Materials with Memory

Total Page:16

File Type:pdf, Size:1020Kb

Materials with Memory Materials with memory H. Bargmann hold the electrolyte. However the in a sodium cyanide/sodium sulphate CERN has an obvious interest in the magnet surfaces are not flat and this bath at 60 °C to produce a satisfactory behaviour of materials and structures makes the problem of positioning the foil. For a 10 ^m iron foil, a nickel since it indulges in a great deal of anode difficult and also the probe coating of 12 is needed (other mechanical construction and since it wears away. Alternatively, it is possible thicknesses produce a cracked foil). often exposes materials to rather to use a jet of electrolyte but then The foils are still very brittle and have extreme conditions. For the most part there is a high probability of corrosion. to be stress relieved before use. the necessary knowledge can be The selected technique is to shim The vacuum furnace in which heat gathered from other fields where the magnets by sticking thin iron foils treatment is carried out is in the West applied research has had to be done onto the pole surfaces in the required workshop while the foils are made in in order to use materials under still areas. The poles are there generally the Godet workshop and the first foils more extreme conditions. For ex­ slightly concave in appearance and a broke in transit. The stress relieving ample, a great deal of the necessary male replica can be machined so operation is carried out at temper­ knowledge of how materials are going that iron foils coated with araldite atures between 700 and 900 °C and, to behave in intense fluxes of radiation can be pressed into precise positions since the foils must not be contamin­ has been gathered in the nuclear on the magnet and the resin cured by ated with either copper or nickel, reactor industry. heating with an infrared source. stress relief cannot be carried out In recent years there has been par­ This is a simple way of modifying before the supporting layers are re­ ticular interest in knowing how ma­ the magnet pole pieces and it has the moved. The diffusion of nickel and terials will stand up to loads. For advantage that, once the corrections copper into iron at low temperatures instance, the ISR vacuum chambers have been made, new field meas­ is very slow and by experiment it was at intersection regions, must withstand urements of the magnetic field can found that heat treatment at 450 °C atmospheric pressure and yet must be be carried out and further corrections gives sufficient ductility to the foils extremely thin so as to allow the par­ applied, if necessary, without delay. that, after stripping, they can be ticles emerging from the interactions The big problem is to make flat iron transported safely. A final stage of to reach the detectors outside with as foils approximately 10 microns thick, vacuum heat treatment is carried out little hindrance as possible. Also 20 cm long and 2 cm wide. to give complete stress relief while there have been material failures the flatness of the foil is maintained. To deposit this thickness of iron on, which were difficult to understand for example, a copper substrate is a Rapid heating or cooling results in because large safety factors had been relatively simple operation. However, temperature gradients in the foil used in the design. when iron is plated it is not ductile which cause local plastic deformation. This led CERN to delve into some like normal iron but very brittle. In In addition, there is an allotropic applied research to try to understand addition, there are very high internal change in iron at approximately more deeply the behaviour of ma­ stresses between the plate and the 900 °C, and this can also cause plastic terials under stress. The research in­ substrate and if the copper is che­ deformation. It is therefore necessary volved development of continuum me­ mically dissolved in 1 % nitric acid to to heat and cool the foils slowly — a chanics — the mathematics of ma­ release the foil, the strip bends and rate of 100 °C per hour was found to terial behaviour. the foil is cracked. be satisfactory. The celebrated theory of elasticity To overcome this a second layer of Having worked out how to steer for solid bodies at elevated temper­ metal can be plated on top of the iron between all these obstacles the work­ ature frequently ceases to hold — the so that when the two layers are shops finally emerged with very thin, solid becomes viscoelastic. This is removed chemically at the same time flat, stress free foils. Their cost is well known in modern aero-space the iron remains flat and unbroken. about one tenth of that asked by engineering in reactor technology, and If the second layer is copper the rate outside industry. at CERN (in connection with certain of solution of the plated layer with equipment for special heat treatment respect to the rolled copper substrate of vacuum chambers). Viscoelastic