A Decade of Advances in Catastrophe Modeling and Risk Financing INSIGHTS October 2015

Total Page:16

File Type:pdf, Size:1020Kb

A Decade of Advances in Catastrophe Modeling and Risk Financing INSIGHTS October 2015 INSIGHTS October 2015 A Decade of Advances In Catastrophe Modeling and Risk Financing INSIGHTS October 2015 CONTENTS 1 Introduction 2 The Evolution of Catastrophe Modeling 4 Modeling’s Role in Underwriting and Risk Management 5 A Focus on Data Quality 7 Risk Finance Optimization 8 Conclusion INSIGHTS October 2015 INTRODUCTION Ten years ago this summer, Hurricane Katrina pounded New Orleans with surprising intensity, becoming the costliest storm ever to hit the US. Three years later, damage from Hurricane Ike extended far deeper inland than previously thought possible. In 2012, Superstorm Sandy brought record levels of storm surge to the Northeast. And in recent years, major earthquakes off the coasts of Japan and Chile led to severe structural damage and massive tsunamis. After a major catastrophe, individuals, businesses, governments, and others look for lessons to help decrease the potential impact from future events. In the insurance industry, much of the focus following disasters falls on catastrophe models, which have undergone several rounds of change as new events add new data. Advances in technology and analytics have also transformed the models and the way insureds view and deploy their insurance capital. A Decade of Advances In Catastrophe Modeling and Risk Financing 1 INSIGHTS October 2015 THE EVOLUTION OF CATASTROPHE MODELING The first hurricane loss model was In the two decades since Andrew, After Katrina, analysis from introduced in the late 1980s by catastrophe modeling has become a actuaries and modelers revealed AIR Worldwide. But most insurers necessary and permanent part of the that many assumptions had been did not initially adopt catastrophe underwriting process, and models incorrect. For example, models modeling, even after September have grown more sophisticated. underestimated the potential 1989’s Hurricane Hugo became the New insights gained from successive damage that could be caused by costliest hurricane in US history to hurricanes have revealed an coastal flooding driven by wind that date (see Figure 1). Instead, the important truth for underwriters or storm surge. Models also industry continued using traditional and insurance buyers: Catastrophe often incorrectly assumed that actuarial methods and past models need constant updating all properties were built to meet experience as a basis for estimating based on experience. Even an up- existing codes. This lesson was potential future losses. to-date model can miscalculate the driven home by Hurricane Ike in potential damage from a storm that 2008, which caused severe wind and That changed after Hurricane behaves in an unforeseen manner — flood damage to inland and Northern Andrew struck Florida and potentially by a significant margin. states — including Arkansas, Louisiana in August 1992. Andrew Illinois, Indiana, Kentucky, cost insurers $15 billion — nearly Underwriters learned this the hard Michigan, Missouri, New York, four times Hugo’s cost — surprising way when Hurricane Katrina struck Ohio, Pennsylvania, Tennessee, them and leading to multiple in August 2005. The massive storm and West Virginia — that far bankruptcies. Andrew thus served cost insurers more than $41 billion, exceeded industry expectations. as a wake-up call; insurers quickly mostly in New Orleans. Hurricane embraced modeling, seeking a more models severely underestimated the Insureds and regulators have scientific approach to estimating loss potential, with initial damage sometimes questioned changes to catastrophic loss exposure estimates identifying only about models as they can lead insurers to and risk aggregation. one-fourth of that total. adjust rates, bringing increases to some buyers. For example, many risk managers criticized changes made in 2006, which projected a FIGURE 1: Most Costly Hurricanes in US History (In Billions) 40% increase in annual insured Source: Insurance Information Institute losses along the Gulf Coast, Florida, and Southeastern US compared to DATE HURRICANE DOLLARS WHEN OCCURRED IN 2014 DOLLARS previous models. But overall, these AUGUST 2005 KATRINA $41.1 $48.4 changes have helped insurers and insureds alike to better understand AUGUST 1992 ANDREW $15.5 $23.8 and manage risk. For example, the OCTOBER 2012 SANDY $18.8 $19.3 lessons learned from Katrina, Ike, SEPTEMBER 2008 IKE $12.5 $13.6 and other storms contributed to better preparation ahead of Sandy. OCTOBER 2005 WILMA $10.3 $12.1 AUGUST 2004 CHARLEY $7.5 $9.1 SEPTEMBER 2004 IVAN $7.1 $8.6 SEPTEMBER 1989 HUGO $4.2 $7.1 SEPTEMBER 2005 RITA $5.6 $6.6 SEPTEMBER 2004 FRANCES $4.6 $5.6 2 marsh.com INSIGHTS October 2015 How Hurricane Models Have Improved Over Time The three leading hurricane modeling firms — AIR Worldwide, EQECAT, and RMS — typically have made revisions based on the lessons learned following