Potential for Life on the Terrestrial Planets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Timeline of Natural History
Timeline of natural history This timeline of natural history summarizes significant geological and Life timeline Ice Ages biological events from the formation of the 0 — Primates Quater nary Flowers ←Earliest apes Earth to the arrival of modern humans. P Birds h Mammals – Plants Dinosaurs Times are listed in millions of years, or Karo o a n ← Andean Tetrapoda megaanni (Ma). -50 0 — e Arthropods Molluscs r ←Cambrian explosion o ← Cryoge nian Ediacara biota – z ←Earliest animals o ←Earliest plants i Multicellular -1000 — c Contents life ←Sexual reproduction Dating of the Geologic record – P r The earliest Solar System -1500 — o t Precambrian Supereon – e r Eukaryotes Hadean Eon o -2000 — z o Archean Eon i Huron ian – c Eoarchean Era ←Oxygen crisis Paleoarchean Era -2500 — ←Atmospheric oxygen Mesoarchean Era – Photosynthesis Neoarchean Era Pong ola Proterozoic Eon -3000 — A r Paleoproterozoic Era c – h Siderian Period e a Rhyacian Period -3500 — n ←Earliest oxygen Orosirian Period Single-celled – life Statherian Period -4000 — ←Earliest life Mesoproterozoic Era H Calymmian Period a water – d e Ectasian Period a ←Earliest water Stenian Period -4500 — n ←Earth (−4540) (million years ago) Clickable Neoproterozoic Era ( Tonian Period Cryogenian Period Ediacaran Period Phanerozoic Eon Paleozoic Era Cambrian Period Ordovician Period Silurian Period Devonian Period Carboniferous Period Permian Period Mesozoic Era Triassic Period Jurassic Period Cretaceous Period Cenozoic Era Paleogene Period Neogene Period Quaternary Period Etymology of period names References See also External links Dating of the Geologic record The Geologic record is the strata (layers) of rock in the planet's crust and the science of geology is much concerned with the age and origin of all rocks to determine the history and formation of Earth and to understand the forces that have acted upon it. -
Water, Habitability, and Detectability Steve Desch
Water, Habitability, and Detectability Steve Desch PI, “Exoplanetary Ecosystems” NExSS team School of Earth and Space Exploration, Arizona State University with Ariel Anbar, Tessa Fisher, Steven Glaser, Hilairy Hartnett, Stephen Kane, Susanne Neuer, Cayman Unterborn, Sara Walker, Misha Zolotov Astrobiology Science Strategy NAS Committee, Beckmann Center, Irvine, CA (remotely), January 17, 2018 How to look for life on (Earth-like) exoplanets: find oxygen in their atmospheres How Earth-like must an exoplanet be for this to work? Seager et al. (2013) How to look for life on (Earth-like) exoplanets: find oxygen in their atmospheres Oxygen on Earth overwhelmingly produced by photosynthesizing life, which taps Sun’s energy and yields large disequilibrium signature. Caveats: Earth had life for billions of years without O2 in its atmosphere. First photosynthesis to evolve on Earth was anoxygenic. Many ‘false positives’ recognized because O2 has abiotic sources, esp. photolysis (Luger & Barnes 2014; Harman et al. 2015; Meadows 2017). These caveats seem like exceptions to the ‘rule’ that ‘oxygen = life’. How non-Earth-like can an exoplanet be (especially with respect to water content) before oxygen is no longer a biosignature? Part 1: How much water can terrestrial planets form with? Part 2: Are Aqua Planets or Water Worlds habitable? Can we detect life on them? Part 3: How should we look for life on exoplanets? Part 1: How much water can terrestrial planets form with? Theory says: up to hundreds of oceans’ worth of water Trappist-1 system suggests hundreds of oceans, especially around M stars Many (most?) planets may be Aqua Planets or Water Worlds How much water can terrestrial planets form with? Earth- “snow line” Standard Sun distance models of distance accretion suggest abundant water. -
Argon Ages and Geochemistry of Lunar Breccias 67016 and 67455
Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta 74 (2010) 763–783 www.elsevier.com/locate/gca Imbrium provenance for the Apollo 16 Descartes terrain: Argon ages and geochemistry of lunar breccias 67016 and 67455 M.D. Norman a,b,*, R.A. Duncan c, J.J. Huard c a Research School of Earth Sciences, Australian National University, Canberra 0200, Australia b Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston TX 77058, USA c College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA Received 23 January 2009; accepted in revised form 16 September 2009; available online 21 October 2009 Abstract In order to improve our understanding of impact history and surface geology on the Moon, we obtained 40Ar–39Ar incre- mental heating age data and major + trace element compositions of anorthositic and melt breccia clasts from Apollo 16 feld- spathic fragmental breccias 67016 and 67455. These breccias represent the Descartes terrain, a regional unit often proposed to be ejecta from the nearby Nectaris basin. The goal of this work is to better constrain the emplacement age and provenance of the Descartes breccias. Four anorthositic clasts from 67016 yielded well-defined 40Ar–39Ar plateau ages ranging from 3842 ± 19 to 3875 ± 20 Ma. Replicate analyses of these clasts all agree within measurement error, with only slight evidence for either inheritance or youn- ger disturbance. In contrast, fragment-laden melt breccia clasts from 67016 yielded apparent plateau ages of 4.0–4.2 Ga with indications of even older material (to 4.5 Ga) in the high-T fractions. -
Biosignatures Search in Habitable Planets
galaxies Review Biosignatures Search in Habitable Planets Riccardo Claudi 1,* and Eleonora Alei 1,2 1 INAF-Astronomical Observatory of Padova, Vicolo Osservatorio, 5, 35122 Padova, Italy 2 Physics and Astronomy Department, Padova University, 35131 Padova, Italy * Correspondence: [email protected] Received: 2 August 2019; Accepted: 25 September 2019; Published: 29 September 2019 Abstract: The search for life has had a new enthusiastic restart in the last two decades thanks to the large number of new worlds discovered. The about 4100 exoplanets found so far, show a large diversity of planets, from hot giants to rocky planets orbiting small and cold stars. Most of them are very different from those of the Solar System and one of the striking case is that of the super-Earths, rocky planets with masses ranging between 1 and 10 M⊕ with dimensions up to twice those of Earth. In the right environment, these planets could be the cradle of alien life that could modify the chemical composition of their atmospheres. So, the search for life signatures requires as the first step the knowledge of planet atmospheres, the main objective of future exoplanetary space explorations. Indeed, the quest for the determination of the chemical composition of those planetary atmospheres rises also more general interest than that given by the mere directory of the atmospheric compounds. It opens out to the more general speculation on what such detection might tell us about the presence of life on those planets. As, for now, we have only one example of life in the universe, we are bound to study terrestrial organisms to assess possibilities of life on other planets and guide our search for possible extinct or extant life on other planetary bodies. -
Atmospheric Pressure
Atmospheric pressure We all know that the atmosphere of Earth exerts a pressure on all of us. This pressure is the result of a column of air bearing down on us. However, in the seventeenth century, many scientists and philosophers believed that the air had no weight, which we already proved to be untrue in the lab (Remembered the fun you had sucking air out of the POM bottle?). Evangelista Torricelli, a student of Galileo’s, proved that air has weight using another experiment. He took a glass tube longer than 760 mm that is closed at one end and filled it completely with mercury. When he inverted the tube into a dish of mercury, some of the mercury flows out, but a column of mercury remained inside the tube. Torricelli argued that the mercury surface in the dish experiences the force of Earth’s atmosphere due to gravity, which held up the column of mercury. The force exerted by the atmosphere, which depends on the atmospheric pressure, equals the weight of mercury column in the tube. Therefore, the height of the mercury column can be used as a measure of atmospheric pressure. Although Torricelli’s explanation met with fierce opposition, it also had supporters. Blaise Pascal, for example, had one of Torricelli’s barometers carried to the top of a mountain and compared its reading there with the reading on a duplicate barometer at the base of the mountain. As the barometer was carried up, the height of the mercury column decreased, as expected, because the amount of air pressing down on the mercury in the dish decreased as the instrument was carried higher. -
