Self-Locating Uncertainty, Subjective Probability and the Everett Interpretation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture Notes in Physics
Lecture Notes in Physics Editorial Board R. Beig, Wien, Austria J. Ehlers, Potsdam, Germany U. Frisch, Nice, France K. Hepp, Zurich,¨ Switzerland W. Hillebrandt, Garching, Germany D. Imboden, Zurich,¨ Switzerland R. L. Jaffe, Cambridge, MA, USA R. Kippenhahn, Gottingen,¨ Germany R. Lipowsky, Golm, Germany H. v. Lohneysen,¨ Karlsruhe, Germany I. Ojima, Kyoto, Japan H. A. Weidenmuller,¨ Heidelberg, Germany J. Wess, Munchen,¨ Germany J. Zittartz, Koln,¨ Germany 3 Berlin Heidelberg New York Barcelona Hong Kong London Milan Paris Singapore Tokyo Editorial Policy The series Lecture Notes in Physics (LNP), founded in 1969, reports new developments in physics research and teaching -- quickly, informally but with a high quality. Manuscripts to be considered for publication are topical volumes consisting of a limited number of contributions, carefully edited and closely related to each other. Each contribution should contain at least partly original and previously unpublished material, be written in a clear, pedagogical style and aimed at a broader readership, especially graduate students and nonspecialist researchers wishing to familiarize themselves with the topic concerned. For this reason, traditional proceedings cannot be considered for this series though volumes to appear in this series are often based on material presented at conferences, workshops and schools (in exceptional cases the original papers and/or those not included in the printed book may be added on an accompanying CD ROM, together with the abstracts of posters and other material suitable for publication, e.g. large tables, colour pictures, program codes, etc.). Acceptance Aprojectcanonlybeacceptedtentativelyforpublication,byboththeeditorialboardandthe publisher, following thorough examination of the material submitted. The book proposal sent to the publisher should consist at least of a preliminary table of contents outlining the structureofthebooktogetherwithabstractsofallcontributionstobeincluded. -
Dynamical Relaxation to Quantum Equilibrium
Dynamical relaxation to quantum equilibrium Or, an account of Mike's attempt to write an entirely new computer code that doesn't do quantum Monte Carlo for the first time in years. ESDG, 10th February 2010 Mike Towler TCM Group, Cavendish Laboratory, University of Cambridge www.tcm.phy.cam.ac.uk/∼mdt26 and www.vallico.net/tti/tti.html [email protected] { Typeset by FoilTEX { 1 What I talked about a month ago (`Exchange, antisymmetry and Pauli repulsion', ESDG Jan 13th 2010) I showed that (1) the assumption that fermions are point particles with a continuous objective existence, and (2) the equations of non-relativistic QM, allow us to deduce: • ..that a mathematically well-defined ‘fifth force', non-local in character, appears to act on the particles and causes their trajectories to differ from the classical ones. • ..that this force appears to have its origin in an objectively-existing `wave field’ mathematically represented by the usual QM wave function. • ..that indistinguishability arguments are invalid under these assumptions; rather antisymmetrization implies the introduction of forces between particles. • ..the nature of spin. • ..that the action of the force prevents two fermions from coming into close proximity when `their spins are the same', and that in general, this mechanism prevents fermions from occupying the same quantum state. This is a readily understandable causal explanation for the Exclusion principle and for its otherwise inexplicable consequences such as `degeneracy pressure' in a white dwarf star. Furthermore, if assume antisymmetry of wave field not fundamental but develops naturally over the course of time, then can see character of reason for fermionic wave functions having symmetry behaviour they do. -
Beyond the Quantum