is difficult to control. It was found by solids do not respond only to the pre­ experiment that if a layer of nickel of vailing external influences but have a controlled thickness is plated on the memory of what has happened to iron both the nickel and the copper them during their entire past. can be dissolved at equivalent rates To some extent all structural ma- 372 An example of creep in crystalline material. The distortion of the snow cap on a garden fence in Sweden developed over a couple of days while the external influences on the snow remained virtually unchanged. (Photo from F.K.G. Odquist's book 'Mathematical theory of creep and creep rupture' by courtesy of the Clarendon Press.) A cylindrical shell 50 cm in diameter (made of niomic 75) which has creep buckled under atmospheric pressure after some time, despite no change in the stresses to which it was subjected and despite having a generous safety factor above the strength needed to resist ordinary elastic buckling. terials possess the property of elastici­ yarn. At still higher temperatures it ty — the deformation of a body disap­ becomes like a dish of spaghetti pears when the load to which it has — additional viscous flow appears as been subjected is removed. This was the temperature increases, mainly due first announced for the special linear to shorter segments of chains of case in 1676 by Robert Hooke in the molecules sliding more easily over form of the anagram 'ceiiinosssttuv' one another (viscoelasticity). Finally, which he spelled out two years later the polymer turns into a viscous fluid. as 'Ut tensio sic vis' or The power of In all these cases, creep has a linear every springy body is proportional to viscoelastic nature and hence can be its extension'. Practically all the great treated by good clean mathematics. mathematical physicists of the follow­ Metal creep at elevated temper­ ing 300 years spent some time ela­ atures is mainly due to time- borating on the terms ' power dependent plastic deformation of ' springy ', and ' extension ' and the grains, grain-boundary sliding, or di­ theory of elasticity has found wide rect diffusion. Here, non-linear be­ application in the solution of engi­ haviour is predominant and it is also neering problems during the past cen­ in the corresponding mathematics. tury. Many good engineers still believe Modern continuum mechanics is in Hooke's law as the only law de­ now based on non-linear thermody­ scribing the behaviour of solid ma­ namics : from the first and second terial. And if there are obvious de­ law (together with certain invariance viations such as when, under constant requirements that the material pro­ load, plastic deformations increase perties should not depend on the with time (so-called 'creep') and so observer) all the thermo-mechanical on... these faithful engineers take equations emerge and they severely care of them by adding generous restrict the possible laws describing safety factors into their design. material behaviour. What remains is Hooke's simple law is very often still a wide class of functional rela­ violated since creep effects under tions — relating, for example, the pre­ mechanical stress are observed in sent state of stress of a body with its most solids. They are known in glass previous history of deformation. From and bitumen (liquids, more or less, these relations it emerges that a solid with very high viscosity) in concrete at low temperatures obeying Hooke's and in organic polymer. Organic poly­ law has a memory of one state only mer at low temperatures is a brittle, (the unstressed initial configuration) glassy solid. At elevated temperatures while at high temperatures, visco­ it is a rubbery material, like tangled elastic solids have memory of their 373 Handling high voltages a) Voltage holding in vacuum F. Rohrbach entire past (frequently a fading me­ In addition to the specialized systems search has shown that, depending on mory as with human beings). which are to be found around the the gap between the electrodes, one These problems and their mathema­ large particle accelerators, there are or other of the phenomena pre­ tical treatment have been tackled at many other devices which have to dominates. CERN since the solutions were not operate in vacuum and at high voltage. In the case of short gaps (less than available from elsewhere. The follow­ Apart from electrostatic separators, about 10 mm), the electrical discharge ing case will indicate that the solu­ accelerating columns, deflectors and is initiated by the explosion of a tions are certainly needed. electrostatic septums, there are other cathode micropoint (0.1 to 0.5 The cylindrical shell of a vacuum applications such as cathode-ray high), caused by too intense a field furnace at CERN buckled under ex­ tubes, electron microscopes, high- emission leading to thermal instability ternal atmospheric pressure, at high power cryolinks, generators for use in of the emitting point.
