguerre function, 711 Hamiltonian density, 604 associated Legendre function, 705 Hamilton’s canonical equation, 524 Bessel function, 698 Hammack, 542 Chebyshev polynomials, 708 Hankel transform, 61, 446, 683 Gegenbauer polynomials, 707 Harry Dym equation, 525 Hermite polynomials, 712 Hasegawa, 570 Jacobi polynomials, 707 Hasimoto, 555 Laguerre function, 711 Hassan, 650 Legendre polynomial, 704 , 8, 53 Geometrical optics approximation, 585 Heaviside function, 745 Ghez, 415 Heisenberg, 149, 535 Gibbon, 151, 503, 563 Helmholtz equation, 9, 65, 75, 127, 144 854 Index

Hermite differential equation, 712 Jacobi elliptic function, 461, 616, 716 Hermite function, 713 Jacobi elliptic integrals, 715 Hermite polynomial, 712 Jacobi Epsilon function, 616 Hilbert, 201, 355, 579, 623 Jacobi polynomial, 706, 707 Hilbert transform, 153 Jacobi principle of least action, 245, 248 Hirota, 430, 617 Jacobi theta function, 395 Hodgkin and Huxley equation, 155 Jeffrey, 508, 569, 636, 655 Hodograph transformation, 336 Johnson, 417, 445, 489, 661 Holm, 522 Johnson equation, 155, 447, 449 Hopf, 386 Jones, 360, 743 Hoppensteadt, 402 Josephson, 151 Howard, 413 Jost solutions, 481 Hydraulic jump, 299, 328 Jump condition, 257, 270, 274 Hyman, 509Ð511, 513, 515 Jump discontinuity, 270 Hyperbolic equation, 12, 322, 323, 351, 370 Hypergeometric equation, 323 Kadomtsev, 155 Hypergeometric function, 323 KadomtsevÐPetviashvili (KP) equation, 155, 444, 445, 473, 529 Ichikawa, 153 Kako, 152 Identity, 36, 753 Kakutani, 153, 625, 636 Ilichev, 376 Kaliappan, 413 Ill posed, 7, 146, 147, 370 Kametaka, 417 Incomplete gamma function, 692 Karpman, 153, 462, 509, 563 Index of refraction, 248 Kaup, 506, 509 Infeld, 563 Kawahara, 636, 650, 655 Initial value problem, 17, 128, 133, 219, Kawahara equation, 376 259, 313, 331, 359 KdVÐBurgers equation, 372, 508, 624, 637 Inner product, 87, 89, 755 Keller, 417 Inoue, 655 Kelley, 153 Instantons, 158 Kerr effect, 570 Integrability condition, 230 Kinematic wave equation, 151, 259, 284 Integral equation, 765 Kinetic energy, 26, 45, 163, 164, 167, 190, Integral surface, 4, 206 196, 524 Interaction strength, 546 Kink, 431 Internal wave equation, 358 Kirchhoff transformation, 409 InternalÐinertial wave equation, 358 Kivshar, 515, 516 Inverse Fourier transform, 34, 46 Klein, 9 Inverse Hankel transform, 61 KleinÐGordon (KG) equation, 9, 126, Inverse Laplace transform, 51 138Ð140, 151, 171, 357, 579, 582, Inverse scattering transform, 475, 476, 478 584, 585, 592, 619, 622 Inverse Weierstrass transform, 763 KleitzÐSeddon law, 299 Inviscid derivative Burgers equation, 521 Kodama transformation, 522 Ion plasma frequency, 439 Kolmogorov, 152, 397 Ion-acoustic wave, 438, 440, 638 Konno, 577 Isentropic flow, 314, 351 Kontorova, 151 Isothermal curves, 40 Kopell, 413 Korteweg, 152, 428 Jacobi dn function, 541, 716 KortewegÐde Vries (KdV) equation, 10, 38, Jacobi sn function, 460, 716 152, 357, 428, 438, 440, 443, 452, Index 855

