Why Is Modal Logic So Robustly Decidable?

Total Page:16

File Type:pdf, Size:1020Kb

Why Is Modal Logic So Robustly Decidable? Why Is Mo dal Logic So Robustly Decidable Moshe Y Vardi Department of Computer Science Rice University Houston TX Email vardicsriceedu URL httpwwwcsriceedu vardi Introduction Modal logic the logic of necessity and p ossibility of must b e and may b e was dis cussed by several authors in ancient times notably by Aristotle in De Interpretatione and Prior Analytics as well as by medieval logicians Like most work b efore the mo dern p erio d it was nonsymbolic and not particularly systematic in approach The rst sym b olic and systematic approach to the sub ject app ears to b e the work of Lewis b eginning in and culminating in the b o ok Symbolic Logic with Langford LL Prop osi tional mo dal logic is obtained from prop ositional logic by adding a mo dal connective 2 ie if is a formula then 2 is also a formula Intuitively 2 asserts that is necessarily true Dually 2 abbreviated as 3 asserts that is possibly true Mo dal logic has many applications due to the fact that the notions of necessity and p ossibility can b e given many concrete interpretations For example necessarily can mean according to the laws of physics or according to my knowledge or even after the program terminates In the last years mo dal logic has b een applied to numerous areas of computer science including articial intelligence BLMS MH program ver ication CES Pra Pnu hardware verication Bo c RS database theory CCF Lip and distributed computing BAN HM The standard semantics for mo dal logic is based on the p ossibleworlds approach originally prop osed by Carnap Car Car Possibleworlds semantics was further developed indep endently by several researchers including Bay Hin Hin Kan The research rep orted here was conducted while the author was visiting DIMACS and Bell Lab ora tories as part of the DIMACS Sp ecial Year on Logic and Algorithm Kri Mer Mon Pri reaching its current form with Kripke Kri which ex plains why the mathematical structures that capture the p ossibleworlds approach are called Kripke structures The intuitive idea b ehind the p ossibleworlds mo del is that b esides the true state of aairs there are a number of other p ossible states of aairs or worlds Necessity then means truth in all p ossible worlds For example an agent may b e walking on the streets in San Francisco on a sunny day but may have no information at all ab out the weather in London Thus in all the worlds that the agent considers p ossible it is sunny in San Francisco On the other hand since the agent has no infor mation ab out the weather in London there are worlds he considers p ossible in which it is sunny in London and others in which it is raining in London Thus this agent knows that it is sunny in San Francisco but he do es not know whether it is sunny in London Intuitively if an agent considers fewer worlds p ossible then he has less uncertainty and more knowledge If the agent acquires additional informationsuch as hearing from a reliable source that it is currently sunny in Londonthen he would no longer consider p ossible any of the worlds in which it is raining in London There are two main computational problems asso ciated with mo dal logic The rst problem is checking if a given formula is true in a given state of a given Kripke structure This problem is known as the modelchecking problem The second problem is checking if a given formula is true in all states of all Kripke structures This problem is known as the validity problem Both problems are decidable The mo delchecking problem can b e solved in linear time while the validity problem is PSPACEcomplete This is rather surprising when one considers the fact that mo dal logic in spite of its apparent prop ositional syntax is essentially a rstorder logic since the necessity and p ossibility mo dalities quantify over the set of p ossible worlds and mo del checking and validity for rstorder logic are computationally hard problems Furthermore the undecidability of rstorder logic is very robust Only very restricted fragments of rstorder logic are decidable and these fragments are typically dened in terms of b ounded quantier alternation DG Lew The ability however to have arbitrary nesting of mo dalities in mo dal logic means that it do es not corresp ond to a fragment of rstorder logic with b ounded quantier alternation Why then is mo dal logic so robustly decidable To answer this question we have to take a close lo ok at mo dal logic as a fragment of rstorder logic A careful examination reveals that prop ositional mo dal logic can in fact b e viewed as a fragment of variable rstorder logic Gab Ben This fragment 2 denoted FO is obtained by restricting the formulas to refer to only two individual variables It turns out that this fragment is computationally much more tractable than full rstorder logic which provides some explanation for the tractability of mo dal logic Up on a deep examination however we discover that this explanation is not to o satisfactory The tractability of mo dal logic is quite robust and survives for example under various epistemic assumptions which cannot b e explained by the relationship to 2 FO To deep en the puzzle we consider an extension of mo dal logic called computation tree logic or CTL CE This logic is also quite tractable even though it is not even a rstorder logic We show that it can b e viewed as a fragment of variable xp oint 2 logic denoted FP but the latter do es not enjoy the nice computational prop erties of 2 FO We conclude by showing that the decidability of CTL can b e explained by the 2 socalled treemodel property