Monday, November 13, 2017 WHAT DOES IT MEAN to BE HABITABLE? 8:15 A.M. MHRGC Salons ABCD 8:15 A.M. Jang-Condell H. * Welcome C
Monday, November 13, 2017 WHAT DOES IT MEAN TO BE HABITABLE? 8:15 a.m. MHRGC Salons ABCD 8:15 a.m. Jang-Condell H. * Welcome Chair: Stephen Kane 8:30 a.m. Forget F. * Turbet M. Selsis F. Leconte J. Definition and Characterization of the Habitable Zone [#4057] We review the concept of habitable zone (HZ), why it is useful, and how to characterize it. The HZ could be nicknamed the “Hunting Zone” because its primary objective is now to help astronomers plan observations. This has interesting consequences. 9:00 a.m. Rushby A. J. Johnson M. Mills B. J. W. Watson A. J. Claire M. W. Long Term Planetary Habitability and the Carbonate-Silicate Cycle [#4026] We develop a coupled carbonate-silicate and stellar evolution model to investigate the effect of planet size on the operation of the long-term carbon cycle, and determine that larger planets are generally warmer for a given incident flux. 9:20 a.m. Dong C. F. * Huang Z. G. Jin M. Lingam M. Ma Y. J. Toth G. van der Holst B. Airapetian V. Cohen O. Gombosi T. Are “Habitable” Exoplanets Really Habitable? A Perspective from Atmospheric Loss [#4021] We will discuss the impact of exoplanetary space weather on the climate and habitability, which offers fresh insights concerning the habitability of exoplanets, especially those orbiting M-dwarfs, such as Proxima b and the TRAPPIST-1 system. 9:40 a.m. Fisher T. M. * Walker S. I. Desch S. J. Hartnett H. E. Glaser S. Limitations of Primary Productivity on “Aqua Planets:” Implications for Detectability [#4109] While ocean-covered planets have been considered a strong candidate for the search for life, the lack of surface weathering may lead to phosphorus scarcity and low primary productivity, making aqua planet biospheres difficult to detect. -
IS HABITABILITY CONSTRAINED by PHYSICS OR BIOLOGY? the CASE for a GAIAN BOTTLENECK. Charles. H. Lineweaver1 and Aditya Chopra1
Astrobiology Science Conference 2015 (2015) 7276.pdf IS HABITABILITY CONSTRAINED BY PHYSICS OR BIOLOGY? THE CASE FOR A GAIAN BOTTLENECK. Charles. H. Lineweaver1 and Aditya Chopra1, 1Planetary Science Institute, Research School of Astronomy and Astrophysics and Research School of Earth Sciences, Australian National University, Australia, [email protected], [email protected] The prerequisites and ingredients for life seem to Earth. We are proposing a sequence of events that can be abundantly available in the universe. However, the be summarized as: (1) uninhabitably hot, high universe does not seem to be teeming with life. The bombardment rate during planetary accretion (2) most common explanation for this is a low probability cooler, reduced bombardment (3) emergence of life in for the emergence of life (an emergence bottleneck), planetary environments that tend to evolve away from notionally due to the intricacies of the molecular habitability, continuous volatile loss. Then either (4a) recipe. Here we present an alternative explanation: a the inability of life to control atmospheric volatiles and Gaian bottleneck [1]. If life emerges on a planet, it maintain habitabililty, thus leading to extinction (left only rarely evolves quickly enough to regulate panel in figure) or (4b) the rapid evolution of Gaian temperature through albedo and atmospheric volatiles regulation and the maintenance of habitability (right and maintain habitability. Such a Gaian bottleneck panel in figure) suggests that (i) extinction is the cosmic default for most life that has ever emerged on the surface of wet Gaian Regulation rocky planets in the universe and (ii) rocky planets +2 Gyr +2 Gyr need to be inhabited, to remain habitable. -