458, 468, 475, 505, 529Ð531, 638, Levi-Civita, 426 658, 660 Lie group, 404, 466 KPP equation, 398 Lifshitz, 493 Kramers, 569 Lighthill, 151, 152, 194, 283, 286, 369, 416 Kriess, 416 Lighthill criterion, 566 Kronecker delta, 24, 240 Linear operator, 3, 70 Krushkal, 153 Linear partial differential equation, 1Ð3, 10, Kruskal, 428, 429, 525, 547 105 Kulikovskii, 636 Linear scattering equation, 608 KuramotoÐSivashinsky equation, 376 Linear superposition principle, 5, 6, 43, 74 Kynch, 151, 303, 348 Linear wave equation, 4, 8, 17, 22, 36, 49, 50, 52, 58, 62, 78Ð80, 102, 109, 441, Lagrange bracket, 242, 243 444 Lagrange equation, 163, 164 Liu, 152, 155 Lagrange identity, 86 Local frequency, 361, 362, 367 Lagrangian, 163, 168, 172, 198, 367 Local Mach number, 335 Lagrangian density, 168, 604, 621 Local wavenumber, 361, 362, 367 Lagrangian functional, 169 Localized modes, 516 Lagrangian stability, 546 Logan, 417 Laguerre differential equation, 711 Logistic map, 345 Laguerre function, 710, 711 Lommel integrals, 699 Laguerre polynomial, 710, 711 Long wavelength parameter, 183 Lake, 153, 547 Lorenz, 342, 417 Lamb, 151, 612 Lorenz attractor, 342 Lamé constants, 127 Lorenz equation, 343 Landau, 493 Lorenz system, 342 Langmuir isotherm model, 301 Luke, 171 Langmuir soliton, 559 Laplace equation, 8, 9, 39, 41, 47, 59, 138, Ma, 576 146, 663 MacCamy, 415 Laplace spherical harmonics, 105 Mach lines, 335 Laplace transform, 51, 59, 680, 758 Mach number, 252, 335 Laplacian, 44, 73, 79, 102, 109, 742 Madsen, 152 Lardner, 416 Magnetic permeability, 567 Larson, 416, 417 Mainardi, 115, 118 Lattice solitary waves, 618 Makhankov, 430 Law of conservation of energy, 164, 165, Manning formula, 298 480 Manoranjan, 417 Lax, 257, 277, 340, 811 Marchenko, 376 Lax entropy criterion, 277 Matrix operators, 502 Lax equation, 499, 501, 530, 531 Matsumoto, 655 Lax pair, 499, 530 Maximum principle, 108 Legendre duplication formula, 691 Maxon, 156 Legendre functions, 703 Maxwell equation, 438, 567, 613 Legendre polynomial, 487, 703, 704, 708 Maxworthy, 430 Leibniz, 734 McCall, 612 Leibniz series, 734 McKean, 417 Leibovich, 153 Mean value property, 34 LeVeque, 341 Mei, 153, 378, 549 856 Index

Mersenne law, 25 Nonlinear evolution equation, 500, 502 Method of characteristics, 208, 333 Nonlinear group velocities, 370 Method of multiple scales, 656, 661 Nonlinear KleinÐGordon (KG) equation, Minimal surface equation, 163 151, 554 Mitchell, 417 Nonlinear lattices, 615 Mittag-Leffler function, 114, 713, 766 Nonlinear partial differential equation, 150, Miura, 470, 475, 528 203, 362, 650 Miura transformation, 470 Nonlinear reactionÐdiffusion equation, 412 Modes, 25 Nonlinear Schrödinger (NLS) equation, 153, Modified Bessel equation, 700 378, 503, 505, 529, 550, 552, 555, Modified Bessel function, 701 558, 562, 574, 577, 654, 661, 663, Modified KdV (mKdV) equation, 153, 505, 668, 671 528, 530, 635 Nonlinear shallow water waves, 354 Modulational instability, 554, 564 Nonlinear superposition principle, 497, 607 Mollenauer, 570 Nonlinear wave equation, 151, 328, 350 Moment of instability, 436 Normal dispersion, 575 Momentum equation, 312 Normal modes, 24 Monge