major storms such as Hurricanes Katrina and Ike and Superstorm Sandy. Updates to the widely used RMS model include the following: • New models released after the 2004 and 2005 Atlantic hurricane seasons — which included Hurricanes Charley, Frances, Ivan, Jeanne, Katrina, Rita, and Wilma — reflected greater frequency of hurricanes and insured losses that modeling firms expected would continue for the next several years. • After Hurricane Ike in 2008, models were updated with higher inland wind speeds and greater building vulnerability. Models also incorporated research about the weakness of commercial structures’ roofs and poorer- than-expected construction quality in Texas and along the Gulf coast, and added new storm surge models. • The storm surge models were updated with HURRICANE KATRINA (2005) new flood data from FEMA and the NFIP HURRICANE IKE (2008) following 2012’s Superstorm Sandy. HURRICANE (“SUPERSTORM”) • The latest updates include a recalibration SANDY (2012) of vulnerability curves based on recent hurricane-related claims, and new secondary modifiers that allow for improved accuracy of potential storm-surge damage. The reality is that nature will at times deliver an unexpected twist into the way a storm behaves. And modelers will respond by analyzing the losses and recalibrating their models. A Decade of Advances In Catastrophe Modeling and Risk Financing 3 INSIGHTS October 2015 MODELING’S ROLE IN UNDERWRITING AND RISK MANAGEMENT The catastrophe modeling process 3. Vulnerability: The model coverage. It also allows insurers to includes four key steps: calculates the mean damage demonstrate capital adequacy to ratio and coefficient of variation rating agencies. 1. Event generation: A computer- to buildings and their contents, run model pulls from a database and the resulting loss of use — for Meanwhile, insureds and their representing the full spectrum example, business interruption. brokers primarily use models to of likely events that can impact help make choices about how much the insured’s exposures. Each 4. Financial model: This model property insurance to purchase and event is described by physical calculates losses to different how to structure those policies. By characteristics, location, and financial participants, running a catastrophe model, an frequency of occurrence, and the including the insured, insurers, insured can develop a set of losses model calculates the likelihood and reinsurers. for various return periods, usually and severity of an event at various from 100 years to 1,000 years. The insured locations. Insurers use catastrophe models insured can then choose a return to determine their probable period that matches its risk appetite 2. Hazard: The model determines maximum loss (PML) for various and current market conditions and the event intensity at each insured return periods. This allows them insurance pricing to gain a greater property for every simulated to calculate an average annual understanding of its total property event that is likely to cause a loss (AAL), which indicates the portfolio risk and catastrophe loss at that location. It examines minimum annual premium that exposure. In turn, this informs important site characteristics, the insurer would need to collect decisions about limits, retentions, including soil condition, distance over that return period to cover and other terms and conditions. from the coastline, and elevation its expected loss. This ultimately to determine ground motion, peak informs insurers’ decisions about wind gust, and other location- how to manage risk aggregations, specific conditions. deploy capital, and price insurance REFINING EARTHQUAKE MODELS Although revisions to hurricane models have more frequently Modelers also used the update as an opportunity to recalibrate grabbed the attention of insurers and risk professionals, building vulnerability curves, incorporating claims data earthquake models have also evolved over time. The most recent from international events and engineering studies. These US earthquake model updates, released in 2009 by AIR and vulnerability curves show the relationships between the amount RMS, were not spurred by any single earthquake. Instead, the of ground shaking and expected damage to a building given its catalyst was the release of the United States Geological Survey’s construction characteristics. National Seismic Hazard Mapping Project (NSHMP), a scientific consensus on earthquake hazards. Subsequent earthquake models for other regions have also incorporated lessons learned from recent events. For example, Most notably, the 2009 updates included next generational both RMS and AIR prioritized the modeling of tsunami risks attenuation (NGA) relationships; earthquake attenuation following
Recommended publications
  • The Air Severe Thunderstorm Model for the United States