Workshop on Moon in Transition: Apollo 14, Kreep, and Evolved Lunar Rocks
WORKSHOP ON MOON IN TRANSITION: APOLLO 14, KREEP, AND EVOLVED LUNAR ROCKS (NASA-CR-I"'-- N90-I_02o rRAN31TION: APJLLN l_p KRFEP, ANu _VOLVFD LUNAR ROCKS (Lunar and Pl_net3ry !nst.) I_7 p C_CL O3B Unclas G3/91 0253133 LPI Technical Report Number 89-03 UNAR AND PLANETARY INSTITUTE 3303 NASA ROAD 1 HOUSTON, TEXAS 77058-4399 7 WORKSHOP ON MOON IN TRANSITION: APOLLO 14, KREEP, AND EVOLVED LUNAR ROCKS Edited by G. J. Taylor and P. H. Warren Sponsored by Lunar and Planetary Institute NASA Johnson Space Center November 14-16, 1988 Houston, Texas Lunar and Planetary Institute 330 ?_NASA Road 1 Houston, Texas 77058-4399 LPI Technical Report Number 89-03 Compiled in 1989 by the LUNAR AND PLANETARY INSTITUTE The Institute is operated by Universities Space Research Association under Contract NASW-4066 with the National Aeronautics and Space Administration. Material in this document may be copied without restraint for Library, abstract service, educational, or personal research purposes; however, republication of any portion requires the written permission of the authors as well as appropriate acknowledgment of this publication. This report may be cited as: Taylor G. J. and Warren PI H., eds. (1989) Workshop on Moon in Transition: Apo{l_ 14 KREEP, and Evolved Lunar Rocks. [PI Tech. Rpt. 89-03. Lunar and Planetary Institute, Houston. 156 pp. Papers in this report may be cited as: Author A. A. (1989) Title of paper. In W_nkshop on Moon in Transition: Ap_llo 14, KREEP, and Evolved Lunar Rocks (G. J. Taylor and P. H. Warren, eds.), pp. xx-yy. LPI Tech. Rpt. -
Characterising the Three-Dimensional Ozone Distribution of a Tidally Locked Earth-Like Planet
Proedrou and Hocke Earth, Planets and Space (2016) 68:96 DOI 10.1186/s40623-016-0461-x FULL PAPER Open Access Characterising the three‑dimensional ozone distribution of a tidally locked Earth‑like planet Elisavet Proedrou1,2*† and Klemens Hocke1,2,3† Abstract We simulate the 3D ozone distribution of a tidally locked Earth-like exoplanet using the high-resolution, 3D chemistry- climate model CESM1(WACCM) and study how the ozone layer of a tidally locked Earth (TLE) (�TLE = 1/365 days) differs from that of our present-day Earth (PDE) �( PDE = 1/1 day). The middle atmosphere reaches a steady state asymptotically within the first 80 days of the simulation. An upwelling, centred on the subsolar point, is present on the day side while a downwelling, centred on the antisolar point, is present on the night side. In the mesosphere, we find similar global ozone distributions for the TLE and the PDE, with decreased ozone on the day side and enhanced ozone on the night side. In the lower mesosphere, a jet stream transitions into a large-scale vortex around a low-pressure system, located at low latitudes of the TLE night side. In the middle stratosphere, the concentration of odd oxygen is approximately equal to that of the ozone [(Ox) ≈ (O3)]. At these altitudes, the lifetime of odd oxygen is ∼16 h and the transport processes significantly contribute to the global distribution of stratospheric ozone. Compared to the PDE, where the strong Coriolis force acts as a mixing barrier between low and high latitudes, the transport processes of the TLE are governed by jet streams variable in the zonal and meridional directions. -
What Is Ozone Layer? a Layer in the Atmosphere of Earth That Protects Us from Harmful UV Rays from the Sun
International Day for Preservation of Ozone Layer 16 September 2020 Image Source: https://sfxstl.org/circleofcreation What is Ozone layer? A layer in the atmosphere of Earth that protects us from harmful UV rays from the Sun. It’s responsible for preserving life on the planet! What is happening? The ozone layer has begun to deplete because of harmful chemical substances and gases. This problem is not only contributing to global warming and climate change, but also allowing the dangerous radiation from the sun to affect human beings and ecosystems! Source: https://www.un.org/en/events/ozoneday/ What is causing its depletion? ● Human activities are the