Recommended publications
  • ME 285A: Foundations of the Theory of Continuous Media
    University of California, Berkeley Department of Mechanical Engineering ME 285A: Foundations of the Theory of Continuous Media Syllabus 1. Introduction. The nonlinear field theories. Mathematical preliminaries. Tensors. Fréchet derivative and differential. 2. Kinematics of Deformable Continua. Bodies. Deformations. Polar decomposition theorem. Derivatives of stretch and rotation tensors. Velocity and vorticity fields. Pull-back and push- forward operations. Lie derivative. Material transport of fields. Internal constraints. Relative deformation gradient. Rivlin-Ericksen tensors. 3. Balance Laws. Conservation of mass. Balance of linear and angular momenta for continua. Stress tensors. Balance of energy. A remark on the second law of thermodynamics. 4. General Constitutive Relations (Purely Mechanical Theory). Relationship between stress and history of deformation. Invariance requirements. Simple materials. Symmetry considerations. Cauchy-elastic and Green-elastic (or hyperelastic) materials. Internally constrained elastic materials. Viscous fluids. Materials with memory. Viscoelastic fluids and solids. Reiner-Rivlin fluids. Rivlin-Ericksen fluids. Materials with fading memory. Linear viscoelasticity. Pseudo-Rigid materials. 5. Thermoelastic Materials. Ideal gas. Entropy and Helmholtz free energy functions. Clausius- Duhem inequality. Thermoelasticity. Approach of Coleman and Noll. Approach of Rivlin: construction of entropy function. Internally constrained thermoelatic materials. Linear thermoelasticity. 6. Thermoelastic Materials with Viscosity. Construction of the entropy function for thermoelastic materials with viscosity, and subject to internal constraints. 7. Thermodynamics of Materials with Memory. Materials with fading memory. Instantaneous elasticity. Open questions. 8. Selected Topics. Mixture theory, nonlocal continua. ______________________________________________________________________________ Grading scheme: Homework (~40%), Midterm (~20%), Final Project (~40%). .
    [Show full text]
  • Polymer Rheology: Principles, Techniques and Applications
    Polymer Rheology: Principles, Techniques and Applications G. C. Berry Carnegie Mellon University Contents Example Problem............................................................................................. i 1. Introduction ..................................................................................................... 1 2. Principles of Rheometry .................................................................................. 3 3. Linear viscoelastic phenomenology.................................................................. 7 4. Approximations used in linear viscoelasticity................................................... 19 5. The viscosity of dilute of polymer solutions and colloidal dispersions.............. 24 6. Linear viscoelastic behavior of concentrated and undiluted polymeric fluids.... 29 7. Nonlinear viscoelastic behavior of concentrated and undiluted polymeric 35 fluids................................................................................................................ 8. Strain-induced birefringence for concentrated and undiluted polymeric fluids.. 43 9. Linear and nonlinear viscoelastic behavior of colloidal dispersions .................. 55 10. References ....................................................................................................... 59 Table 1 Linear Viscoelastic Function..................................................................... 68 Table 2 Functions and Parameters Used................................................................. 69 Table 3 Relations
    [Show full text]
  • Thermomechanics of Solid Materials with Application to the Gurson-Tvergaard Material Model
    VTT PUBLICATIONS 312 F19800095 Thermomechanics of solid materials with application to the Gurson-Tvergaard material model Kari Santaoja VlT Manufacturing Technology . TECHNICAL RESEARCH CENTRE OF FINLAND ESP00 1997 312 Kari Santaoja Thermomechanics of solid materials with application to the Gurson-Tvergaard material model TECHNICAL RESEARCH CENTRE OF FINLAND ESP00 1997 ISBN 951-38-5060-9 (soft back ed.) ISSN 123.54621 (soft back ed.) ISBN 95 1-38-5061-7 (URL: http://www.inf.vtt.fi/pdf/) ISSN 14554849 (URL: http://www.inf.vtt.fi/pdf/) Copyright 0 Valtion teknillinen tutkimuskeskus (VTT) 1997 JULKAISIJA - UTGIVARE - PUBLISHER Valtion teknillinen tutkimuskeskus (VTT), Vuorimiehentie 5, PL 2000, 02044 VTT puh. vaihde (09) 4561, faksi (09) 456 4374 Statens tekniska forskningscentral (VTT), Bergsmansvagen 5, PB 2000,02044 VTT tel. vaxel(O9) 4561, fax (09) 456 4374 Technical Research Centre of Finland (VTT), Vuorimiehentie 5, P.O.Box 2000, FIN42044 VTT, Finland phone internat. + 358 9 4561, fax + 358 9 456 4374 VIT Valmistustekniikka, Ydinvoimalaitosten materiaalitekniikka, Kemistintie 3, PL 1704,02044 VTT puh. vaihde (09) 4561, faksi (09) 456 7002 VTT Tillverkningsteknik, Material och strukturell integritet, Kemistvagen 3, PB 1’704,02044 VTT tel. vaxel(O9) 4561, fax (09) 456 7002 VTT Manufacturing Technology, Maaterials and Structural Integrity, Kemistintie 3, P.O.Box 1704, FIN42044 VTT, Finland phone internat. + 358 9 4561, fax + 358 9 456 7002 Technical editing Kerttu Tirronen VTT OFFSETPAINO. ESP00 1997 Santaoja, Kari. Thermornechanics of solid materials with application to the Gurson-Tvergaard material model. Espoo 1997. Technical Research Centre of Finland, UTPublications 312. 162 p. + app. 14 p. UDC 536.7 Keywords thermomechanical analysis, thermodynamics, plasticity, porous medium, Gurson- Tvergaard model ABSTRACT The elastic-plastic material model for porous material proposed by Gurson and Tvergaard is evaluated.
    [Show full text]
  • Causal Heat Conduction Contravening the Fading Memory Paradigm
    entropy Article Causal Heat Conduction Contravening the Fading Memory Paradigm Luis Herrera Instituto Universitario de Física Fundamental y Matematicas, Universidad de Salamanca, 37007 Salamanca, Spain; [email protected] Received: 1 September 2019; Accepted: 26 September 2019; Published: 28 September 2019 Abstract: We propose a causal heat conduction model based on a heat kernel violating the fading memory paradigm. The resulting transport equation produces an equation for the temperature. The model is applied to the discussion of two important issues such as the thermohaline convection and the nuclear burning (in)stability. In both cases, the behaviour of the system appears to be strongly dependent on the transport equation assumed, bringing out the effects of our specific kernel on the final description of these problems. A possible relativistic version of the obtained transport equation is presented. Keywords: causal dissipative theories; fading memory paradigm; relativistic dissipative theories 1. Introduction In the study of dissipative processes, the order of magnitude of relevant time scales of the system (in particular the thermal relaxation time) play a major role, due to the fact that the interplay between this latter time scale and the time scale of observation, critically affects the obtained pattern of evolution. This applies not only for dissipative processes out of the steady–state regime but also when the observation time is of the order of (or shorter than) the characteristic time of the system under consideration. Besides, as has been stressed before [1], for time scales larger than the relaxation time, transient phenomena affect the future of the system, even for time scales much larger than the relaxation time.
    [Show full text]
  • Models for Shape Memory Alloy Behavior: an Overview of Modeling Approaches
    INTERNATIONAL JOURNAL OF STRUCTURAL CHANGES IN SOLIDS – Mechanics and Applications Volume 1, Number 1, December 2009, pp. 111-148 Models for Shape Memory Alloy Behavior: An overview of modeling approaches Ashish Khandelwal and Vidyashankar Buravalla* GM R&D, India Science Lab, Bangalore, India Abstract Shape memory alloys (SMA) have been known for over five decades and modeling of their response has attracted much attention over the last two decades. Recent increase in the range of applications of these materials has lead to an increased focus on modeling their thermomechanical response. Various approaches ranging from macroscopic phenomenology to microscopic lattice based methods are being pursued to model SMA behavior. Models ranging from simple tools as design aids to complex thermodynamic based models to understand the characteristic martensitic transformation responsible for the shape memory and superelastic response exist. In this report, following a brief introduction to the SMA behavior and the underlying martensitic transformation, an overview of models for SMAs is provided. This is aimed at providing an understanding of the state of the art and also to identify possible future directions. In this review, models are classified both on the basis of the approach and the level (scale) of continuum they address. General methodology of each type of approach is presented briefly followed by a review of the models that fall under that category. Certain liberties are taken in classifying these models to facilitate understanding and thus the present classification is by no means either unique or completely rigorous. Also, while an attempt is made to cover most of the approaches, review of all the models that exist in literature is practically impossible.