    In 2011, six severe thunderstorms The AIR Severe generated insured losses of over USD 1 billion each. Total losses from Thunderstorm 24 separate outbreaks that year exceeded USD 26 billion. With the potential for insured losses on both an Model for the occurrence and aggregate basis this high, companies need the best tools available to assess and mitigate U.S. United States severe thunderstorm risk. THE AIR SEVERE THUNDERSTORM MODEL FOR THE UNITED STATES The AIR Severe Thunderstorm Model AIR Worldwide has developed for the United States estimates the a comprehensive Severe frequency, severity, and geographical Thunderstorm Model for the United States... The damage distribution of potential losses from functions are based on the straight-line winds, hail, and tornadoes. scientific relationship between building damage and wind The model incorporates the latest speed/hail impact energy. The scientific research into the highly model includes both the vertical fall speed [of hail] as well as the localized effects of these complex horizontal component of wind perils as well as independent research, speed to calculate impact energy. This is especially useful when post-disaster surveys, and more than estimating the amount of damage USD 40 billion in claims data. While to building exteriors such as siding and windows. severe thunderstorm is a relatively high- - Timothy Marshall, PE frequency peril, aggregate losses can Haag Engineering result in extreme volatility in financial results, making it crucial for companies to have a robust and highly granular An Innovative Way to Model Storm Occurrence The AIR U.S. severe thunderstorm model utilizes a large view of the risk.
    [Show full text]
  • The Use of Computer Modeling in Estimating and Managing Future Catastrophe Losses
    The Geneva Papers on Risk and Insurance Vol. 27 No. 2 (April 2002) 181±195 The Use of Computer Modeling in Estimating and Managing Future Catastrophe Losses by Karen M. Clarkà Overview Over the past two decades, the use of computer modeling to estimate future losses from natural catastrophes has gone from being virtually unheard of to being the standard global risk assessment technology. This is primarily the result of the unprecedented and unexpected losses sustained by insurance and reinsurance companies from actual catastrophe events, most notably the series of winter storms that struck Europe in 1990, Hurricane Andrew in 1992 and the 1994 Northridge Earthquake. By the mid-1990s it was apparent to all that the catastrophe loss potential was far greater than had previously been thought possible, even though some computer models available much earlier had been providing loss estimates well in excess of the losses sustained from Andrew and Northridge. However, these larger loss scenarios were not taken seriously by most in the industry without the actual occurrence of a major loss-producing event. Today, catastrophe modeling is used extensively for pricing, risk selection and underwriting, loss mitigation activities, reinsurance decision-making and overall portfolio management. This paper presents a history of catastrophe modeling technology and an explanation of how catastrophe models work. It also reviews recent advances in catastrophe modeling and concludes with a discussion of how insurers and reinsurers can derive maximum value from
    [Show full text]
  • Climate Change and Insurance: an Agenda for Action in the United States
    Climate Change and Insurance: An Agenda for Action in the United States A publication of Allianz Group and WWF, October 2006 FOREWORD Climate change poses significant risks throughout the United States, particularly to coastal, flood-prone and fire-prone areas . Allianz and World Wildlife Fund (WWF) are working together to understand and better manage the true risks of global warming. Without examining how global warming could intensify risk it is impractical for Allianz, WWF and our peers to carry out long term planning to protect assets. The insurance industry has a two-fold responsibility. On the one hand, it needs to prepare itself for the negative effects that climate change may have on its business and on its customers. On the other hand, it can significantly help mitigate the eco- nomic risks and enter the low-carbon economy by providing appropriate products and services. Allianz Group and WWF have joined forces to produce a report that will advance the debate in the insurance industry, and propose solutions. The report identifies risks for the sector, emerging physical impacts that will likely be amplified with climate change, and develops actions that demonstrate how insurance providers, such as Allianz Group, can respond to these risks in a meaningful and responsible manner. Implementing these actions will mean big steps forward, developing sound practices business for a living planet. WWF and Allianz Group will work together to implement the actions of this report and to take responsible steps to help solve this global problem. Allianz and WWF strongly believe that companies that are ready to seize these new opportunities will ultimately be able to reap benefits for society and for their shareholders.