Beyond the Quantum Antony Valentini Theoretical Physics Group, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom. email: [email protected] At the 1927 Solvay conference, three different theories of quantum mechanics were presented; however, the physicists present failed to reach a consensus. To- day, many fundamental questions about quantum physics remain unanswered. One of the theories presented at the conference was Louis de Broglie's pilot- wave dynamics. This work was subsequently neglected in historical accounts; however, recent studies of de Broglie's original idea have rediscovered a power- ful and original theory. In de Broglie's theory, quantum theory emerges as a special subset of a wider physics, which allows non-local signals and violation of the uncertainty principle. Experimental evidence for this new physics might be found in the cosmological-microwave-background anisotropies and with the detection of relic particles with exotic new properties predicted by the theory. 1 Introduction 2 A tower of Babel 3 Pilot-wave dynamics 4 The renaissance of de Broglie's theory 5 What if pilot-wave theory is right? 6 The new physics of quantum non-equilibrium 7 The quantum conspiracy Published in: Physics World, November 2009, pp. 32{37. arXiv:1001.2758v1 [quant-ph] 15 Jan 2010 1 1 Introduction After some 80 years, the meaning of quantum theory remains as controversial as ever. The theory, as presented in textbooks, involves a human observer performing experiments with microscopic quantum systems using macroscopic classical apparatus. The quantum system is described by a wavefunction { a mathematical object that is used to calculate probabilities but which gives no clear description of the state of reality of a single system. -
Signal-Locality in Hidden-Variables Theories
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Signal-Locality in Hidden-Variables Theories Antony Valentini1 Theoretical Physics Group, Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, England.2 Center for Gravitational Physics and Geometry, Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA. Augustus College, 14 Augustus Road, London SW19 6LN, England.3 We prove that all deterministic hidden-variables theories, that reproduce quantum theory for an ‘equilibrium’ distribution of hidden variables, give in- stantaneous signals at the statistical level for hypothetical ‘nonequilibrium en- sembles’. This generalises another property of de Broglie-Bohm theory. Assum- ing a certain symmetry, we derive a lower bound on the (equilibrium) fraction of outcomes at one wing of an EPR-experiment that change in response to a shift in the distant angular setting. We argue that the universe is in a special state of statistical equilibrium that hides nonlocality. PACS: 03.65.Ud; 03.65.Ta 1email: [email protected] 2Corresponding address. 3Permanent address. 1 Introduction: Bell’s theorem shows that, with reasonable assumptions, any deterministic hidden-variables theory behind quantum mechanics has to be non- local [1]. Specifically, for pairs of spin-1/2 particles in the singlet state, the outcomes of spin measurements at each wing must depend instantaneously on the axis of measurement at the other, distant wing. In this paper we show that the underlying nonlocality becomes visible at the statistical level for hypothet- ical ensembles whose distribution differs from that of quantum theory. -
Quantum Computing in the De Broglie-Bohm Pilot-Wave Picture
Quantum Computing in the de Broglie-Bohm Pilot-Wave Picture Philipp Roser September 2010 Blackett Laboratory Imperial College London Submitted in partial fulfilment of the requirements for the degree of Master of Science of Imperial College London Supervisor: Dr. Antony Valentini Internal Supervisor: Prof. Jonathan Halliwell Abstract Much attention has been drawn to quantum computing and the expo- nential speed-up in computation the technology would be able to provide. Various claims have been made about what aspect of quantum mechan- ics causes this speed-up. Formulations of quantum computing have tradi- tionally been made in orthodox (Copenhagen) and sometimes many-worlds quantum mechanics. We will aim to understand quantum computing in terms of de Broglie-Bohm Pilot-Wave Theory by considering different sim- ple systems that may function as a basic quantum computer. We will provide a careful discussion of Pilot-Wave Theory and evaluate criticisms of the theory. We will assess claims regarding what causes the exponential speed-up in the light of our analysis and the fact that Pilot-Wave The- ory is perfectly able to account for the phenomena involved in quantum computing. I, Philipp Roser, hereby confirm that this dissertation is entirely my own work. Where other sources have been used, these have been clearly referenced. 1 Contents 1 Introduction 3 2 De Broglie-Bohm Pilot-Wave Theory 8 2.1 Motivation . 8 2.2 Two theories of pilot-waves . 9 2.3 The ensemble distribution and probability . 18 2.4 Measurement . 22 2.5 Spin . 26 2.6 Objections and open questions . 33 2.7 Pilot-Wave Theory, Many-Worlds and Many-Worlds in denial . -
