Electrokinetics Meets Electrohydrodynamics 3 2

Total Page:16

File Type:pdf, Size:1020Kb

Electrokinetics Meets Electrohydrodynamics 3 2 Dominant Bulk electrolyte homogenized Electrokinetics meets electrohydrodynamic by strong advection flow Electric electrohydrodynamics displacement Current Shear stress Electrical Apparent Electro-osmotic force surface Diffuse flow charge layers Interfacial Genuine Taylor–Melcher Martin Z. Bazant† electrical stress interface interface Departments of Chemical Engineering and Mathematics, Massachusetts Institute of Technology, MA, USA Despite studying the same subject – electrically induced flow – the fields of electrokinetics (EK) and electrohydrodynamics (EHD) have developed separately, for different types of fluids and interfaces. In colloids or porous media, EK phenomena derive from the electro-osmotic slip of a liquid electrolyte across the neutral electric double layer on a solid surface. On the other hand, EHD phenomena involve poorly conducting neutral fluids and solids, whose interfaces acquire net charge in response to electric fields. Over the past decade, combined theories of EK and EHD have emerged for fluid/solid interfaces, and now Schnitzer & Yariv (J. Fluid Mech., vol. 773, 2015, pp. 1–33) have taken a major step towards unifying EK and EHD for fluid/fluid interfaces. Following previous work by Baygents and Saville, they derive the classical Taylor–Melcher model of droplet EHD as the large-field thin-double-layer limit of the electrokinetic equations, thus elucidating the ubiquitous ‘leaky dielectric’ approximation. Future work could consider the secondary electro-osmotic flow and electrophoretic motion of the drop (neglected here as small perturbations) and allow for more general EK models. Key words: drops and bubbles, electrohydrodynamic effects 1. Introduction The field of electrokinetics (EK) began two centuries ago with Reuss’ discovery of electrophoresis of clay particles. In colloid science (Lyklema 1995) and, more recently, in microfluidics (Bruus 2008), EK studies have focused on charged fluids (liquid electrolytes) that form neutral dipolar interfaces called electric double layers (EDLs). Helmholtz first described the EDL as a thin capacitor with mobile ions screening the surface charge and predicted the electro-osmotic slip velocity, and Smoluchowski derived the associated force-free electrophoretic motion of a solid particle. In contrast, the field of electrohydrodynamics (EHD) considers charged monopolar interfaces and neutral fluids of constant permittivity and (small) conductivity (Melcher & Taylor 1969; Saville 1997). This ‘leaky dielectric’ approximation has been applied † Email address for correspondence: [email protected] J. Fluid Mech. (2015), vol. 782, pp. 1–4. c Cambridge University Press 2015 1 doi:10.1017/jfm.2015.416 2 M. Z. Bazant (a) (b) Axis A2 E (c) 0.5 cm (d) E u FIGURE 1. (a) Predicted EHD flow around an oil droplet in a uniform electric field (with induced interfacial charges added) and (b) experimental visualization from Taylor (1966) (with permission). (c) Predicted EK flow of a liquid electrolyte around a solid metal sphere (with induced double-layer charges) (Squires & Bazant 2004) and (d) flow visualization around a tin particle by V. A. Murtsovkin (photo courtesy of A. S. Dukhin) from the experiments of Gamayunov, Mantrov & Murtsovkin (1992). In spite of the different charge distributions, the external flows in (a) and (c) have the same scaling and are identical for spherical shapes, as noted by Squires & Bazant (2004). to dielectrophoresis and electrorotation of solid particles (Jones 1995) and interfacial flows (Melcher 1981). Although mobile charges are responsible for conductivity, diffuse charge imbalances and double layers are neglected, and motion is forced by the electric field acting on the interfacial polarization charge. Taylor (1966) pioneered the study of EHD for drops by predicting and visualizing the quadrupolar flow that affects their shape, whose direction depends on the electrical properties of both fluids. As shown in figure1, Taylor’s EHD flow outside the drop resembles the quadrupolar flow of induced-charge electro-osmosis (ICEO) around metal particles (Gamayunov et al. 1992; Bazant & Squires 2010), including the possibility of reverse flow. This suggests the need for a unified theory of EK and EHD phenomena. For solid/fluid interfaces, the classical theory of EHD has recently been extended to electrolytes by