    [Show full text]
  • RISK MODELING for HAZARDS and DISASTERS This Page Intentionally Left Blank RISK MODELING for HAZARDS and DISASTERS
    RISK MODELING FOR HAZARDS AND DISASTERS This page intentionally left blank RISK MODELING FOR HAZARDS AND DISASTERS Edited by GERO MICHEL Chaucer Syndicates, Denmark Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States Copyright © 2018 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.
    [Show full text]
  • Oasis Platform for Catastrophe and Climate Change Risk Assessment and Adaptation LAB INSTRUMENT ANALYSIS
    Oasis Platform for Catastrophe and Climate Change Risk Assessment and Adaptation LAB INSTRUMENT ANALYSIS June 27, 2016 The Lab is a global initiative that supports the identification and piloting of cutting edge climate finance instruments. It aims to drive billions of dollars of private investment into climate change mitigation and adaptation in developing countries. AUTHORS AND ACKNOWLEDGEMENTS The authors of this brief are Chiara Trabacchi and Bella Tonkonogy. The authors would like to thank Dickie Whitaker, Tracy Irvine and Ralf Toumi, the proponents of the Oasis Platform, for their valued contributions and continuous support. The authors would also like to acknowledge the valued contribution of the following experts, in alphabetical order: Angelina Avgeropoulou (DECC); Simon Blaquiere (AxA); Ian Branagan (RenaissanceRe); Katie Carlton (DECC); Suzanne Carter (CDKN); Peter D’Souza (DFID); Kate Dowen (DECC); Julia Ellis (DECC); Stefan Eppert (KatRisk); Jennifer Frankel- Reed (USAID); Luzi Hitz (PERILS), Michael Hoelter (Deutsche Bank); Ari Hutala (CDKN); Robin Lang (RenaissanceRe); Wei-jen Leow (World Bank); Berit Lindholdt-Lauridsen (IFC); Karsten Loeffler (Allianz); Olivier Mahul (GFDRR); Trevor Maynard (Lloyd’s); Shadreck Mapfumo (IFC); Rosalie Mardsen (GCF); Leonardo Martinez (US Treasury); Jonathan Meagher (Allianz); Stephen Morel (OPIC); Utako Hanna Saoshiro (IFC); David C. Simmons (Willis); John Schneider (GEM); Alanna Simpson (GFDRR); Anselm Smolka (GEM); Claire Souch (SCOR); Raphael Stein (BNDES); Markus Stowasser (Allianz); James Thornton (JBA); Verena Treber (Allianz); Pan Tso-Chien (Nanyang Technological University); Jane Toothill (JBA); Daniele S. Torriani (IFC); Mark Weatherhead (Guy Carpenter);Emily White (GFDRR); and Vikram Widge (IFC). The authors would also like to thank Barbara Buchner, Ben Broche, Padraig Oliver, Elysha Rom-Povolo, and Jane Wilkinson for their advice, support and internal review, and Amira Hankin for graphic design.