The Spirit and the Intellect: Lessons in Humility
BYU Studies Quarterly Volume 50 Issue 4 Article 6 12-1-2011 The Spirit and the Intellect: Lessons in Humility Duane Boyce Follow this and additional works at: https://scholarsarchive.byu.edu/byusq Recommended Citation Boyce, Duane (2011) "The Spirit and the Intellect: Lessons in Humility," BYU Studies Quarterly: Vol. 50 : Iss. 4 , Article 6. Available at: https://scholarsarchive.byu.edu/byusq/vol50/iss4/6 This Article is brought to you for free and open access by the Journals at BYU ScholarsArchive. It has been accepted for inclusion in BYU Studies Quarterly by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Boyce: The Spirit and the Intellect: Lessons in Humility The Spirit and the Intellect Lessons in Humility Duane Boyce “The only wisdom we can hope to acquire is the wisdom of humility: humility is endless.” —T. S. Eliot1 Whence Such Confidence? I have friends who see themselves as having intellectual problems with the gospel—with some spiritual matter or other. Interestingly, these friends all share the same twofold characteristic: they are confident they know a lot about spiritual topics, and they are confident they know a lot about various intellectual matters. This always interests me, because my experience is very different. I am quite struck by how much I don’t know about spiritual things and by how much I don’t know about anything else. The overwhelming feeling I get, both from thoroughly examining a scriptural subject (say, faith2) and from carefully studying an academic topic (for example, John Bell’s inequality theorem in physics), is the same—a profound recognition of how little I really know, and how significantly, on many topics, scholars who are more knowledgeable than I am disagree among themselves: in other words, I am surprised by how little they really know, too. -
How the Many Worlds Interpretation Brings Common Sense to Paradoxical Quantum Experiments
How the Many Worlds Interpretation brings Common Sense to Paradoxical Quantum Experiments Kelvin J. McQueen and Lev Vaidman The many worlds interpretation of quantum mechanics (MWI) states that the world we live in is just one among many parallel worlds. It is widely believed that because of this commitment to parallel worlds, the MWI violates common sense. Some go so far as to reject the MWI on this basis. This is despite its myriad of advantages to physics (e.g. consistency with relativity theory, mathematical simplicity, realism, determinism, etc.). Here, we make the case that common sense in fact favors the MWI. We argue that causal explanations are commonsensical only when they are local causal explanations. We present several quantum mechanical experiments that seem to exhibit nonlocal “action at a distance”. Under the assumption that only one world exists, these experiments seem immune to local causal explanation. However, we show that the MWI, by taking all worlds together, can provide local causal explanations of the experiments. The MWI therefore restores common sense to physical explanation. 1. Introduction The purpose of explanation is to help us understand why things happen as they do. Typically, one explains an event by citing the causes of that event. For example, to explain why the window broke, one might cite the throwing of a stone. A particularly compelling and natural type of causal explanation is local causal explanation. In a local causal explanation there is spatiotemporal continuity between the cause and the explained effect. For example, the thrown stone explains the broken window in part because the stone traces out a continuous trajectory from the stone-thrower’s hand to the window. -
Lev VAIDMAN Date & Place of Birth