axis, 207 Normal probability density function, 696 Monge cone, 208, 229 Novick-Cohen, 376 Monochromatic waves, 568 Nozaki, 636 Monoclinal flood wave, 299 Numerical series, 734, 736, 737 Montroll, 413 Nwogu, 152 Morikawa, 628 Nye, 151, 305 Multiple Fourier transform, 46, 47 Munier, 409 Oikawa, 636 Murray, 413Ð417 Okubo, 408 Olver, 173 N-soliton solution, 486, 762 Ono, 153, 550, 625, 633, 636 n-th convolution product, 762 Order, 2 N-wave solution, 392 Ordinary Gaussian functions, 742 Nagumo, 155 Ordinary output, 762 Naumkin, 376, 377 Orthogonal relation, 706, 707, 711 NavierÐStokes equation, 307 Orthogonal set, 89 Nayfeh, 153 Ostrovsky, 508, 624, 646 Neumann boundary-value problem, 6 OttoÐSudanÐOstrovsky equation, 508 Neumann conditions, 6 Outi, 542 Newell, 604 Overtones, 25 Newman, 413Ð416 Nigmatullin, 115 p-mode, 517 Nisbet, 415 Pack, 321 Nishihara, 637 Page, 517 Nodes, 25 Painlevé equation, 467 Non-periodic solutions, 738 Parabolic equation, 13, 14, 382, 383 Nondispersive wave, 178, 357, 452 Paraxial equation, 571 Nonlinear diffusion equation, 382, 406, 408, Parity relation, 709, 712 409 Parker, 416 Nonlinear Dirichlet problem, 163 Parseval formula, 727 Nonlinear dispersion relation, 181, 516, 540, Parseval relation, 91, 729, 755 573, 620 Partial differential equation, 2 Index 857

Particular solution, 204 RankineÐHugoniot condition, 270, 340 Pasta, 428, 547 Ravindran, 152, 153 Pattle, 413 Rayleigh, 427 Pawlik, 153 Rayleigh formula, 190 Peakon solitary traveling wave, 523 Rayleigh problems, 119 Peakons, 519, 522, 524 Rayleigh quotient, 545 PeierlsÐNabarro potential, 517 RayleighÐBenard convection problem, 344 Pelinovsky, 624, 646 Reaction term, 259, 397 Penel, 416 ReactionÐdiffusion equation, 397, 412 Peregrine, 152, 527, 576 Recurrence relation, 699, 706, 711, 712 Peregrine equation, 640 Redekopp, 152 Period-doubling, 346 Reductive perturbation method, 627 Perring, 600, 608 Reflected wave, 479 Petviashvili, 155 Reflection coefficient, 479 Phase function, 360 Refractive index, 246, 568, 570 Phase velocity, 177, 245, 661 Refractive wave, 261, 275 Phillips, 577 Resonance, 738 Piston problem, 319, 325 Reynolds number, 386, 388, 393, 395 Planck constant, 9, 44, 124, 358, 494 Riabouchinsky, 434 Plane waves, 102 Riccati equation, 475 Plateau problem, 162, 197 Richards, 151, 286 Platzman, 416 Riemann, 311, 385 Poincaré, 1, 227 Riemann function, 79, 322 Poincaré return map, 345 Riemann initial-value problem, 313 Poincaré theorem, 241 Riemann invariants, 312, 317Ð320, 325, 329, Point of inflection, 414 330 Pointwise Convergence Theorem, 732 RiemannÐLebesgue Lemma, 728, 751 Poisson bracket, 240 RiemannÐLiouville fractional integral, 764 Poisson equation, 9, 73, 195 Ripples, 189 Poisson integral formula, 34, 39, 43 Robin boundary-value problem, 6 , 34 Robin condition, 6 Poisson summation formula, 752 Rodin, 416 Polarization, 568 Rodrigues formula, 703, 707, 709Ð712 Polytropic gas, 319 Roll wave equation, 309 Potential, 507, 550, 608 Rosales, 468 Potential energy, 26, 45, 165, 168, 190, 196 Rosenau, 417, 509, 511, 513, 515, 518 Power spectrum, 755 Roskes, 153, 550 PrandtlÐBlasius equation, 419, 420 Rossby wave equation, 130, 358 Prasad, 152, 153, 636 Rowland, 563 Principle of least action, 198 Rowlands, 153, 563 Prolongation structure method, 503 Ruled surface, 238 Properties of the convolution, 756 Russell, 425, 426