    [Show full text]
  • Fundamentals of the Mechanics of Continua'' by E. Hellinger
    Exegesis of Sect. III.B from ”Fundamentals of the Mechanics of Continua” by E. Hellinger Simon R. Eugster, Francesco Dell’Isola To cite this version: Simon R. Eugster, Francesco Dell’Isola. Exegesis of Sect. III.B from ”Fundamentals of the Mechanics of Continua” by E. Hellinger. 2017. hal-01568552 HAL Id: hal-01568552 https://hal.archives-ouvertes.fr/hal-01568552 Preprint submitted on 25 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Zeitschrift für Angewandte Mathematik und Mechanik, 19 May 2017 Exegesis of Sect. III.B from “Fundamentals of the Mechanics of Con- tinua”∗ by E. Hellinger Simon R. Eugster1,2∗∗ and Francesco dell’Isola3,2 1 Institute for Nonlinear Mechanics, University of Stuttgart, Stuttgart, Germany 2 International Research Center for the Mathematics and Mechanics of Complex Systems, MEMOCS, Università dell’Aquila, L’Aquila, Italy 3 Dipartimento di Ingegneria Strutturale e Geotecnica, Università di Roma La Sapienza, Rome, Italy Received XXXX, revised XXXX, accepted XXXX Published online XXXX Key words Ernst Hellinger, elasticity, thermodynamics, electrodynamics, theory of relativity This is our third and last exegetic essay on the fundamental review article DIE ALLGEMEINEN ANSÄTZE DER MECH- ANIK DER KONTINUA in the Encyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Bd.
    [Show full text]
  • A Brief Review of Elasticity and Viscoelasticity
    A Brief Review of Elasticity and Viscoelasticity H.T. Banks, Shuhua Hu and Zackary R. Kenz Center for Research in Scientific Computation and Department of Mathematics North Carolina State University Raleigh, NC 27695-8212 May 27, 2010 Abstract There are a number of interesting applications where modeling elastic and/or vis- coelastic materials is fundamental, including uses in civil engineering, the food industry, land mine detection and ultrasonic imaging. Here we provide an overview of the sub- ject for both elastic and viscoelastic materials in order to understand the behavior of these materials. We begin with a brief introduction of some basic terminology and relationships in continuum mechanics, and a review of equations of motion in a con- tinuum in both Lagrangian and Eulerian forms. To complete the set of equations, we then proceed to present and discuss a number of specific forms for the constitutive relationships between stress and strain proposed in the literature for both elastic and viscoelastic materials. In addition, we discuss some applications for these constitutive equations. Finally, we give a computational example describing the motion of soil ex- periencing dynamic loading by incorporating a specific form of constitutive equation into the equation of motion. AMS subject classifications: 93A30,74B05,74B20,74D05,74D10. Key Words: Mathematical modeling, Eulerian and Lagrangian formulations in continuum mechanics, elasticity, viscoelasticity, computational simulations in soil, constitutive relation- ships. 1 1 Introduction Knowledge of the field of continuum mechanics is crucial when attempting to understand and describe the behavior of materials that completely fill the occupied space and thus act like a continuous medium.
