<Abstract Centered> an ABSTRACT of the THESIS OF
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nocturnal Feeding of Pacific Hake and Jack Mackerel Off the Mouth of the Columbia River, 1998-2004: Implications for Juvenile Salmon Predation Robert L
This article was downloaded by: [Oregon State University] On: 16 August 2011, At: 13:01 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Transactions of the American Fisheries Society Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/utaf20 Nocturnal Feeding of Pacific Hake and Jack Mackerel off the Mouth of the Columbia River, 1998-2004: Implications for Juvenile Salmon Predation Robert L. Emmett a & Gregory K. Krutzikowsky b a Northwest Fisheries Science Center, NOAA Fisheries, 2030 South Marine Science Drive, Newport, Oregon, 97365, USA b Cooperative Institute of Marine Resource Studies, Oregon State University, 2030 South Marine Science Drive, Newport, Oregon, 97365, USA Available online: 09 Jan 2011 To cite this article: Robert L. Emmett & Gregory K. Krutzikowsky (2008): Nocturnal Feeding of Pacific Hake and Jack Mackerel off the Mouth of the Columbia River, 1998-2004: Implications for Juvenile Salmon Predation, Transactions of the American Fisheries Society, 137:3, 657-676 To link to this article: http://dx.doi.org/10.1577/T06-058.1 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and- conditions This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan, sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. -
The Influence of Seasonal and Decadal Trends in Coastal Ocean Processes on the Population Biology of the Krill Species Euphausia
The Influence of Seasonal and Decadal Trends in Coastal Ocean Processes on the Population Biology of the krill species Euphausia pacifica: Results of a coupled ecosystem and individual based modeling study By Jeffrey G. Dorman A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Thomas M. Powell, Chair Professor Mary E. Power Professor Mark Stacey Fall 2011 The Influence of Seasonal and Decadal Trends in Coastal Ocean Processes on the Population Biology of the krill species Euphausia pacifica: Results of a coupled ecosystem and individual based modeling study Copyright 2011 by Jeffrey G. Dorman Abstract The Influence of Seasonal and Decadal Trends in Coastal Ocean Processes on the Population Biology of the krill species Euphausia pacifica: Results of a coupled ecosystem and individual based modeling study by Jeffrey G. Dorman Doctor of Philosophy in Integrative Biology University of California, Berkeley Professor Thomas M. Powell, Chair Krill of the California Current play a crucial role in the transfer of primary production up to many commercially important higher trophic levels. Understanding the short time scale (weeks to seasonal) and long time scale (decadal) variability in abundance, condition, and spatial patterns that results from changes in ocean conditions is critical if we hope to manage the fishery of any higher trophic levels from more than a single species approach. I have coupled a suite of models in an attempt to understand the impacts of changing ocean conditions on this important prey item. -
Molecular Phylogenetic Analysis of Euphausia Pacifica, Thysanoessa Longipes and T. Inermis (Crustacea : Euphausiacea) in The
Molecular Phylogenetic Analysis of Euphausia pacifica, Thysanoessa longipes and T. inermis (Crustacea : Title Euphausiacea) in the Subarctic Pacific Region, with Notes on Non-Geographical Genetic Variations for E. pacifica Author(s) Takahashi, Tomokazu; Taniguchi, Marina; Sawabe, Tomoo; Christen, Richard; Ikeda, Tsutomu Citation 北海道大学水産科学研究彙報, 57(1-2), 1-8 Issue Date 2006-11 Doc URL http://hdl.handle.net/2115/32480 Type bulletin (article) File Information P3-8.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Bull.Fish.Sci.Hokkaido Univ. 57(1/2),1-8,2006. Molecular Phylogenetic Analysis of Euphausia pacifica,Thysanoessa longipes and T.inermis(Crustacea:Euphausiacea) in the Subarctic Pacific Region,with Notes on Non-Geographical Genetic Variations for E.pacifica Tomokazu TAKAHASHI,Marina TANIGUCHI,Tomoo SAW ABE,Richard CHRISTEN and Tsutomu IKEDA (Received 24 November 2005,Accepted 6 January 2006) Abstract Nucleotide sequences of a 1,854 base pair region of the nuclear small subunit(18S)rDNA gene and of a 475 or 476 base pair region of the mitochondrial large subunit(mt16S)rRNA gene were determined for Euphausia pacifica collected from the western/eastern subarctic Pacific,Okhotsk Sea and Japan Sea,and Thysanoessa inermis from the Okhotsk Sea T.inermis from the Okhotsk Sea and Bering Sea.Interspecific differences were 0.16-0.86% for 18S rDNA gene and 2.3-9.3%for 16S rRNA gene.Intraspefic differences are of special interest of E.pacifica from geographically distant sites,but were very small(0.0-<0.1%for -