Quasi-linear partial differential equation, 3, s-mode, 517 194, 202, 378 Saddle point, 401 Saffman, 526 Radian frequency, 24 Sagdeev, 440 Raizer, 416 Sandri, 650 Rankine, 182, 371 Sandusky, 517 858 Index

Sanuki, 564 Skyrme, 151 Saric, 153 Sleeman, 155 Satsuma, 155 Slobodkina, 636 Sawtooth wave function, 723 Smoller, 341, 417 Scaling, 751, 759 Smooth function, 204 Scattering data, 475 sn function, 460 Scattering equation, 608 Solitary wave, 429, 430, 436, 457, 540Ð542, Scattering state, 476, 479 600 Schiff, 151 Solution Schimizu, 153 complete, 203 Schmidt, 563 discontinuous, 261, 275Ð277 Schneider, 115 general, 4, 204 Schrödinger equation, 9, 44, 124, 195, 253, generalized, 3, 257, 271, 272, 275 477, 486, 504, 507, 541, 544, 564, 670 particular, 204 Schwartz space, 755 Schwarz inequality, 545 singular, 204, 249 Scott, 151, 155, 416, 619 weak, 3, 257, 271Ð274, 341 Secular (unbounded) term, 652 Sorensen, 152 Seddon, 299 Source solution, 389 Segur, 155, 425, 488, 506 Source term, 259, 397 Self-focusing instability, 570 Sparrow, 420 Self-induced transparency (SIT), 612 Special functions, 689 Seliger, 376 Spectrum, 83 Sen, 136, 637 Speed of shallow water waves, 178, 428, Separation of variables, 21, 22, 29, 32, 598 431, 434 Separatrix, 401 Spherical waves, 103 SerretÐFrenet formulas, 556 Square wave function, 723, 759 Shabat, 502, 535, 542, 544, 545, 547, 550, Stable node, 400 576 Standing wave, 25 Shallow water equation, 327, 348, 433 Stationary phase method, 60, 69, 391 Shallow water speed, 431, 459 Stationary point, 60, 67, 360, 391 Shallow water waves, 178, 327 Stewartson, 153, 154, 156, 550 Shifting, 751, 759 Stirling approximation, 692 Shigesada, 415 Stokes, 355, 426 Shishmarev, 376, 377 Stokes’ analysis, 182 Shock condition, 270, 271, 340 Stokes expansion, 182, 369 Shock wave, 205, 264, 270, 288, 321 Stokes problem, 119, 131 Sievers, 516, 517 Stokes wave, 179, 552 Sign function, 745 Similarity solution, 404, 406, 409 StokesÐEkman problem, 131, 142 Similarity transformation, 406 Strange attractor, 345 Similarity variable, 389, 406 Stretched variable, 632 Simple harmonic oscillator, 244, 737 Stretching transformation, 404 Simple wave, 311, 314, 318 Strong convergence, 90 Sine-Gordon (SG) equation, 151, 506, 594, Stuart, 154 595, 598, 605, 620, 621 SturmÐLiouville systems, 82Ð85, 138, 139, Single-soliton solution, 604, 610 501 Singular solution, 204, 249 Sturrock, 650 Sinh-Gordon equation, 506, 621 Su, 635 Index 859