including ICEO flows (Squires & Bazant 2006; Miloh 2008), and now Schnitzer & Yariv (2015) have achieved a similar unification for fluid/fluid interfaces. Electrokinetics meets electrohydrodynamics 3 2. Overview In order to describe EHD phenomena in electrolytes, an EK model must allow for net interfacial charge that is not fully screened by the EDLs. Baygents & Saville (1991) introduced such a model for specific adsorption of ions with fast reaction kinetics, analogous to the charge regulation of solid surfaces (Lyklema 1995). The local concentration of ion i in each liquid is thus proportional to its interfacial N concentration via equilibrium constants Ki and Ki. Schnitzer & Yariv (2015) adopted the same microscale EK model in the simplest (but relevant) case of a symmetric binary salt dissolved in both liquids. Baygents & Saville (1991) also introduced the asymptotic limit in which their EK model should reduce to the leaky dielectric model of EHD, although they were unable to complete the mathematical procedure. Since liquid drops tend to have larger sizes than the solid particles or pores considered in electrokinetics, the ratio δ of the Debye screening length (defined in the outer electrolyte) to the drop length scale is small, so the interfacial EDL is thin and amenable to boundary layer analysis. At the same time, the electric fields in EHD are typically larger than in EK, due to the low liquid conductivity. In particular, the ratio β of the drop voltage (background electric field times its size) to the thermal voltage (kBT=e D 26 mV at room temperature) is large, but not so large as to trigger nonlinear screening effects, i.e. δβ 1. The distinguished limit, 1 δ β−1, can be analysed by matched asymptotic expansions in order to derive the effective leading-order EHD model. Baygents & Saville (1991) analysed the inner and outer regions of O(δ/ and O.1/ thickness respectively, but were unable to match them, which they attributed to an intermediate region of O(β−1/ thickness. Their analysis also includes many dimensionless parameters, not only the ratios M and S of viscosity and permittivity respectively, between the inner and outer fluid, but also the ratios of diffusivities and adsorption equilibrium constants for each ion. Schnitzer & Yariv (2015) succeeded in matching the inner and outer regions (without any intermediate region) and showed that the Baygents–Saville EK model indeed reduces to the Melcher–Taylor EHD model in the appropriate limit, with some interesting caveats. Their key insight was to recognize that the ionic diffusivity ratios are not independent parameters, but all proportional to the viscosity ratio, M, according to the Einstein–Smoluchowski relation. As a result, the effective conductivity ratio R that enters the leading-order EHD model is also proportional to M, times the ratio of ion concentrations set by the adsorption equilibria: p R D M KCK−=KN CKN −. The leading-order O(β2/ quadrupolar EHD flow is driven by a small O(δβ/ net charge induced in the ‘triple layer’ consisting of the charged interface of adsorbed ions and the diffuse screening clouds, as shown in the figure by the title. Unlike the leaky dielectric model of Melcher & Taylor (1969), there is no leading-order convection of interfacial charge, as assumed (without justification) by Taylor (1966). The clear signature of EK is a weak O(β/ electro-osmotic flow proportional to the O.1/ total charge that leads to slow electrophoretic motion of the drop, as observed (but not explained) by Taylor (1966). 3. Future It would be interesting to analyse other distinguished limits of the model for drops. As suggested by figure1, it should be possible to recover leading-order ICEO 4 M. Z. Bazant flow around a solid dielectric sphere (Squires & Bazant 2004) for very viscous drops, M 1, that maintain finite conductivity R−1 D O.1/ in the limit of weak ion adsorption, K±; KN ± ! 0. Ion adsorption could also be added to the authors’ analyses of bubbles (Schnitzer, Frankel & Yariv 2014) and perfectly conducting (Schnitzer, Frankel & Yariv 2013) or polarizable (Schnitzer & Yariv 2013) liquid metal drops, which unify EK and electrocapillary phenomena. Besides drops, there are other important applications. For example, the model could predict how EK phenomena are enhanced by ion adsorption at superhydrophobic surfaces (Bahga, Vinogradova & Bazant 2010) or influence Taylor cones and jets (Melcher & Taylor 1969). The analysis could also be extended to ionic liquids (Storey & Bazant 2012), vesicles (Schwalbe, Vlahovska & Miksis 2011) and membranes (Lacoste et al. 2009). References BAHGA, S., VINOGRADOVA, O. I. & BAZANT, M. Z. 2010 Anisotropic electro-osmotic flow over superhydrophobic surfaces. J. Fluid Mech. 644, 245–255. BAYGENTS, J. C. & SAVILLE, D. A. 1991 Electrophoresis of drops and bubbles. J. Chem. Soc. Faraday Trans. 