2014 Final Report
Completion Report Period: 2/1/2014 - 1/31/2015 Project: R/OCEH-10 - Effects of ocean acidification on trophically-important crustacean zooplankton of Washington State STUDENTS SUPPORTED Barber, Tiffany, [email protected], California State University Monterey Bay, no department, status: new, no field of study, no advisor, degree type: BS, degree date: 2016-06-01, degree completed this period: No Student Project Title: Effects of Ocean Acidification on the early life stages of the krill, Euphausia pacifica Involvement with Sea Grant This Period: Intern Post-Graduation Plans: none McLaskey, Anna, [email protected], University of Washington, Oceanography, status: cont, field of study: Biological Oceanography, advisor: J. Keister, degree type: PhD, degree date: 2019-06-01, degree completed this period: No Student Project Title: Effects of ocean acidification on crustacean zooplankton. Involvement with Sea Grant This Period: Ph.D. student supported through by WSG through this grant. Anna is the lead student on this project. Post-Graduation Plans: none Raatikainen, Lisa, [email protected], University of Washington, Oceanography, status: cont, field of study: Biological Oceanography, advisor: J. Keister, degree type: PhD, degree date: 2019-06-01, degree completed this period: No Student Project Title: none Involvement with Sea Grant This Period: Assisted in field and lab. Post-Graduation Plans: none CONFERENCES / PRESENTATIONS Keister JE, McLaskey AK (2014) Testing the effects of ocean acidification on copepod and krill populations. Poster presentation at the Gordon Conference on Climate Change, Waterville Valley, NH, July 8-10., public/profession presentation, 150 attendees, 2014-07-09 Keister JE, McLaskey AK, McElhany P, Olson B (2014) Testing the effects of ocean acidification on copepod and krill populations. -
VITAMIN a and CAROTENOIDS in CERTAIN INVERTEBRATES By
J. Mar. biol. Ass. U.K. (1955) 34, 81-100 N.I.R.D. Paper No. 1574 81 Printed in Great Britain VITAMIN A AND CAROTENOIDS IN CERTAIN INVERTEBRATES III. EUPHAUSIACEA By L. R. Fisher, S. K. Kon and S. Y. Thompson National Institute for Research in Dairying, University of Reading (Text-figs. I and 2) INTRODUCTION I Our published work has shown that the northern euphausiids, Meganycti- phanes norvegica, Thysanoessa raschii and T. inermis, contain triuch higher con- centrations of vitamin A than we have found in any other ~arine Crustacea (Kon & Thompson, 1949a; Batham, Fisher, Henry, Kon & Thompson, 1951; Fisher, Kon & Thompson, 1952, 1953, 1954). In the a,tarctic species, Euphausia superba, the concentration of vitamin A in sample~ taken from the alimentary canals of baleen whales (Thompson, Ganguly & Kon, 1949; Kon & Thompson, 1949b) was similar to that found in Meganyctiphanes norvegica from the gut of arctic baleen whales (Fisher et al., 1952), but both were very much lower than in free-swimming M. norvegica. No corresponding free- swimming specimens of Euphausia superba had been analysed. This evidence indicated that the Euphausiacea, as a group, might be richer in vitamin A than other Crustacea. We have, therefore, attempted to obtain as many other euphausiid species as possible for a comparative study, and in fact have now information about eight further euphausiids. Unfortunately, we found no other environment as favourable as Loch Fyne or Monaco for catching easily large numbers of these animals. The numbers of specimens analysed of these species were, therefore, relatively small, but, in most instances, valid results were obtained. -
Acoustic Surveys of Euphausiids and Models of Baleen Whale Distribution in the Barents Sea