which is enjoyed by CTL but not by FP We show how the treemo del prop erty leads to automatabased decision pro cedures Mo dal Logic We wish to reason ab out worlds that can b e describ ed in terms of a nonempty nite set of propositional constants typically lab eled p p q q These prop ositional constants stand for basic facts ab out the world such as it is sunny in San Francisco or Alice has mud on her forehead We can now describ e the set of mo dal formulas We start with the prop ositional constants in and form more complicated formulas by closing o under negation conjunction and the mo dal connective 2 Thus if and are formulas then so are and 2 For the sake of readability we omit the parentheses in formulas such as whenever it do es not lead to confusion We also use standard abbreviations from prop ositional logic such as for and for We take true to b e an abbreviation for some xed prop ositional tautology such as p p and take false to b e an abbreviation for true Also we view p ossibility as the dual of necessity and use 3 to abbreviate 2 Intuitively is p ossible if is not necessary We can express quite complicated statements in a straightforward way using this language For example the formula 232p says that it is necessarily the case that p ossibly p is necessarily true Now that we have describ ed the syntax of our language that is the set of wellformed formulas we need semantics that is a formal mo del that we can use to determine whether a given formula is true or false We formalize the semantics in terms of Kripke structures A Kripke structure M is a tuple S R where S is a set of states or S possible worlds is an interpretation that asso ciates with each prop ositional constant in a set of states in S and R is a binary relation on S that is a set of pairs of elements of S The interpretation p tells us at which state a prop ositional constant p is true the intuition is that p is the set of states in which p holds Thus if p denotes the fact it is raining in San Francisco then s p captures the situation in which it is raining in San Francisco in the state s of the structure M The binary relation R is intended to capture the p ossibility relation s t R if the state t is p ossible given the information in the state s We think of R as a possibility relation since it denes what states are considered p ossible in any given state We now dene what it means for a formula to b e true at a given state in a structure Note that truth dep ends on the state as well as the structure It is quite p ossible that a formula is true in one state and false in another For example in one state an agent may know it is sunny in San Francisco while in another he may not To capture this we dene the notion M s j which can b e read as is true at M s or holds at M s or M s satises We dene the j relation by induction on the structure of The interpretation gives us the information we need to deal with the base case where is a prop ositional constant M s j p for a prop ositional constant p if s p For conjunctions and negations we follow the standard treatment from prop ositional logic a conjunction is true exactly if b oth of the conjuncts and are true while a negated formula is true exactly if is not true M s j if M s j and M s j M s j if M s j Finally we have to deal with formulas of the form 2 Here we try to capture the intuition that is necessarily true in state s of structure M exactly if is true at all states that are p ossible in s Formally we have M s j 2 if M t j for all t such that s t R Note that the semantics of 3 follows from the semantics of 2 and M s j 3 if M t j for some t such that s t R One of the advantages of a Kripke structure is that it can b e viewed as a lab eled graph that is a set of lab eled no des connected by directed edges The no des are the states of S the lab el of state s S describ es which prop ositional constants are true and
Recommended publications
  • “The Church-Turing “Thesis” As a Special Corollary of Gödel's
    “The Church-Turing “Thesis” as a Special Corollary of Gödel’s Completeness Theorem,” in Computability: Turing, Gödel, Church, and Beyond, B. J. Copeland, C. Posy, and O. Shagrir (eds.), MIT Press (Cambridge), 2013, pp. 77-104. Saul A. Kripke This is the published version of the book chapter indicated above, which can be obtained from the publisher at https://mitpress.mit.edu/books/computability. It is reproduced here by permission of the publisher who holds the copyright. © The MIT Press The Church-Turing “ Thesis ” as a Special Corollary of G ö del ’ s 4 Completeness Theorem 1 Saul A. Kripke Traditionally, many writers, following Kleene (1952) , thought of the Church-Turing thesis as unprovable by its nature but having various strong arguments in its favor, including Turing ’ s analysis of human computation. More recently, the beauty, power, and obvious fundamental importance of this analysis — what Turing (1936) calls “ argument I ” — has led some writers to give an almost exclusive emphasis on this argument as the unique justification for the Church-Turing thesis. In this chapter I advocate an alternative justification, essentially presupposed by Turing himself in what he calls “ argument II. ” The idea is that computation is a special form of math- ematical deduction. Assuming the steps of the deduction can be stated in a first- order language, the Church-Turing thesis follows as a special case of G ö del ’ s completeness theorem (first-order algorithm theorem). I propose this idea as an alternative foundation for the Church-Turing thesis, both for human and machine computation. Clearly the relevant assumptions are justified for computations pres- ently known.