    [Show full text]
  • Modeling Natural Catastrophes: a Primer
    Modeling Natural Catastrophes: A Primer Steve E Smith Carvill/ReAdvisory Independence Integrity Service Innovation Agenda X Who are Carvill and ReAdvisory? X Hurricane Modeling X Modeling Events – Seasonal forecasting – Real-time forecasting X Insured Loss Modeling Independence Integrity Service Innovation 2 X Who are Carvill & ReAdvisory? X Hurricane Modeling X Modeling Events X Insurance Loss Modeling X Conclusions Independence Integrity Service Innovation 3 Carvill & ReAdvisory Carvill X One of the largest privately held international reinsurance intermediaries X 30 years of success in a constantly evolving market X Concentrated focus on treaty reinsurance, captives / mutuals, and specialist risk groups X Long standing commitment to excellence in technical expertise and service standards X A track-record of market leading product development – The first casualty cat bond – Reinsurance recoverable credit protection – Exchange-traded hurricane futures and options ReAdvisory X A service of Carvill X Actuarial and cat modeling consultancy practice. Independence Integrity Service Innovation 4 X Who are Carvill and ReAdvisory? X Hurricane Modeling X Modeling Events X Insurance Loss Modeling X Conclusions Independence Integrity Service Innovation 5 Hurricane Modeling Hurricane modeling breaks down in two major ways X Forecasting actual events X Modeling insured losses The sciences do not try to explain, they hardly even try to interpret, they mainly make models. John von Neumann Independence Integrity Service Innovation 6 Hurricane Terminology Modeling X Skill – A statistical evaluation of the accuracy of forecasts. The evaluation is typically made with respect to a reference model X Statistical Model – A model which is derived from a statistical analysis of the physical variables. – This class of model typically describes seasonal forecasts and most cat models X Dynamical Model – A model which is based on the actual physics of the process.
    [Show full text]
  • Suzana J. Camargo Education Professional Experience Publications
    Suzana J. Camargo Lamont-Doherty Earth Observatory, Columbia University 61 Route 9W, 206D Oceanography, Palisades, NY 10964-8000 Phone: (845) 365-8640, Email: [email protected] Education Ph.D. Physics, 1992, Technical University of Munich (TUM), Munich, Germany M.S. Physics, 1989, University of Sao˜ Paulo (USP),Sao˜ Paulo, Brazil B.S. Physics, 1986, University of Sao˜ Paulo (USP),Sao˜ Paulo, Brazil Professional Experience 2007 - Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY Marie Tharp Lamont Research Professor (2019 - present) Lamont Research Professor (2013 - 2019) Lamont Associate Research Professor (2010 - 2013) Doherty Research Scientist (2009 - 2010) Doherty Associate Research Scientist (2008 - 2009) Associate Research Scientist (2007 - 2008) 2019 - Department of Earth and Environmental Sciences, Columbia University, New York, NY Adjunct Professor 2018 - The Earth Institute, Columbia University, New York, NY Associate Faculty Member 2018 - Master of Science in Sustainability Science, Columbia University, New York, NY Lecturer 2015 - Initiative on Extreme Weather and Climate, Columbia University, New York, NY Executive Director 1999 - 2007 International Research Institute for Climate and Society (IRI), Columbia University, Palisades, NY Associate Research Scientist (2003 - 2007) Senior Staff Associate (1999 - 2003) 1996 -1999 Sao˜ Paulo State University (UNESP), Guaratingueta´ School of Engineering, Guaratingueta,´ Brazil Associate Professor 1993 - 1996 Max-Planck Institute for Plasma Physics (IPP), Garching, Germany Post-doctoral Research Scientist Publications H index: 57 (10,569 citations) - Google Scholar; 47 (6,921 citations) - Web of Science Core Collection; 04/07/2021 Undergraduate studentsy, graduate students◦, post-docs? mentored or co-mentored. 153. Z. Aaronsy, S.J. Camargo, J.D.O. Strong?, and H. Murakami, 2021.