Vol. 527: 13–29, 2015 MARINE ECOLOGY PROGRESS SERIES Published May 7 doi: 10.3354/meps11257 Mar Ecol Prog Ser Acoustic surveys of euphausiids and models of baleen whale distribution in the Barents Sea P. H. Ressler1,2,*, P. Dalpadado2, G. J. Macaulay2, N. Handegard2, M. Skern-Mauritzen2 1Alaska Fisheries Science Center, NOAA National Marine Fisheries Service, Seattle, WA 98115, USA 2Institute of Marine Research (IMR), PO Box 1870 Nordnes, 5817 Bergen, Norway ABSTRACT: As in many high-latitude ecosystems, euphausiids (order Euphausiacea, ‘krill’) play a key role in the Barents Sea by channeling energy from primary producers to fish and other zoo- plankton predators. We used multifrequency acoustic data from several recent multidisciplinary surveys to describe the spatial distribution of backscatter likely to be from euphausiids. Spatial patterns in euphausiid backscatter observed in 2010, 2011, and 2012 were correlated with verti- cally integrated euphausiid biomass collected with plankton nets, and were also broadly consis- tent with the distribution of euphausiids expected from the literature. We used the high-resolution and broad-spatial coverage of our euphausiid backscatter data to update multiple regression models of baleen (fin, humpback, and minke) whale distribution to test the hypothesis that these animals aggregated where euphausiids were abundant. After controlling for physical environ- mental factors and the densities of capelin and several other potential prey taxa, we found that fin whale densities were positively and linearly associated with euphausiid backscatter, and higher than average densities of humpback whales were found in areas with high euphausiid back - scatter. No association was found between minke whales and euphausiids. -
Euphausiacea (Crustacea) of the North Pacific
UC San Diego Bulletin of the Scripps Institution of Oceanography Title Euphausiacea (Crustacea) of the North Pacific Permalink https://escholarship.org/uc/item/62h3k734 Authors Boden, Brian P Johnson, Martin W Brinton, Edward Publication Date 1955-11-15 Peer reviewed eScholarship.org Powered by the California Digital Library University of California THE EUPHAUSIACEA (CRUSTACEA) OF THE NORTH PACIFIC BY BRIAN P. BODEN, MARTIN W. JOHNSON, AND EDWARD BRINTON UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES 1955 BULLETIN OF THE SCRIPPS INSTITUTION OF OCEANOGRAPHY OF THE UNIVERSITY OF CALIFORNIA LA JOLLA, CALIFORNIA EDITORS: CLAUDE E. ZOBELL, ROBERT S. ARTHUR, DENIS L. FOX Volume 6, No. 8, pp. 287–400, 55 figures in text Submitted by editors November 5,1954 Issued November 15, 1955 Price, $1.50 UNIVERSITY OF CALIFORNIA PRESS BERKELEY AND LOS ANGELES CALIFORNIA CAMBRIDGE UNIVERSITY PRESS LONDON, ENGLAND [CONTRIBUTION FROM THE SCRIPPS INSTITUTION OF OCEANOGRAPHY, NO. 796] PRINTED IN THE UNITED STATES OF AMERICA CONTENTS THE EUPHAUSIACEA (CRUSTACEA) OF THE NORTH PACIFIC BY BRIAN P. BODEN, MARTIN W. JOHNSON, AND EDWARD BRINTON INTRODUCTION AS A PART of the Marine Life Research Program of the Scripps Institution of Oceanography (a member of the California Coöperative Oceanic Fisheries Investigations) an increased effort is being made to describe and evaluate the various organic factors that are important in the biological economy of the sea. In attacking the problem, the most expedient procedure is to study in detail the various components of the plankton, for it is well known that these components in varying degrees of importance provide directly the basic food for the Fig. -
Krill Dan Howard
Krill Dan Howard Summary and Introduction Just as there are growing seasons on land, so there are growing seasons in the ocean as well. In the Gulf of the Farallones, the growing season begins in early spring, when the first phy- toplankton blooms (large increase of microscopic plants) of the year fuel growth at higher levels of the marine food web. In California, as in many parts of the world, euphausiid shrimp, com- monly called “krill,” are one of the beneficiaries of this early-season production and are a critical link in the marine food web. Feeding on phytoplankton (microscopic plants) and small zooplank- ton (animals), krill populations expand and by being eaten by other