87, 1883–1898. BAZANT, M. Z. & SQUIRES, T. M. 2010 Induced-charge electrokinetic phenomena. Curr. Opin. Colloid Interface Sci. 15, 203–213. BRUUS, H. 2008 Theoretical Microfluidics. Oxford University Press. GAMAYUNOV, N. I., MANTROV, G. I. & MURTSOVKIN, V. A. 1992 Study of flows induced in the vicinity of conducting particles by an external electric field. Colloid J. 54, 20–23. JONES, T. B. 1995 Electromechanics
Recommended publications
  • Nonlinear Electrokinetic Phenomena
    Nonlinear electrokinetic phenomena Synonyms Induced-charge electro-osmosis (ICEO), induced-charge electrophoresis (ICEP), AC electro- osmosis (ACEO), electro-osmosis of the second kind, electrophoresis of the second kind, Stotz-Wien effect, nonlinear electrophoretic mobility. Definition Nonlinear electrokinetic phenomena are electrically driven fluid flows or particle motions, which depend nonlinearly on the applied voltage. The term is also used more specifically to refer to induced-charge electro-osmotic flow, driven by an electric field acting on diffuse charge induced near a polarizable surface. Chemical and Physical Principles Linear electrokinetic phenomena A fundamental electrokinetic phenomenon is the electro-osmotic flow of a liquid electrolyte (solution of positive and negative ions) past a charged surface in response to a tangential electric field. Electrophoresis is the related phenomenon of motion of a colloidal particle or molecule in a background electric field, propelled by electro-osmotic flow in the opposite direction. The basic physics is as follows: Electric fields cause positive and negative ions to migrate in opposite directions. Since each ion drags some of the surrounding fluid with it, any significant local charge imbalance yields an electrostatic stress on the fluid. Ions also exert forces on each other, which tend to neutralize the bulk solution, so electrostatic stresses are greatest in the electrical double layers, where diffuse charge exists to screens surface charge. The width of the diffuse part of the double layer (or “diffuse layer”) is the Debye screening length (λ ~ 1-100 nm in water), which is much smaller than typical length scales in microfluidics and colloids. Such a “thin double layer” resembles a capacitor skin on the surface.
    [Show full text]
  • Experimental and Computational Analysis of Bubble Generation Combining Oscillating Electric Fields and Microfluidics
    Experimental and computational analysis of bubble generation combining oscillating electric fields and microfluidics A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy By Anjana Kothandaraman Supervised by: Professor Mohan Edirisinghe And Professor Yiannis Ventikos Department of Mechanical Engineering University College London Torrington Place, London WC1E 7JE United Kingdom December, 2017 1 | P a g e Declaration I, Anjana Kothandaraman, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. -------------------------------------- Anjana Kothandaraman 2 | P a g e Abstract Microbubbles generated by microfluidic techniques have gained substantial interest in various fields such as food engineering, biosensors and the biomedical field. Recently, T-Junction geometries have been utilised for this purpose due to the exquisite control they offer over the processing parameters. However, this only relies on pressure driven flows; therefore bubble size reduction is limited, especially for very viscous solutions. The idea of combining microfluidics with electrohydrodynamics has recently been investigated using DC fields, however corona discharge was recorded at very high voltages with detrimental effects on the bubble size and stability. In order to overcome the aforementioned limitation, a novel set-up to superimpose an AC oscillation on a DC field is presented in this work with the aim of introducing additional parameters such as frequency, AC voltage and waveform type to further control bubble size, capitalising on well documented bubble resonance phenomena and properties. Firstly, the effect of applied AC voltage magnitude and the applied frequency were investigated.