    [Show full text]
  • Church's Thesis and the Conceptual Analysis of Computability
    Church’s Thesis and the Conceptual Analysis of Computability Michael Rescorla Abstract: Church’s thesis asserts that a number-theoretic function is intuitively computable if and only if it is recursive. A related thesis asserts that Turing’s work yields a conceptual analysis of the intuitive notion of numerical computability. I endorse Church’s thesis, but I argue against the related thesis. I argue that purported conceptual analyses based upon Turing’s work involve a subtle but persistent circularity. Turing machines manipulate syntactic entities. To specify which number-theoretic function a Turing machine computes, we must correlate these syntactic entities with numbers. I argue that, in providing this correlation, we must demand that the correlation itself be computable. Otherwise, the Turing machine will compute uncomputable functions. But if we presuppose the intuitive notion of a computable relation between syntactic entities and numbers, then our analysis of computability is circular.1 §1. Turing machines and number-theoretic functions A Turing machine manipulates syntactic entities: strings consisting of strokes and blanks. I restrict attention to Turing machines that possess two key properties. First, the machine eventually halts when supplied with an input of finitely many adjacent strokes. Second, when the 1 I am greatly indebted to helpful feedback from two anonymous referees from this journal, as well as from: C. Anthony Anderson, Adam Elga, Kevin Falvey, Warren Goldfarb, Richard Heck, Peter Koellner, Oystein Linnebo, Charles Parsons, Gualtiero Piccinini, and Stewart Shapiro. I received extremely helpful comments when I presented earlier versions of this paper at the UCLA Philosophy of Mathematics Workshop, especially from Joseph Almog, D.
    [Show full text]
  • Bundled Fragments of First-Order Modal Logic: (Un)Decidability
    Bundled Fragments of First-Order Modal Logic: (Un)Decidability Anantha Padmanabha Institute of Mathematical Sciences, HBNI, Chennai, India [email protected] https://orcid.org/0000-0002-4265-5772 R Ramanujam Institute of Mathematical Sciences, HBNI, Chennai, India [email protected] Yanjing Wang Department of Philosophy, Peking University, Beijing, China [email protected] Abstract Quantified modal logic is notorious for being undecidable, with very few known decidable frag- ments such as the monodic ones. For instance, even the two-variable fragment over unary predic- ates is undecidable. In this paper, we study a particular fragment, namely the bundled fragment, where a first-order quantifier is always followed by a modality when occurring in the formula, inspired by the proposal of [15] in the context of non-standard epistemic logics of know-what, know-how, know-why, and so on. As always with quantified modal logics, it makes a significant difference whether the domain stays the same across possible worlds. In particular, we show that the predicate logic with the bundle ∀ alone is undecidable over constant domain interpretations, even with only monadic predicates, whereas having the ∃ bundle instead gives us a decidable logic. On the other hand, over increasing domain interpretations, we get decidability with both ∀ and ∃ bundles with unrestricted predicates, where we obtain tableau based procedures that run in PSPACE. We further show that the ∃ bundle cannot distinguish between constant domain and variable domain interpretations. 2012 ACM Subject Classification Theory of computation → Modal and temporal logics Keywords and phrases First-order modal logic, decidability, bundled fragments Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2018.43 Acknowledgements We thank the reviewers for the insightful and helpful comments.