Superposition principle Two-sided Laplace transform, 762 linear, 5, 6 Two-soliton solution, 488, 497, 498 nonlinear, 497 Supersonic flow, 334, 341 Ulam, 428, 547 Surface area of a sphere in n-dimension, 690 Undular bore, 461 Surface wave problem, 128, 134 Unitary transformation, 755 Symmetric, 692 Van Saarloos, 155 Van Wijngaarden, 153 Takeno, 516, 517 Vanden-Broeck, 527 Talanov, 153 Variational principle, 159, 171, 172, 193, Tang, 417 196 Taniuti, 153, 625 Varma, 153 Tappert, 153 Velocity of sound, 312 Telegraph equation, 9, 126, 130, 132, 144, Velocity potential, 175 145, 349 Viecelli, 156 Thermal conductivity, 54 Volume of a sphere in n-dimension, 690 Theta function, 464 Von Neumann, 149, 201, 227 Three-soliton solution, 488 Vortex filament, 555 Thyagaraja, 544 Vorticity, 174 Toda, 152, 158, 615 Wadati, 152, 577 Toda lattice equation, 157, 158 Wahlquist, 495, 497, 503 Toda lattice soliton, 158, 615, 618 Walsh, 396, 416 Toland, 182 Wang, 155 Traffic flow, 286, 287 Ward, 158 Traffic flow equation, 286, 287 Washimi, 153, 625 Traffic signal problem, 294 Water wave equation, 173, 184, 185, 432, Transform 434 finite Hankel, 686 Watson, 650 Fourier, 34, 46, 360, 675, 751 Wave Fourier cosine, 679 Alfvén gravity, 358 Fourier sine, 677 capillary solitary, 456 Hankel, 61, 446, 683 cnoidal, 458, 461 Hilbert, 153 compression, 262, 302 inverse scattering, 475, 476 de Broglie, 45, 358, 577 Laplace, 51, 59, 680, 762 diffusive, 383, 386 Weierstrass, 763 dispersive, 357 Transition layer, 386 electromagnetic, 10 Transition region, 271 expansive, 261, 275 Translation, 751 flood, 297, 298 Transmission coefficient, 479 generalized simple, 338Ð340 Transmitted wave, 479 generalized solitary, 457, 458 Transverse vibration of string, 22 gravity, 358 Traveling wave solution, 50, 384 gravityÐcapillary, 187, 452 Triangular wave function, 390, 722, 724 incident, 486 Tricomi equation, 14, 351, 354 inertial, 358 Trochoid, 180 internal, 358 Trullinger, 604 internal-inertial, 358 Turin, 412 ion-acoustic, 438, 440, 638 860 Index

kinematic, 151, 259 Weiland, 153 N, 392 Well posed problem, 7, 18, 147 nondispersive, 178, 357 Wentzel, 569 reflected, 479 West, 413 refractive, 261, 275 Whitham, 151, 171, 173, 193, 286, 299, 359, roll, 309 371, 377 Rossby, 130, 358 Whitham averaged Lagrangian, 368, 592 shallow water, 178, 640 Whitham averaged variational principle, shock, 205, 264, 270, 288, 321 367, 368, 378 simple, 275, 311, 314, 318, 320 Whitham equation, 157, 193, 364, 366, 368, solitary, 429, 430, 436, 457, 540Ð542 372, 375Ð378, 531, 549, 593 standing, 25 Whitham rule, 290, 392 Stokes, 179, 552 Wigner, 579 transmitted, 479 Wiljelmsson, 153 WKBJ method, 569 water, 176, 357 Wright function, 115 Wave diffraction, 572 Wronskian, 480 Wave energy, 546 Wyss, 115 Wave equation, 4, 8, 17, 22, 36, 49, 50, 52, 58, 62, 78Ð80, 92, 101Ð104, 115, 122, Yajima, 152 126, 140, 151, 167Ð170, 444, 613 YangÐMills equation, 158 Wave front, 245 Yuen, 153, 546 Wave propagation velocity, 285 Wavepacket, 570 Zabusky, 152, 428Ð430, 462, 469, 547 Weak solution, 3, 257, 271Ð274, 341, 519 Zakharov, 152, 173, 502, 535, 542, 544, 545, Webber, 417 547, 550, 576 Webber solution, 698 Zakharov equation, 562 WeberÐHermite function, 712, 713 ZakharovÐShabat (ZS) scheme, 502 Wei, 625 Zel’dovich, 416, 418 Weidman, 152 Zeppetella, 417 Weierstrass transform, 763 Zufira, 376