    [Show full text]
  • Lecture 4. Electrokinetics and Electrohydrodynamics
    Lecture 4. Electrokinetics and Electrohydrodynamics Electrophoresis Electroosmosis Capillary Electrophoresis (CE) DEP preconcentrator Dielectrophoresis (DEP) AC Electroosmosis Electrophoresis • An ion with charge q in an electric field E moves toward opposite electrode due to Coulombic force. A steady-state speed is reached when the accelerating force equals the frictional force generated by the medium. VDC - - Medium Anode + + Cathode FE = qE FFriction = f ⋅uE = 6πηr ⋅uE q u q u = ⋅ E µ = E = E 6πηr E E 6πηr Electrophoretic mobility is a function of viscosity and charge to radius ratio. Applications of Electrophoresis • Many important biological molecules such as amino acids, peptides, proteins, nucleotides, and nucleic acids, possess ionisable groups (COOH, NH2, phosphates) and, therefore, at any given pH, exist in solution as electically charged species either as cations (+) or anions (-). DNA is negatively charged because the phosphates that form the sugar-phosphate backbone of a DNA molecule have a negative charge. • Depending on the nature of the net charge, the charged particles will migrate either to the cathode or to the anode at different rates. Electrophoresis has been applied to a variety of analytical separation problems. – Amino acids – Peptides, proteins (enzymes, hormones, antibodies) – Nucleic acids (DNA, RNA), nucleotides – Drugs, vitamins, carbohydrates – Inorganic cations and anions Gel Electrophoresis • Gel electrophoresis is a separation technique widely used for the separation of nucleic acids and proteins. The separation depends upon electrophoresis and filtering effect by gel (molecular sieve). Under electric field, charged macromolecules are forced to move through the gel with pores. • Their rates of migration depend on the field strength, size and shape of the molecules, hydrophobicity of the samples, and on the ionic strength, and pH, temperature of the buffer in which the molecules are moving.
    [Show full text]
  • Electrokinetics and Electrohydrodynamics in Microsystems Invited Lecturers
    TIME TABLE TIME Monday Tuesday Wednesday Thursday Friday June 22 June 23 June 24 June 25 June 26 9.00 - 9.45 Registration Morgan Mugele Bazant Chen 9.45 - 10.30 Ramos Mugele Bazant Green Chen 11.00 - 11.45 Morgan Bazant Green Chen Ramos 11.45 - 12.30 Mugele Green Chen Ramos Ramos 14.30 - 15.15 Bazant Chen Ramos Morgan 15.15 - 16.00 Green Ramos Morgan Mugele 16.30 - 17.15 Chen Green Mugele Bazant 17.15 - 18.00 Morgan e-mail: [email protected] fax +390432248550 tel. +390432248511 (6lines) 33100 Udine(Italy) -PiazzaGaribaldi18 Palazzo delTorso CISM For furtherinformationpleasecontact: our website,orcanbemaileduponrequest. Information about travel and accommodation is available on web site: e-mail: postmaster[at]daad.de tel. +49(228)882-0 DAAD, Kennedyallee50,53175Bonn support toGermanstudents.Pleasecontact: The Deutscher Akademischer Austausch Dienst (DAAD) offers to applicantsfromcountriesthatsponsorCISM. the institute cannot provide funding. Preference will be given by the head of the department or a supervisor confirming that recommendation of letter a and curriculum applicant's the with by Secretariat CISM to sent be should quests offered board and/or lodging in a reasonably priced hotel. Re centres who are not supported by their own institutions can be research and universitites from participants of number limited A The registrationfeeis600,00Euro. our secretariat. pants. If you need assistance for registration please contact A message of confirmationwill be sent to accepted partici our website: through on-line sent be should forms Application course. the of beginning the before month one least at apply must Applicants ADMISSION ANDACCOMMODATION http://www.daad.de/de/kontakt.html http://www.cism.it orbypost.