    [Show full text]
  • Nonlinear Viscoelastic Behavior of Glassy Polymers and Its Effect on the Onset of Irreversible Deformation of the Matrix Resin in Continuous Fiber Composites
    Nonlinear Viscoelastic Behavior of Glassy Polymers and Its Effect on the Onset of Irreversible Deformation of the Matrix Resin in Continuous Fiber Composites J. M. Caruthers and G. A. Medvedev School of Chemical Engineering, Purdue University 480 Stadium Mall Drive, West Lafayette, IN 47907 [email protected] SUMMARY Predictions of a validated nonlinear viscoelastic model for glassy polymer will be presented for multiaxial deformations, where it will be shown that onset of yield can be described by a strain invariant criterion. Subsequently, the onset of irreversible deformation in off-axis tensile tests of unidirectional laminates of an epoxy-carbon fiber composite will be described using a strain invariant criterion. Keywords: glassy polymers, nonlinear viscoelastic, strain invariants INTRODUCTION The off-axis tensile test has been utilized to examine the elastic and ultimate behavior of composite materials subjected to controlled states of multi-axial deformation in fiber-reinforced composite materials for the past forty years [1-2]. As the fiber angle is varied between 0 and π/2, the state of stress and strain within the composite material varies between states that are dominated by distortional and dilatational deformation. Moreover, the onset and ultimate states typically occur simultaneously in the off-axis tensile test. This coincidence enables a direct experimental determination of the onset of irreversible deformation and is in contrast to the general case for ultimate behavior wherein damage propagation must occur before onset can be detected. Consequently, the off-axis tensile test provides an excellent platform for evaluation of irreversible deformation in polymer matrix composites. Conventional failure theories for composite materials focus on stress and strain states within the effective orthotropic medium and thereby ignore the fact that failure must occur in either of the two constituents and/or at the interface, not in an aphysical effective medium.
    [Show full text]
  • A Constitutive Theory for High Rate Multiaxial Deformation of Snow by Andrew Christian Hansen a Thesis Submitted in Partial Fulf
    A constitutive theory for high rate multiaxial deformation of snow by Andrew Christian Hansen A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical Engineering Montana State University © Copyright by Andrew Christian Hansen (1985) Abstract: The mechanical properties of snow under high strain rates and finite deformation are highly nonlinear and rate dependent. Unlike most geologic materials, snow can undergo substantial volumetric strains which are irreversible. Pressures may increase by orders of magnitude as snow is compressed from initially low densities of 100 kg/m^3 to densities beyond 500 kg/m^3. At the same time, the shearing stiffness can increase dramatically. One of the most difficult problems encountered when trying to quantify snow mathematically is to account for the microstructure of the material. Naturally occurring snow generally has a complex microstructure which varies dramatically depending on the weather conditions to which it is subjected. The microstructural properties of snow have a significant impact on its mechanical properties. In this thesis, a constitutive theory is developed to describe the mechanical properties of snow at finite strain under high rate multiaxial deformation. The theory is based on nonequilibrium thermodynamics with internal state variables. The internal variable approach is based on the view that the state of the material at any given time in a deformation process is adequately determined by the strain, internal energy, and a finite collection of internal state variables. The state variables may be thought of as characterizing the extent of microstructural rearrangement within a sample. This approach is appealing in that it incorporates parameters reflecting the microstructure of snow, while at the same time essentially remaining a continuum theory.