    [Show full text]
  • Soundness of Workflow Nets: Classification
    DOI 10.1007/s00165-010-0161-4 The Author(s) © 2010. This article is published with open access at Springerlink.com Formal Aspects Formal Aspects of Computing (2011) 23: 333–363 of Computing Soundness of workflow nets: classification, decidability, and analysis W. M. P. van der Aalst1,2,K.M.vanHee1, A. H. M. ter Hofstede1,2,N.Sidorova1, H. M. W. Verbeek1, M. Voorhoeve1 andM.T.Wynn2 1 Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands. E-mail: [email protected] 2 Queensland University of Technology, Brisbane, Australia Abstract. Workflow nets, a particular class of Petri nets, have become one of the standard ways to model and analyze workflows. Typically, they are used as an abstraction of the workflow that is used to check the so-called soundness property. This property guarantees the absence of livelocks, deadlocks, and other anomalies that can be detected without domain knowledge. Several authors have proposed alternative notions of soundness and have suggested to use more expressive languages, e.g., models with cancellations or priorities. This paper provides an overview of the different notions of soundness and investigates these in the presence of different extensions of workflow nets. We will show that the eight soundness notions described in the literature are decidable for workflow nets. However, most extensions will make all of these notions undecidable. These new results show the theoretical limits of workflow verification. Moreover, we discuss some of the analysis approaches described in the literature. Keywords: Petri nets, Decidability, Workflow nets, Reset nets, Soundness, Verification 1.
    [Show full text]
  • Undecidable Problems: a Sampler
    UNDECIDABLE PROBLEMS: A SAMPLER BJORN POONEN Abstract. After discussing two senses in which the notion of undecidability is used, we present a survey of undecidable decision problems arising in various branches of mathemat- ics. 1. Introduction The goal of this survey article is to demonstrate that undecidable decision problems arise naturally in many branches of mathematics. The criterion for selection of a problem in this survey is simply that the author finds it entertaining! We do not pretend that our list of undecidable problems is complete in any sense. And some of the problems we consider turn out to be decidable or to have unknown decidability status. For another survey of undecidable problems, see [Dav77]. 2. Two notions of undecidability There are two common settings in which one speaks of undecidability: 1. Independence from axioms: A single statement is called undecidable if neither it nor its negation can be deduced using the rules of logic from the set of axioms being used. (Example: The continuum hypothesis, that there is no cardinal number @0 strictly between @0 and 2 , is undecidable in the ZFC axiom system, assuming that ZFC itself is consistent [G¨od40,Coh63, Coh64].) The first examples of statements independent of a \natural" axiom system were constructed by K. G¨odel[G¨od31]. 2. Decision problem: A family of problems with YES/NO answers is called unde- cidable if there is no algorithm that terminates with the correct answer for every problem in the family. (Example: Hilbert's tenth problem, to decide whether a mul- tivariable polynomial equation with integer coefficients has a solution in integers, is undecidable [Mat70].) Remark 2.1.
    [Show full text]
  • The ∀∃ Theory of D(≤,∨, ) Is Undecidable
    The ∀∃ theory of D(≤, ∨,0 ) is undecidable Richard A. Shore∗ Theodore A. Slaman† Department of Mathematics Department of Mathematics Cornell University University of California, Berkeley Ithaca NY 14853 Berkeley CA 94720 May 16, 2005 Abstract We prove that the two quantifier theory of the Turing degrees with order, join and jump is undecidable. 1 Introduction Our interest here is in the structure D of all the Turing degrees but much of the motivation and setting is shared by work on other degree structures as well. In particular, Miller, Nies and Shore [2004] provides an undecidability result for the r.e. degrees R at the two quantifier level with added function symbols as we do here for D. To set the stage, we begin then with an adaptation of the introduction from that paper including statements of some of its results and so discuss R, the r.e. degrees and D(≤ 00), the degrees below 00 as well. A major theme in the study of degree structures of all types has been the question of the decidability or undecidability of their theories. This is a natural and fundamental question that is an important goal in the analysis of these structures. It also serves as a guide and organizational principle for the development of construction techniques and algebraic information about the structures. A decision procedure implies (and requires) a full understanding and control of the first order properties of a structure. Undecidability results typically require and imply some measure of complexity and coding in the struc- ture. Once a structure has been proven undecidable, it is natural to try to determine both the extent and source of the complexity.