    [Show full text]
  • Induced-Charge Electrokinetic Phenomena
    Microfluid Nanofluid (2010) 9:593–611 DOI 10.1007/s10404-010-0607-2 REVIEW Induced-charge electrokinetic phenomena Yasaman Daghighi • Dongqing Li Received: 15 January 2010 / Accepted: 18 March 2010 / Published online: 7 April 2010 Ó Springer-Verlag 2010 Abstract The induced-charge electrokinetic (ICEK) with the surface charge or its ionic screening clouds (Sa- phenomena are relatively new area of research in micro- ville 1977; Anderson 1989). Typical electrokinetic phe- fluidics and nanofluidics. Different from the traditional nomena include: (i) electro-osmosis, liquid flow generated electrokinetic phenomena which are based on the interac- by an applied electric field force acting on the ionic charge tions between applied electric field and the electrostatic cloud near a solid surface; (ii) electrophoresis, the motion charge, the ICEK phenomena result from the interaction of of a charged particle in a liquid under an applied electric the applied electric field and the induced charge on po- field. larisable surfaces. Because of the different underline The ‘classical’ electrokinetics (EK) was first developed physics, ICEK phenomena have many unique characteris- in colloid sciences and surface chemistry (Hunter 2001; tics that may lead to new applications in microfluidics and Lyklema 1995; Anderson 1989) and has entered the mi- nanofluidics. In this paper, we review the major advance- crofluidics area over the past 10–15 years (Li 2004; Li ment of research in the field of ICEK phenomena, discuss 2008). Most studies of EK have assumed linear response to the applications and the limitations, and suggest some the applied electric field, and fixed static surface charge (Li future research directions.
    [Show full text]
  • Electrohydrodynamic Settling of Drop in Uniform Electric Field at Low and Moderate Reynolds Numbers
    Electrohydrodynamic settling of drop in uniform electric field at low and moderate Reynolds numbers Nalinikanta Behera1, Shubhadeep Mandal2 and Suman Chakraborty1,a 1Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur,West Bengal- 721302, India 2Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 G¨ottingen, Germany Dynamics of a liquid drop falling through a quiescent medium of another liquid is investigated in external uniform electric field. The electrohydrodynamics of a drop is governed by inherent deformability of the drop (defined by capillary number), the electric field strength (defined by Masson number) and the surface charge convection (quantified by electric Reynolds number). Surface charge convection generates nonlinearilty in a electrohydrodynamics problem by coupling the electric field and flow field. In Stokes limit, most existing theoretical models either considered weak charge convection or weak electric field to solve the problem. In the present work, gravitational settling of the drop is investigated analytically and numerically in Stokes limit considering significant electric field strength and surface charge convection. Drop deformation accurate upto higher order is calculated analytically in small deformation regime. Our theoretical results show excellent agreement with the numerical and shows improvement over previous theoretical models. For drops falling with moderate Reynolds number, the effect of Masson number on transient drop dynamics is studied for (i) perfect dielectric drop in perfect dielectric medium (ii) leaky dielectric drop in the leaky dielectric medium. For the latter case transient deformation and velocity obtained for significant charge convection is compared with that of absence in charge convection which is the novelty of our study.
    [Show full text]
  • (Ehd) Pumping of Liquid Nitrogen –
    ABSTRACT Title of Dissertation: ELECTROHYDRODYNAMICS (EHD) PUMPING OF LIQUID NITROGEN – APPLICATION TO SPOT CRYOGENIC COOLING OF SENSORS AND DETECTORS Mihai Rada, Doctor of Philosophy, 2004 Dissertation directed by: Professor Michael M. Ohadi Department of Mechanical Engineering Superconducting electronics require cryogenic conditions as well as certain conventional electronic applications exhibit better performance at low temperatures. A cryogenic operating environment ensures increased operating speeds and improves the signal-to-noise ratio and the bandwidth of analog devices and sensors, while also ensuring reduced aging effect. Most of these applications require modest power dissipation capabilities while having stricter requirements on the spatial and temporal temperature variations. Controlled surface cooling techniques ensure more stable and uniform temporal and spatial temperature distributions that allow better signal-to-noise ratios for sensors and elimination of hot spots for processors. EHD pumping is a promising technique that could provide pumping and mass flow rate control along the cooled surface. In this work, an ion-drag EHD pump is used to provide the pumping power necessary to ensure the cooling requirements. The present study contributes to two major areas which could provide significant improvement in electronics cooling applications. One direction concerns development of an EHD micropump, which could provide the pumping power for micro-cooling systems capable of providing more efficient and localized cooling. Using a 3M fluid, a micropump with a 50 mm gap between the emitter and collector and a saw-tooth emitter configuration at an applied voltage of about 250 V provided a pumping head of 650 Pa. For a more optimized design a combination of saw tooth emitters and a 3-D solder-bump structure should be used.