Name: Lev VAIDMAN Date & Place of Birth: 4 Sept 1955, Leningrad, Russia Date of arrival to Israel: 24 Sept 1973 Israeli Military Service: 10.12.77 { 10.03.80, officer of the IDF Marital Status: Married, 2 children A. Education 1972-1973 Leningrad University Physics 1973-1974 Ben-Gurion University Physics 1974-1976 Hebrew University Physics & Mathematics B.Sc. 1976 1980-1982 Weizmann Institute Physics M.Sc. 1982 1982-1987 Tel-Aviv University Physics Ph.D. 1987 Title of Master's thesis: Nonperturbative Sum Rules in Quantum Chromo-Dynamics Name of Supervisor: Prof. Hector Rubinstein Title of Doctoral Dissertation: The Problem of Measurement in Relativistic Quantum Theory Name of Supervisor: Prof. Yakir Aharonov B. Academic and professional experience 2005 - present U. of Tel-Aviv Full Professor 1998-2005 U. of Tel-Aviv Associate Professor 2000-2001 Centre for Quantum Comp., Oxford U-ty Visiting Professor 1995 - 1998 U. of Tel-Aviv Senior Lecturer 1998 April -June Institute of Advanced Studies, Jerusalem Visiting Professor 1996 July -August ITP, U. of California, Santa-Barbara Visiting Professor 1996 February-March Inst. of Exp. Physics, U. of Innsbruck Visiting Professor 1990 - 1995 U. of Tel-Aviv Senior Research Associate 1987 - 1990 U. of South Carolina Assistant Visiting Professor 1986 - 1987 U. of Tel-Aviv Senior Teaching Assistant 1 C. Active participation in scientific meetings. 1985 Microphysical Reality and Quantum Formalism, Urbino, Italy. 1986 New Techniques and Ideas in Quantum Measurements Theory, New-York. 1987 Frontiers of the Philosophy of Quantum Mechanics, Philadelphia. 1988 Bell's Theorem, Quantum Theory and Conceptions of the Universe, Fairfax, MD. -
Extreme Quantum Nonequilibrium, Nodes, Vorticity, Drift, and Relaxation Retarding States
Extreme quantum nonequilibrium, nodes, vorticity, drift, and relaxation retarding states Nicolas G Underwood1;2 1Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario, Canada, N2L 2Y5 2Kinard Laboratory, Clemson University, Clemson, South Carolina, USA, 29634 E-mail: [email protected] Abstract. Consideration is given to the behaviour of de Broglie trajectories that are separated from the bulk of the Born distribution with a view to describing the quantum relaxation properties of more `extreme' forms of quantum nonequilibrium. For the 2-dimensional isotropic harmonic oscillator, through the construction of what is termed the `drift field’, a description is given of a general mechanism that causes the relaxation of `extreme' quantum nonequilibrium. Quantum states are found which do not feature this mechanism, so that relaxation may be severely delayed or possibly may not take place at all. A method by which these states may be identified, classified and calculated is given in terms of the properties of the nodes of the state. Properties of the nodes that enable this classification are described for the first time. 1. Introduction De Broglie-Bohm theory [1,2,3,4] is the archetypal member of a class [5,6,7,8] of interpretations of quantum mechanics that feature a mechanism by which quantum probabilities arise dynamically [5,9, 10, 11, 12, 13, 14] from standard ignorance-type probabilities. This mechanism, called `quantum relaxation', occurs spontaneously through a process that is directly analogous to the classical relaxation (from statistical nonequilibrium to statistical equilibrium) of a simple isolated mechanical system as described by the second thermodynamical law. -
Pilot Wave Theory, Bohmian Metaphysics, and the Foundations of Quantum Mechanics Lecture 7 Not Even Wrong
Pilot wave theory, Bohmian metaphysics, and the foundations of quantum mechanics Lecture 7 Not even wrong. Why does nobody like pilot-wave theory? Mike Towler TCM Group, Cavendish Laboratory, University of Cambridge www.tcm.phy.cam.ac.uk/∼mdt26 and www.vallico.net/tti/tti.html [email protected] – Typeset by FoilTEX – 1 Acknowledgements The material in this lecture is to a large extent a summary of publications by Peter Holland, Antony Valentini, Guido Bacciagaluppi, David Peat, David Bohm, Basil Hiley, Oliver Passon, James Cushing, David Peat, Christopher Norris, H. Nikolic, David Deutsch and the Daily Telegraph. Bacciagaluppi and Valentini’s book on the history of the Solvay conference was a particularly vauable resource. Other sources used and many other interesting papers are listed on the course web page: www.tcm.phy.cam.ac.uk/∼mdt26/pilot waves.html MDT – Typeset by FoilTEX – 2 Life on Mars Today we are apt to forget that - not so very long ago - disagreeing with Bohr on quantum foundational issues, or indeed