    [Show full text]
  • Warren Goldfarb, Notes on Metamathematics
    Notes on Metamathematics Warren Goldfarb W.B. Pearson Professor of Modern Mathematics and Mathematical Logic Department of Philosophy Harvard University DRAFT: January 1, 2018 In Memory of Burton Dreben (1927{1999), whose spirited teaching on G¨odeliantopics provided the original inspiration for these Notes. Contents 1 Axiomatics 1 1.1 Formal languages . 1 1.2 Axioms and rules of inference . 5 1.3 Natural numbers: the successor function . 9 1.4 General notions . 13 1.5 Peano Arithmetic. 15 1.6 Basic laws of arithmetic . 18 2 G¨odel'sProof 23 2.1 G¨odelnumbering . 23 2.2 Primitive recursive functions and relations . 25 2.3 Arithmetization of syntax . 30 2.4 Numeralwise representability . 35 2.5 Proof of incompleteness . 37 2.6 `I am not derivable' . 40 3 Formalized Metamathematics 43 3.1 The Fixed Point Lemma . 43 3.2 G¨odel'sSecond Incompleteness Theorem . 47 3.3 The First Incompleteness Theorem Sharpened . 52 3.4 L¨ob'sTheorem . 55 4 Formalizing Primitive Recursion 59 4.1 ∆0,Σ1, and Π1 formulas . 59 4.2 Σ1-completeness and Σ1-soundness . 61 4.3 Proof of Representability . 63 3 5 Formalized Semantics 69 5.1 Tarski's Theorem . 69 5.2 Defining truth for LPA .......................... 72 5.3 Uses of the truth-definition . 74 5.4 Second-order Arithmetic . 76 5.5 Partial truth predicates . 79 5.6 Truth for other languages . 81 6 Computability 85 6.1 Computability . 85 6.2 Recursive and partial recursive functions . 87 6.3 The Normal Form Theorem and the Halting Problem . 91 6.4 Turing Machines .
    [Show full text]
  • Classical Metalogic an Introduction to Classical Model Theory & Computability
    Classical Metalogic An Introduction to Classical Model Theory & Computability Notes by R.J. Buehler January 5, 2015 2 Preface What follows are my personal notes created in preparation for the UC-Berkeley Group in Logic preliminary exam. I am not a computability theorist, nor a model theorist; I am a graduate student with some knowledge who is–alas–quite fallible. Accordingly, this text is made available as a convenient reference, set of notes, and summary, but without even the slight hint of a guarantee that everything contained within is factual and correct (indeed, some areas are entirely unchanged from the moment I copied them off the blackboard). This said, if you find a serious error, I would greatly appreciate it if you would let me know so that it can be corrected. The material for these notes derives from a wide variety of sources: Lectures by Wes Holliday Lectures by Antonio Montalban Lectures by John Steel Kevin Kelly’s computability theory notes David Marker’s “Model Theory: An Introduction” Wilfrid Hodge’s “A Shorter Model Theory” Robert Soare’s “Recursively Enumerable Sets and Degrees" Richard Kaye’s “Models of Peano Arithmetic” Chang and Keisler’s “Model Theory" While I certainly hope my notes are beneficial, if you’re attempting to learn the contained material for the first time, I would highly suggest picking up (at least) a copy of Marker and Soare’s texts in addition. To those Group in Logic students who may be using these notes to help themselves prepare for their preliminary exam, chapters 1-5, 7, and 9-18 contain relevant material, as well as chapter 8, section 3.
    [Show full text]
  • METALOGIC METALOGIC an Introduction to the Metatheory of Standard First Order Logic
    METALOGIC METALOGIC An Introduction to the Metatheory of Standard First Order Logic Geoffrey Hunter Senior Lecturer in the Department of Logic and Metaphysics University of St Andrews PALGRA VE MACMILLAN © Geoffrey Hunter 1971 Softcover reprint of the hardcover 1st edition 1971 All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. First published 1971 by MACMILLAN AND CO LTD London and Basingstoke Associated companies in New York Toronto Dublin Melbourne Johannesburg and Madras SBN 333 11589 9 (hard cover) 333 11590 2 (paper cover) ISBN 978-0-333-11590-9 ISBN 978-1-349-15428-9 (eBook) DOI 10.1007/978-1-349-15428-9 The Papermac edition of this book is sold subject to the condition that it shall not, by way of trade or otherwise, be lent, resold, hired out, or otherwise circulated without the publisher's prior consent, in any form of binding or cover other than that in which it is published and without a similar condition including this condition being imposed on the subsequent purchaser. To my mother and to the memory of my father, Joseph Walter Hunter Contents Preface xi Part One: Introduction: General Notions 1 Formal languages 4 2 Interpretations of formal languages. Model theory 6 3 Deductive apparatuses. Formal systems. Proof theory 7 4 'Syntactic', 'Semantic' 9 5 Metatheory. The metatheory of logic 10 6 Using and mentioning. Object language and metalang- uage. Proofs in a formal system and proofs about a formal system. Theorem and metatheorem 10 7 The notion of effective method in logic and mathematics 13 8 Decidable sets 16 9 1-1 correspondence.