    [Show full text]
  • Electrohydrodynamics of Particles and Drops in Strong Electric Fields
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Electrohydrodynamics of Particles and Drops in Strong Electric Fields Permalink https://escholarship.org/uc/item/335049s5 Author Das, Debasish Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Electrohydrodynamics of Particles and Drops in Strong Electric Fields A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Engineering Sciences (Mechanical Engineering) by Debasish Das Committee in charge: Professor David Saintillan, Chair Professor Juan C. Lasheras Professor Bo Li Professor J´er´emiePalacci Professor Daniel M. Tartakovsky 2016 Copyright Debasish Das, 2016 All rights reserved. The Dissertation of Debasish Das is approved, and it is ac- ceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2016 iii EPIGRAPH If you keep proving stuff that others have done, getting confidence, increasing the complexities of your solutions - for the fun of it - then one day you’ll turn around and discover that nobody actually did that one! —Richard P. Feynman iv TABLE OF CONTENTS Signature Page................................... iii Epigraph...................................... iv Table of Contents..................................v List of Figures................................... viii List of Tables....................................x Acknowledgements................................
    [Show full text]
  • 5. Chemical Physics of Colloid Systems and Interfaces
    Published as Chapter 5 in "Handbook of Surface and Colloid Chemistry" Second Expanded and Updated Edition; K. S. Birdi, Ed.; CRC Press, New York, 2002. 5. CHEMICAL PHYSICS OF COLLOID SYSTEMS AND INTERFACES Authors: Peter A. Kralchevsky, Krassimir D. Danov, and Nikolai D. Denkov Laboratory of Chemical Physics and Engineering, Faculty of Chemistry, University of Sofia, Sofia 1164, Bulgaria CONTENTS 5.7. MECHANISMS OF ANTIFOAMING……………………………………………………..166 5.7.1 Location of Antifoam Action – Fast and Slow Antifoams 5.7.2 Bridging-Stretching Mechanism 5.7.3 Role of the Entry Barrier 5.7.3.1 Film Trapping Technique 5.7.3.2 Critical Entry Pressure for Foam Film Rupture 5.7.3.3 Optimal Hydrophobicity of Solid Particles 5.7.3.4 Role of the Pre-spread Oil Layer 5.7.4 Mechanisms of Compound Exhaustion and Reactivation 5.8. ELECTROKINETIC PHENOMENA IN COLLOIDS……………………………………...183 5.8.1 Potential Distribution at a Planar Interface and around a Sphere 5.8.2 Electroosmosis 5.8.3 Streaming Potential 5.8.4 Electrophoresis 5.8.5 Sedimentation Potential 5.8.6 Electrokinetic Phenomena and Onzager Reciprocal Relations 5.8.7 Electric Conductivity and Dielectric Response of Dispersions 5.8.7.1 Electric Conductivity 5.8.7.2 Dispersions in Alternating Electrical Field 5.8.8 Anomalous Surface Conductance and Data Interpretation 5.8.9 Electrokinetic Properties of Air-Water and Oil-Water Interfaces 5.9. OPTICAL PROPERTIES OF DISPERSIONS AND MICELLAR SOLUTIONS………….207 5.9.1 Static Light Scattering 5.9.1.1 Rayleigh Scattering 5.9.1.2 Rayleigh-Debye-Gans Theory 5.9.1.3
    [Show full text]
  • Performance Characterization of Electrohydrodynamic Propulsion
    Performance Characterization of Electrohydrodynamic Propulsion Devices by Kento Masuyama Submitted to the Department of Aeronautics and Astronautics in partial fulfillment of the requirements for the degree of Master of Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2012 © Massachusetts Institute of Technology 2012. All rights reserved. Author.............................................................. Department of Aeronautics and Astronautics August 23, 2012 Certified by. Steven R.H. Barrett Assistant Professor Thesis Supervisor Accepted by . Eytan H. Modiano Professor of Aeronautics and Astronautics Chair, Graduate Program Committee 2 Performance Characterization of Electrohydrodynamic Propulsion Devices by Kento Masuyama Submitted to the Department of Aeronautics and Astronautics on August 23, 2012, in partial fulfillment of the requirements for the degree of Master of Science Abstract Partially ionized fluids can gain net momentum under an electric field, as charged par- ticles undergo momentum-transfer collisions with neutral molecules in a phenomenon termed an ionic wind. Electrohydrodynamic thrusters generate thrust by using two or more electrodes to ionize the ambient fluid and create an electric field. In this thesis, electrohydrodynamic thrusters of single- and dual-stage configurations were tested. Single-stage thrusters refer to a geometry employing one emitter electrode, an air gap of length d, and a collector electrode with large radius of curvature relative to the emitter. Dual-stage thrusters add a collinear intermediate electrode in between the emitter and collector. Single-stage thruster performance was shown to exhibit trends in agreement with the one-dimensional theory under both positive and negative DC excitations. Increasing the gap length requires a higher voltage for thrust onset, gen- erates less thrust per input voltage, generates more thrust per input current, and most importantly generates more thrust per input power.