biggest cause of the ozone layer depletion ● When we burn coal, natural gas and other fuels for electricity, they release harmful gases such as carbon dioxide, nitrous oxide, etc that spread into the atmosphere and surround us like a blanket ● These harmful gases, called greenhouse gases, trap heat and radiation from the sun, which is causing the depletion as well as global warming. Clorofluorocarbons (CFCs), which are found in ACs and halogens, are other harmful greenhouse gases. Sources: https://e360.yale.edu/features/geoengineer-the-planet-more-scientists-now-say-it-must-be-an-option https://www.ucsusa.org/resources/ozone-hole-and-global-warming What can we do? Some things we can do to reduce our contribution to ozone layer depletion are: 1. Minimize use of cars. 2. Maintain your ACs regularly. 3. Avoid using products that are harmful to the environment and to us. 4. Buy local products which are more eco- friendly. -
A Study on the Concentration and Dispersion of Pm10 in Uthm by Using Simple Modelling and Meteorological Factors
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UTHM Institutional Repository i A STUDY ON THE CONCENTRATION AND DISPERSION OF PM10 IN UTHM BY USING SIMPLE MODELLING AND METEOROLOGICAL FACTORS MALEK FAIZAL B ABD RAHMAN A Project Report submitted in partial fulfilment of the requirements for the award of the Degree of Master of Engineering in Civil Engineering Faculty of Civil and Environmental Engineering Universiti Tun Hussein Onn Malaysia FEBRUARY, 2013 v ABSTRACT Air pollution is the introduction of chemicals, particulate matter, or biological materials that cause harm or discomfort to humans or other living organisms, or cause damage to the natural environment or built environment, into the atmosphere. Air pollution can also be known as degradation of air quality resulting from unwanted chemicals or other materials occurring in the air. The simple way to know how polluted the air is to calculate the amounts of foreign and/or natural substances occurring in the atmosphere that may result in adverse effects to humans, animals, vegetation and/or materials. The objective of this study is to create a simulation of air quality dispersion in UTHM campus by using computer aided design mechanism such as software and calculating tools. Another objective is to compare the concentration obtained from the end result of calculation with past studies. The air pollutant in the scope of study is Particulate Matter (PM10). The highest reading recorded for E-Sampler was 305µg/m3. It was recorded in Structure Lab sampling point while the highest expected concentration by the Gaussian Dispersion Model was 184µg/m3 for UTHM Stadium. -
Workshop on Geology of the Apollo 17 Landing Site
NASA-CR-191637 \ WORKSHOP ON GEOLOGY OF THE APOLLO 17 LANDING SITE (NASA-CR-191637) WORKSHOP ON N93-18786 GEOLOGY OF THE APOLLO 17 LANDING --THRU-- SITE (Lunar Science Inst.) 70 p N93-18817 Unclas G3/91 0141290 __ LPI Technical Report Number 92-09, Part 1 LUNAR AND PLANETARY INSTITUTE 3600 BAY AREA BOULEVARD HOUSTON TX 77058-1113 LPI/TR--92-09, Part 1 WORKSHOP ON GEOLOGY OF THE APOLLO 17 LANDING SITE Edited by G. Ryder, H. H. Schmitt, and P. D. Spudis Held at Houston, Texas December 2-4, 1992 Sponsored by Lunar and Planetary Sample Team Lunar and Planetary Institute Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Technical Report Number 92-09, Part 1 LPI/TR--92-09, Part 1 Compiledin 1992by LUNAR AND PLANETARY INSTITUTE TheInstituteis operatedby theUniversitySpaceResearchAssociationunderContractNo. NASW- 4574with theNationalAeronauticsandSpaceAdministration. Materialin this volume may be copied without restraint for library, abstract service, education, or per- sonal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. This report may be cited as Ryder G., Schmitt H. H., and Spudis P. D., eds. (1992) Workshop on Geology of the Apollo 17 Landing Site. LPI Tech. Rpt. 92-09, Part 1, Lunar and Planetary Institute, Houston. 63 pp. This report is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Mail order requestors will be invoiced for the cost of shipping and handling. Cover: Station 4 at Taurus-LiUrow, Apollo 17 landing site.