    [Show full text]
  • Chapter 7: Proof Systems: Soundness and Completeness
    Chapter 7: Proof Systems: Soundness and Completeness Proof systems are built to prove statements. Proof systems are an inference machine with special statements, called provable state- ments being its final products. The starting points of the inference are called axioms of the system. We distinguish two kinds of axioms: logi- calAL and specific SP . 1 Semantical link : we usually build a proof system for a given language and its seman- tics i.e. for a logic defined semantically. First step : we choose as a set of logical ax- ioms AL some subset of tautologies, i.e. statements always true. A proof system with only logical axioms AL is called a logic proof system. Building a proof system for which there is no known semantics we think about the logi- cal axioms as statements universally true. 2 We choose as axioms a finite set the state- ments we for sure want to be universally true, and whatever semantics follows they must be tautologies with respect to it. Logical axioms are hence not only tautolo- gies under an established semantics, but they also guide us how to establish a se- mantics, when it is yet unknown. The specific axioms SP are these formulas of the language that describe our knowl- edge of a universe we want to prove facts about. Specific axioms are not universally true, they are true only in the universe we are inter- ested to describe and investigate. 3 A proof system with logical axioms AL and specific axioms SP is called a formal the- ory. The inference machine is defined by a finite set of rules, called inference rules.
    [Show full text]
  • G22.2390-001 Logic in Computer Science Fall 2007 Lecture 3
    Review Last week • Propositional Logic: Semantics • Satisfiability and Tautologies • Propositional Connectives and Boolean Functions G22.2390-001 Logic in Computer Science Fall 2007 • Compactness Lecture 3 1 2 Outline Sources • Computability and Decidability Enderton: 1.6, 1.7. • Boolean Circuits N. J. Cutland. Computability. • Boolean Satisfiability (SAT) W. Hodges. A Shorter Model Theory. Cambridge Press, 1997. • Binary Decision Diagrams (BDD’s) S. Malik. “The Quest for Efficient Boolean Satisfiability Solvers.” Available from http://www.princeton.edu/∼sharad/. Used with permission. E. Hirsch, A. Kojevnikov. “UnitWalk: A New SAT Solver that Uses Local Search Guided by Unit Clause Elimination.” PDMI Preprint. Sept. 2001. R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transactions on Computers, C-35(8), 1986. E. Clarke. Bug Catching: Automated Program Verification and Testing. Lecture notes, Fall 2002. http://www-2.cs.cmu.edu/∼emc/15-398/. D. Dill. Automatic Formal Verification Techniques. Lecture notes, Fall 2001. http://verify.stanford.edu/cs356/. 3 4 Computability Computability and Decidability The important notion of computability relies on a formal model of computation. All of these models are equivalent to what can be achieved by a computer with any standard programming language, given arbitrary (but finite) time and memory. Many formal models have been proposed: Church’s Thesis 1. General recursive functions defined by means of an equation calculus (Godel-Herbrand-Kleene)¨ A notion known as Church’s thesis states that all models of computation are either equivalent to or less powerful than those just described. 2. λ-definable functions (Church) We will accept Church’s thesis and thus define a function to be computable if we 3.
    [Show full text]
  • Source Theories the Signature of Arithmetic Decidability
    Source Theories A signature is a (finite or infinite) set of predicate and function symbols. We fix a signature S. “Formula” means now “formula over the signature S”. A theory is a set of formulas T closed under consequence, i.e., if F ,...,F T and F ,...,F = G then G T . G.S. Boolos, J.P. Burgess, R.C Jeffrey: 1 n ∈ { 1 n} | ∈ Computability and Logic. Cambridge University Press 2002. Fact: Let be a structure suitable for S. The set F of formulas such A that (F )=1 is a theory. A We call them model-based theories. Fact: Let be a set of closed formulas. The set F of formulas such F that = F is a theory. F | 1 2 The signature of arithmetic Decidability, consistency, completeness, . The signature SA of arithmetic contains: A set of formulas is decidable if there is an algorithm that decides F a constant 0, for every formula F whether F holds. • ∈ F a unary function symbol s, • Let T be a theory. two binary function symbols + and , and • · T is decidable if it is decidable as a set of formulas. a binary predicate symbol <. • T is consistent if for every closed formula F either F / T or F / T . ∈ ¬ ∈ (slight change over previous definitions) T is complete if for every closed formula F either F T or F T . ∈ ¬ ∈ Arith is the theory containing the set of closed formulas over SA T is (finitely) axiomatizable if there is a (finite) decidable set T X ⊆ that are true in the canonical structure.
    [Show full text]