    [Show full text]
  • Recent Advances in the Modelling and Simulation
    Recent advances in the modelling and simulation of electrokinetic effects: bridging the gap between atomistic and macroscopic descriptions Ignacio Pagonabarraga, Benjamin Rotenberg, Daan Frenkel To cite this version: Ignacio Pagonabarraga, Benjamin Rotenberg, Daan Frenkel. Recent advances in the modelling and simulation of electrokinetic effects: bridging the gap between atomistic and macroscopic de- scriptions. Physical Chemistry Chemical Physics, Royal Society of Chemistry, 2010, 12, pp.9566. 10.1039/C004012F. hal-00531720 HAL Id: hal-00531720 https://hal.archives-ouvertes.fr/hal-00531720 Submitted on 8 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Recent advances in the modelling and simulation of electrokinetic effects: bridging the gap between atomistic and macroscopic descriptions I. Pagonabarraga∗ B. Rotenberg† D. Frenkel‡ May 27, 2010 Abstract Electrokinetic phenomena are of great practical importance in fields as diverse as micro-fluidics, colloid science and oil exploration. However, the quantitative prediction of electrokinetic effects was until recently limited to relatively simple geometries that allowed the use of analytical theories. In the past decade, there has been a rapid development in the use of numerical methods that can be used to model electrokinetic phenomena in complex geometries or, more generally, under conditions where the existing analytical approaches fail.
    [Show full text]
  • Electrohydrodynamics of Compound Droplet in a Microfluidic Confinement Somnath Santra , Sayan Das and Suman Chakraborty † Depa
    Electrohydrodynamics of compound droplet in a microfluidic confinement Somnath Santra1, Sayan Das1 and Suman Chakraborty1,† 1Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal - 721302, India The present study deals with the dynamics of a double emulsion confined in a microchannel under the presence of a uniform electric field. Towards investigating the non-trivial electrohydrodynamics of a compound droplet, confined in between two parallel plate electrodes, a phase field approach has been adopted. Under the assumption of negligible fluid inertia and small shape deformation, an asymptotic model is also developed to predict the transient as well as the steady state droplet dynamics in the limiting case of an unbounded suspending medium. The phases involved are either assumed to be perfect dielectric or leaky dielectric. Subsequent investigation shows that shape deformation of either of the interfaces of the droplet increase with rise in the channel confinement for a perfect dielectric system. However, for a leaky dielectric system, the deformation of inner droplet and outer droplet can increase or decrease with the rise in channel confinement depending on the electric properties (conductivity and permittivity) of the system. It is also observed that the presence of inner droplet for a compound droplet suppresses the breakup of the outer droplet. The present study further takes into account the effect of eccentricity of the inner droplet. Depending on the relative magnitude of the permittivity and conductivity of the system, the inner droplet, if eccentrically located, may exhibit a to and fro or a simple translational motion. It is seen that increase in the channel confinement results in a translational motion of the inner droplet thus rendering its motion independent of any electrical properties.
    [Show full text]