marine animals, transfer energy from the lowest (primary producer) level into the upper levels of the marine food web. They are often referred to as “keystone” species because they play such an important role in the functioning of many marine ecosystems. Krill hatch from free-floating eggs and pass through larval and juvenile stages before maturing into adults. This development process involves a series of molts (casting off the rigid outside skeleton that restricts growth), during which segments and appendages are gradually added. While the new outside skeleton is still soft, the individual can increase its size. Adult euphausiids have the unique ability to actually shrink in size after a molt if food resources are scarce. Because krill can increase and decrease their size, it can be difficult to determine their age or the age distribution of a population of animals from their sizes. Krill have legs called “swimmerets” that have evolved to look like small feathers and function like fins, giving them great mobility and agility for life in the water column. -
Histophagous Ciliate Pseudocollinia Brintoni and Bacterial Assemblage Interaction with Krill Nyctiphanes Simplex. I. Transmission Process
Vol. 116: 213–226, 2015 DISEASES OF AQUATIC ORGANISMS Published October 27 doi: 10.3354/dao02922 Dis Aquat Org Histophagous ciliate Pseudocollinia brintoni and bacterial assemblage interaction with krill Nyctiphanes simplex. I. Transmission process Jaime Gómez-Gutiérrez1,*, Alejandro López-Cortés2, Mario J. Aguilar-Méndez2,4, Jorge A. Del Angel-Rodríguez2,5, Nelly Tremblay1,6, Tania Zenteno-Savín2, Carlos J. Robinson3 1Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, Departamento de Plancton y Ecología Marina, Av. Instituto Politécnico Nacional s/n, La Paz, BCS 23096, Mexico 2Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, BCS 23096, Mexico 3Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM), Mexico City, DF 04510, Mexico 4Present address: Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Campus Guanajuato, Silao de la Victoria, Guanajuato 36275, Mexico 5Present address: Departments of Biology and Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada 6Present address: Instituto Politécnico Nacional, Centro de Investigación y de Estudios Avanzados (CINVESTAV) — Unidad Mérida, Departamento de Recursos del Mar, Mérida, Yucatán 97310, Mexico ABSTRACT: Histophagous ciliates of the genus Pseudocollinia cause epizootic events that kill adult female krill (Euphausiacea), but their mode of transmission is unknown. We compared 16S rRNA sequences of bacterial strains isolated from stomachs of healthy krill Nyctiphanes simplex specimens with sequences of bacterial isolates and sequences of natural bacterial communities from the hemocoel of N. simplex specimens infected with P. brintoni to determine possible trans- mission pathways. All P. brintoni endoparasitic life stages and the transmission tomite stage (out- side the host) were associated with bacterial assemblages. -
Elemental Composition (C, H, N) of the Euphausiid Euphausia Pacifica in Toyama Bay, Southern Japan Sea
Plankton Biol. Ecol. 45 (1): 79-84, 1998 plankton biology & ecology •C The Plankton Society of Japan 1998 Note Elemental composition (C, H, N) of the euphausiid Euphausia pacifica in Toyama Bay, southern Japan Sea Naoki Iguchi1 & Tsutomu Ikeda2 'Japan Sea National Fisheries Research Institute, I Suido-cho, Niigata 951, Japan :Biological Oceanography Laboratory, Faculty of Fisheries, Hokkaido University, 3-1-I Minatomachi, Hako date 041. Japan Received 9 September 1997; accepted 19 November 1997 The euphausiid Euphausia pacifica is distrib from the subarctic Pacific and Okhotsk Sea uted widely in the northern North Pacific and its (Lasker 1966; Omori 1969; Childress & Nygaard marginal seas, including the Bering Sea, Okhotsk 1974; Ikeda 1974). However, no data are Sea, and Japan Sea (Brinton 1962), and is the presently available for the euphausiid population most dominant component of the zooplankton inhabiting the Japan Sea. biomass in the top 500 m in Toyama Bay, south The present study is aimed at filling the gaps ern Japan Sea (31.1%, annual mean; Hirakawa et in elemental composition (C, H, N) data