    [Show full text]
  • Antitrust Notice
    C-25: Severe Weather Ratemaking David Lalonde, FCAS, FCIA, MAAA Casualty Actuarial Society, 2011 Annual Meeting November 6-9, 2011 Chicago, IL ©2011 AIR WORLDWIDE 1 Antitrust Notice • The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings. • Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding – expressed or implied – that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition. • It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy. 1 Agenda • Introduction • The value of severe storm models in an insurance organization – Overcome limitations of loss experience – Understand loss potential in a comprehensive way to prevent “unexpected” loss • Applications for severe storm modeling – Underwriting – Pricing – Reinsurance structuring – Portfolio management / ERM • Is climate change detectably influencing present day severe thunderstorm activity levels ©2011 AIR WORLDWIDE 3 Insured Losses from Severe Thunderstorms, 1990-2010 $14 $12 $10 $8 $6 USD Billions USD $4 $2 $0 Source: PCS, 2011 dollars ©2011 AIR WORLDWIDE 4 2 All 48 Contiguous States Are Affected by Severe Storms PCS Losses, 1991-2010, Trended to 2011 Dollars ©2011 AIR WORLDWIDE 5 Severe Storms Have Accounted for 42% of All U.S.
    [Show full text]
  • Evaluating the Economics of Climate Risks and Opportunities in the Insurance Sector
    Centre for Climate Change Economics and Policy Evaluating the Economics of Climate Risks and Opportunities in the Insurance Sector Progress and Insights from the LSE “Munich Re Programme” “The Sponsor and LSE now wish to establish the Munich Re Programme ‘Evaluating the Economics of Climate Risks and Opportunities in the Insurance Sector’ within LSE providing research targeting weak links in the chain running from basic climate science to industrial decision- making.This Programme will include wide-scale communication and high-profile discussion contrasting user needs across government and industry with both economic theory and climate science, the aims being to increase effective communication and quantification of risks, define data requirements of the economics side in the context of the current state of climate science, and seek avenues for more effective communication and advancement of relevant climate science.” LSE-Munich Re Agreement relating to the Munich Re Programme, 2008 Preface In 2008, Munich Re approached the The Programme created an enormous intellectual challenge for the researchers to understand the issue of climate London School of Economics and change from the perspective of reinsurance companies. Political Science with the innovative Munich Re assisted their efforts not just through its financial and far-sighted idea of funding a support, but also through its staff, led by Peter Höppe, who gave freely of their time and expertise, and by supplying major research programme on how invaluable data and information. climate change would affect the As a result, the researchers on the programme were able insurance sector. It was an idea to apply the latest knowledge and techniques from the natural and social sciences to a broad range of business- that was entirely in keeping with the relevant issues and problems.
    [Show full text]
  • A Comparison Study of Catastrophe Modeling Vs. Performance- Based Design
    13th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP13 Seoul, South Korea, May 26-30, 2019 A comparison study of Catastrophe Modeling vs. Performance- Based Design Jean-Paul Pinelli Professor, Dept. of Mechanical and Civil Engineering, Florida Tech, Melbourne, USA Michele (Mike) Barbato Professor, Dept. of Civil & Environmental Engineering, University of California, Davis, USA ABSTRACT: The paper presents the methodologies at the core of catastrophe modeling (CM) and performance-based design (PBD). Both CM and PBD are probabilisitic methods, in which the probability of achieving a certain hazard intensity is calculated and coupled with an estimate of the vulnerability or fragility of a certain building exposure to get an estimate of the exposure behavior, as well as of the expected damage and losses. Probabilistic CM is a well established field applied to all sorts of hazards, including the treatment of multi-hazards, whereas application of PBD to hazards other than seismic is a more recent development in structural engineering. CM is more oriented towards computing financial losses for the insurance industry and solving emergency management or community recovery issues, while PBD is oriented at guiding a particular building owner/designer in making the right design or retrofitting decisions. This paper explores similarities and differences between CM and PBD, especially regarding how the vulnerabilities or fragilities are derived in each case, how the uncertainties are treated, and how the two methodologies could benefit from each other. vulnerabilities represent generic classes of 1. INTRODUCTION buildings, with a corresponding large uncertainty, Risk is at the intersection of hazard, exposure, and whereas in the case of PBD the vulnerabilities are vulnerability.