just writing about the subject in general, was professionally equivalent to having a cuckoo surgically attached to the centre of one’s forehead via a small spring. Here, for example, we encounter the RMP Editor feeling the need to add a remark on editorial policy before publishing Prof. Ballentine’s (hardly very controversial) paper on the statistical interpretation, concluding with what seems very like a threat. One need hardly be surprised at Bohm’s reception seventeen years earlier.. – Typeset by FoilTEX – 3 An intimidating atmosphere.. “The idea of an objective real world whose smallest parts exist objectively in the same sense as stones or trees exist, independently of whether or not we observe them.. -
Foundations of Statistical Mechanics and the Status of the Born Rule in De Broglie-Bohm Pilot-Wave Theory
Foundations of statistical mechanics and the status of the Born rule in de Broglie-Bohm pilot-wave theory Antony Valentini Augustus College, 14 Augustus Road, London SW19 6LN, UK. Department of Physics and Astronomy, Clemson University, Kinard Laboratory, Clemson, SC 29634-0978, USA. We compare and contrast two distinct approaches to understanding the Born rule in de Broglie-Bohm pilot-wave theory, one based on dynamical relaxation over time (advocated by this author and collaborators) and the other based on typicality of initial conditions (advocated by the `Bohmian mechanics' school). It is argued that the latter approach is inherently circular and physically mis- guided. The typicality approach has engendered a deep-seated confusion be- tween contingent and law-like features, leading to misleading claims not only about the Born rule but also about the nature of the wave function. By arti- ficially restricting the theory to equilibrium, the typicality approach has led to further misunderstandings concerning the status of the uncertainty principle, the role of quantum measurement theory, and the kinematics of the theory (in- cluding the status of Galilean and Lorentz invariance). The restriction to equi- librium has also made an erroneously-constructed stochastic model of particle creation appear more plausible than it actually is. To avoid needless controversy, we advocate a modest `empirical approach' to the foundations of statistical me- chanics. We argue that the existence or otherwise of quantum nonequilibrium in our world is an empirical question to be settled by experiment. To appear in: Statistical Mechanics and Scientific Explanation: Determin- ism, Indeterminism and Laws of Nature, ed. -
Bacciagaluppi CV
Guido Bacciagaluppi: Curriculum Vitae and List of Publications 1 December 2020 Born Milan (Italy), 24 August 1965. Italian citizen. Freudenthal Instituut Postbus 85.170 3508 AD Utrecht The Netherlands Email: [email protected] Tel.: +31 (0)30 253 5621 Fax: +31 (0)30 253 7494 Web: https://www.uu.nl/staff/GBacciagaluppi/Profile https://www.uu.nl/staff/GBacciagaluppi/Research https://www.uu.nl/staff/GBacciagaluppi/Teaching Research interests My main field of research is the philosophy of physics, in particular the philosophy of quantum theory, where I have worked on a variety of approaches, including modal interpretations (for my PhD), stochastic mechanics, Everett theory, de Broglie-Bohm pilot-wave theory and spontaneous collapse theories, with a special interest in the theory of decoherence. Other special interests include time (a)symmetry, the philosophy of probability, issues in the philosophy of logic, and the topics of emergence, causation, and empiricism. I also work on the history of quantum theory and have co-authored three books on the topic, including a widely admired monograph on the 1927 Solvay conference, and I am a contributor to the recent revival of interest in the figure and work of Grete Hermann. Present positions Academic: • Utrecht University: Associate Professor (UHD1, scale 14), Freudenthal Institute, Departement of Mathematics, Faculty of Science, and Descartes Centre for the History and Philosophy of the Sciences and the Humanities, since September 2015. • SPHERE (CNRS, Paris 7, Paris 1), Paris: Associate Member since April 2015. • Foundational Questions Institute (http://fqxi.org/): Member since February 2015. • Institut d’Histoire et de Philosophie des Sciences et des Techniques (CNRS, Paris 1, ENS), Paris: Associate Member since January 2007.