    [Show full text]
  • International Centre for Theoretical Physics
    IAEA-TECDOC-385 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS Scientific Activities in1985 tL<^ A TECHNICAL DOCUMENT ISSUED BY THE .ly ~INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, 1986 INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS: SCIENTIFIC ACTIVITIES IN 1985 IAEA, VIENNA, 1986 IAEA-TECDOC-385 Printed by the IAEA in Austria August 1986 Please be aware that all the Missing Pages inthis document were originally blank pages CONTENTS PART I: - Review of the Scientific Activities in 1985 ............... 7 - Statistical Digest - Calendar of Scientific Activities in 1985 ............... 12 - Summary of Participation - 1985 vs. 1984 .............. 13 - Participation by Geographical Areas ..................... 14 - Participation in Long- and Short-term Activities ........ 15 - Number of Scientists and Man/months by Activities ....... 16 - Statistical Summary of All Activities ................... 18 - Summary of Participation by Activities .................. 19 PART II: THE SCIENTIFIC PROGRAMME - Fundamental Physics - Elementary Particle Research ............................ 23 - Tests of Electroweak Physics, Polarized Processes and Other Phenomena ........................ 26 - Summer Workshop on High Energy Physics and Cosmology .... 28 - Physics and Energy - Second Workshop in Nuclear Physics at Intermediate Energ ies ............................................. 30 - Spring College on Plasma Physics: "Charged Particle Transport in Plasmas" ................................ 32 - Workshop on the Physics of Nonconventional Energy Sources and Material
    [Show full text]
  • Hereditary Materials with Local Structure Tsu-Jiunn Peng Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1968 Hereditary materials with local structure Tsu-Jiunn Peng Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Applied Mechanics Commons Recommended Citation Peng, Tsu-Jiunn, "Hereditary materials with local structure " (1968). Retrospective Theses and Dissertations. 4620. https://lib.dr.iastate.edu/rtd/4620 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been microfihned exactly as received 69-9883 PENG, Tsu-Jiunn, 1938- HEREDITARY MATERIALS WITH LOCAL STRUCTURE. Iowa State University, Ph.D., 1968 Engineering Mechanics University Microfilms, Inc., Ann Arbor, Michigan HEREDITARY MATERIALS WITH LOCAL STRUCTURE by Tsu-Jiunn Peng A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Reguirementf for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Engineering Mechanics Approved : Signature was redacted for privacy. In Charge of Majaj -Wcr^ Signature was redacted for privacy. Signature was redacted for privacy. Iowa State University Ames 5 Iowa 1968 ii TABLE OF CONTENTS . Page I. INTRODUCTION 1 II. THE FIELD EQUATIONS 6 III. LINEAR THERMOMECHANICAL THEORY OF VISCOELASTIC MATERIALS WITH COUPLE-STRESSES 15 A. Development of the Explicit Forms of the Isothermal Constitutive Equations 20 B. Development of the Explicit Forms of the Nonisothermal Constitutive Equations 27 IV.
    [Show full text]
  • On Integro-Differential Inclusions with Operator-Valued Kernels
    On Integro-Differential Inclusions with Operator-valued Kernels. Sascha Trostorff Institut für Analysis, Fachrichtung Mathematik Technische Universität Dresden Germany sascha.trostorff@tu-dresden.de August 6, 2018 Abstract. We study integro-differential inclusions in Hilbert spaces with operator- valued kernels and give sufficient conditions for the well-posedness. We show that several types of integro-differential equations and inclusions are covered by the class of evolutionary inclusions and we therefore give criteria for the well-posedness within this framework. As an example we apply our results to the equations of visco-elasticity and to a class of nonlinear integro-differential inclusions describing Phase Transition phenomena in materials with memory. Keywords and phrases: Integro-Differential Inclusion and Equations, Well-posedness and Causality, Evo- lutionary Inclusions, Linear Material Laws, Maximal Monotone Operators, Visco-Elasticity, Phase Transition Models. Mathematics subject classification 2010: 35R09 (Integro-partial differential equations), 47G20 (Integro- Differential operators), 35F61 (Initial-boundary value problems for nonlinear first-order systems), 46N20 (Ap- plications to differential and integral equations), 47J35 (Nonlinear evolution equations) arXiv:1308.4782v1 [math.AP] 22 Aug 2013 1 Contents Contents 1 Introduction 3 2 Evolutionary inclusions 4 2.1 The time-derivative and linear material laws . ........... 4 2.2 Well-posedness and causality of evolutionary inclusions.............. 6 3 Integro-differential inclusions 8 3.1 Material laws for hyperbolic-type problems . .......... 9 3.2 Material laws for parabolic-type problems . .......... 18 4 Examples 20 4.1 Visco-Elasticity ................................ 20 4.2 Materials with memory with non-equilibrium phase transition . 23 2 1 Introduction It appears that classical phenomena in mathematical physics, like heat conduction, wave prop- agation or elasticity, show some memory effects (see e.g.
    [Show full text]