on ca- al. 1992). E. pacifica lives 1 to 2 years and its life lyptopis larvae, furcilia larvae, and the juveniles history pattern varies geographically (Brinton and adults of Euphausia pacifica and their molts, 1976). As an example, E. pacifica off southern as part of a study to estimate their contribution to California spawn and grow in almost all seasons production in Toyama Bay. Water and ash content of the year, but those in Toyama Bay spawn and were also determined. Oblique hauls of a 2-m grow actively only for the first half of the year Isaacs-Kidd Midwater Trawl (1.5-mm mesh) or due to the high thermal regime in the upper lay vertical hauls of Norpac nets (0.33 mm mesh) ers and low food supply in the latter half of the were made aboard the R.V. -
Kawamura, A. a Review of Food of Balaenopterid Whales. 155-197
A REVIEW OF FOOD OF BALAENOPTERID WHALES AKITO KAWAMURA Faculty of Fisheries, Hokkaido University, Hakodate, Hokkaido ABSTRACT In order to elucidate what species among so many kind of marine organ isms are likely to be consumed largely by the balaenopterid whales, the ex isting evidence on the food habits of baleen whales is reviewed. To meet with this primary purpose the report was mainly focussed on to describe qualitative aspects of food species having been known to date from the notable whaling grounds over the world rather than documenting quantitative subjects.' One of interesting facts noticed throughout the contribution was that there exists fairly intense diversity in the assembly of food species composition by regions such as; northern hemisphere vs. southern hemisphere, Pacific region vs. Atlantic region, inshore waters vs. offshore waters, embayed waters vs. open waters, where the former usually shows more div'ersed complexity than the latter. The fact however suggests that although the composition of food spe cies locally varies over the various whaling grounds, the food organisms as taxonomical groups are very similar one another even in locally isolated whal ing grounds when the food organisms and their assemblies are considered by the family or genus basis. In this connection many evidences given in the text may suggest that the balaenopterid whales as a whole may substantially live on quite simply compositioned forage assembly in comparison with tre mendous variety of organisms existing in the marine ecosystems. One of im portant aspects of the baleen whales food must be found in their characteris tics of forming dense swarms, schools, and/or aggregations in the shallower enough layers to be fed by the whales. -
Krill in the Arctic and the Atlantic – Climatic Variability and Adaptive Capacity –
Krill in the Arctic and the Atlantic – Climatic Variability and Adaptive Capacity – Dissertation with the Aim of Achieving a Doctoral Degree in Natural Science – Dr. rer. nat. – at the Faculty of Mathematics, Informatics and Natural Sciences Department of Biology of the University of Hamburg submitted by Lara Kim Hünerlage M.Sc. Marine Biology B.Sc. Environmental Science Hamburg 2015 This cumulative dissertation corresponds to the exam copy (submitted November 11th, 2014). The detailed content of the single publications may have changed during the review processes. Please contact the author for citation purposes. Day of oral defence: 20th of February, 2015 The following evaluators recommend the acceptance of the dissertation: 1. Evaluator Prof. Dr. Friedrich Buchholz Institut für Hydrobiologie und Fischereiwissenschaft, Fakultät für Mathematik, Informatik und Naturwissenschaften, Universität Hamburg; Alfred-Wegner-Institut Helmholtz Zentrum für Polar- und Meeresforschung, Funktionelle Ökologie, Bremerhaven 2. Evaluator Prof. Dr. Myron Peck Institut für Hydrobiologie und Fischereiwissenschaft, Fakultät für Mathematik, Informatik und Naturwissenschaften, Universität Hamburg 3. Evaluator Prof. Dr. Ulrich Bathmann Leibniz-Institut für Ostseeforschung Warnemünde; Interdisziplinäre Fakultät für Maritime Systeme, Universität Rostock IN MEMORY OF MY FATHER, GERD HÜNERLAGE DEDICATED TO MY FAMILY PREFACE This cumulative dissertation summarizes the research findings of my PhD project which was conducted from September 2011 to October 2014. Primarily,