    [Show full text]
  • Chapter 4 Climate Change and Its Implications for Catastrophe Modelling
    Coping with climate change risks and opportunities for insurers Chapter 4 Climate change and its implications for catastrophe modelling 4.1 Introduction 4.2 Catastrophe models 4.3 Challenges in interpreting catastrophe model outputs 4.4 Climate change and catastrophe modelling 4.5 Hurricane risk – current approaches by proprietary catastrophe modellers 4.6 Future developments and synergies between climate science and catastrophe modelling 4.7 Conclusions and recommendations Please cite this paper as Dlugolecki, A. et al. (2009), “Coping with Climate Change: Risks and opportunites for Insurers.” Chartered Insurance Institute, London/CII_3112 Climate change research report 2009 1 © The Chartered Insurance Institute 2009 Chapter 4 – Climate change and its implications for catastrophe modelling 4.1 Introduction The combination of catastrophe losses and inadequate risk management can reduce insurance company profitability, or can even cause insolvency. Assessing the potential losses from these events to ensure adequate risk transfer and appropriate pricing is, therefore, important to insurers’ business survival. Since catastrophic events are infrequent and extreme, there is little information about the characteristics of events themselves, or the losses caused. Traditional techniques, including actuarial analysis of historical loss information may not, therefore, be particularly successful in assessing this risk. Catastrophe models (cat models for short) have been developed to address this need for risk assessment. These mathematical models simulate hazardous events (caused by both natural and man-made perils) and estimate the associated potential damage and insured loss. Most catastrophe models currently in use within the insurance industry analyse the loss from natural perils such as earthquakes, windstorm and floods, but models also exist for other types of peril, such as terrorism.
    [Show full text]
  • CATASTROPHE MODELING: a NEW APPROACH to MANAGING RISK Huebner International Series on Risk, Insurance, and Economic Security
    CATASTROPHE MODELING: A NEW APPROACH TO MANAGING RISK Huebner International Series on Risk, Insurance, and Economic Security J. David Cummins, Editor The Wharton School University of Pennsylvania Philadelphia, Pennsylvania, USA Series Advisors: Dr. Phelim P. Boyle University of Waterloo, Canada Dr. Jean Lemaire University of Pennsylvania, USA Professor Akihiko Tsuboi Kagawa University, Japan Dr. Richard Zeckhauser Harvard University, USA Other books in the series: Cummins, J. David and Derrig, Richard A.: Classical Insurance Solvency Theory Borba, Philip S. and Appel, David: Benefits, Costs, and Cycles in Workers’ Compensation Cummins, J. David and Derrig, Richard A.: Financial Models of Insurance Solvency Williams, C. Arthur: An International Comparison of Workers’ Compensation Cummins, J. David and Derrig, Richard A.: Managing the Insolvency Risk of Insurance Companies Dionne, Georges: Contributions to Insurance Economics Dionne, Georges and Harrington, Scott E.: Foundations of Insurance Economics Klugman, Stuart A.: Bayesian Statistics in Actuarial Science Durbin, David and Borba, Philip: Workers’ Compensation Insurance: Claim Costs, Prices and Regulation Cummins, J. David: Financial Management of Life Insurance Companies Gustavson, Sandra G. and Harrington, Scott E.: Insurance, Risk Management, and Public Policy Lemaire, Jean: Bonus-Malus Systems in Automobile Insurance Dionne, Georges and Laberge-Nadeau: Automobile Insurance: Road Safety, New Drivers, Risks, Insurance Fraud and Regulation Taylor, Greg: Loss Reserving: An Actuarial
    [Show full text]