Photon Management Structures for Absorption Enhancement in Intermediate Band Solar Cells and Crystalline Silicon Solar Cells

Total Page:16

File Type:pdf, Size:1020Kb

Photon Management Structures for Absorption Enhancement in Intermediate Band Solar Cells and Crystalline Silicon Solar Cells UNIVERSIDAD POLITÉCNICA DE MADRID ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN TESIS DOCTORAL Photon Management Structures for Absorption Enhancement in Intermediate Band Solar Cells and Crystalline Silicon Solar Cells Alexander Mellor Master in Mathematics and Physics (MPhys) 2013 UNIVERSIDAD POLITÉCNICA DE MADRID Instituto de Energía Solar Departamento de Electrónica Física Escuela Técnica Superior de Ingenieros de Telecomunicación TESIS DOCTORAL Photon Management Structures for Absorption Enhancement in Intermediate Band Solar Cells and Crystalline Silicon Solar Cells AUTOR: Alexander Mellor Master in Mathematics and Physics (MPhys) DIRECTORES: Antonio Luque López Doctor en Ingeniería de Telecomunicaciones Ignacio Tobías Galicia Doctor en Ingeniería de Telecomunicaciones 2013 Tribunal nombrado por el Magfco. Y Excmo. Sr. Rector de la Universidad Politécnica de Madrid. PRESIDENTE: VOCALES: SECRETARIO: SUPLENTES: Realizado el acto de defensa y lectura de la Tesis en Madrid, el día ___ de _____ de 200__. Calificación: EL PRESIDENTE LOS VOCALES EL SECRETARIO Dearest Nan It’s the time you spend on your rose that makes your rose so important.” Antoine de Saint-Exupéry - Le Petit Prince – 1943 Acknowledgements I owe my deepest thanks to my thesis directors Ignacio Tobías and Antonio Luque, without whom none of this would have been possible. Their preliminary work and vision laid the ground for what has been studied in this thesis, and they have tirelessly supported and motivated this project. Through their guidance, I have matured as a scientist. I thank my colleagues here at the Institute of Solar Energy, particularly Antonio Martí for guidance and support, Manuel Mendes for improving my scientific English, even though I am the native speaker and not he, Iñigo Ramiro, Ester López and Estela Hernandez for assistance and patience in the laboratory and David Fuertes, César Tablero, Elisa Antolín and Pablo Linares for interesting scientific debates. I thank Daniel Masa for helping me to understand and interface with Spanish institutions and bureaucracy. I thank Estrella Uribe, Maria-Helena Gómez, Rosa Sacristán and Ricardo Castrillo for administrative support. I thank my officemates, past and present, for a friendly and lively atmosphere. I thank every member of the institute for making me feel welcome and at home in a foreign land; they have been my closest friends during these years, and I will miss them dearly. I thank our collaborators at the Microstructured Surfaces Group of the Fraunhofer ISE, particularly Benedikt Bläsi, Hubert Hauser, Michael Nitsche, Christina Wellens, Aron Guttowski, Christian Walk, Sabrina Jüchter, Volker Kübler, Andreas Wolf, Dominik Pelzer, Johannes Eisenlohr and Marius Peters. They made my research stay with them enjoyable and productive, and contributed much to this project. I thank David López Romero from the Instituto de Sistemas Optoelectrónicos y Microtecnología for his help during my visit there. I thank the thesis committee for taking time from their busy schedules to read and review this thesis. I thank my secondary school physics teacher Mr. Thompson for introducing me to the subject and for teaching me, in his own words, that “life is easy, it’s people that make it difficult”: too true. Finally, I thank my family and friends for their support and for reminding me that there is a world outside of research. I thank my father for periodically asking me when I am going to get a real job: soon dad, soon. I thank my girlfriend for being my daily companion, and for convincingly feigning interest when I discussed physics over dinner. I thank my mother, who has selflessly suffered my absence so that I may pursue my dream. Resumen El objetivo de la tesis es investigar los beneficios que el atrapamiento de la luz mediante fenómenos difractivos puede suponer para las células solares de silicio cristalino y las de banda intermedia. Ambos tipos de células adolecen de una insuficiente absorción de fotones en alguna región del espectro solar. Las células solares de banda intermedia son teóricamente capaces de alcanzar eficiencias mucho mayores que los dispositivos convencionales (con una sola banda energética prohibida), pero los prototipos actuales se resienten de una absorción muy débil de los fotones con energías menores que la banda prohibida. Del mismo modo, las células solares de silicio cristalino absorben débilmente en el infrarrojo cercano debido al carácter indirecto de su banda prohibida. Se ha prestado mucha atención a este problema durante las últimas décadas, de modo que todas las células solares de silicio cristalino comerciales incorporan alguna forma de atrapamiento de luz. Por razones de economía, en la industria se persigue el uso de obleas cada vez más delgadas, con lo que el atrapamiento de la luz adquiere más importancia. Por tanto aumenta el interés en las estructuras difractivas, ya que podrían suponer una mejora sobre el estado del arte. Se comienza desarrollando un método de cálculo con el que simular células solares equipadas con redes de difracción. En este método, la red de difracción se analiza en el ámbito de la óptica física, mediante análisis riguroso con ondas acopladas (rigorous coupled wave analysis), y el sustrato de la célula solar, ópticamente grueso, se analiza en los términos de la óptica geométrica. El método se ha implementado en ordenador y se ha visto que es eficiente y da resultados en buen acuerdo con métodos diferentes descritos por otros autores. Utilizando el formalismo matricial así derivado, se calcula el límite teórico superior para el aumento de la absorción en células solares mediante el uso de redes de difracción. Este límite se compara con el llamado límite lambertiano del atrapamiento de la luz y con el límite absoluto en sustratos gruesos. Se encuentra que las redes biperiódicas (con geometría hexagonal o rectangular) pueden producir un atrapamiento mucho mejor que las redes uniperiódicas. El límite superior depende mucho del periodo de la red. Para periodos grandes, las redes son en teoría capaces de alcanzar el máximo atrapamiento, pero sólo si las eficiencias de difracción tienen una forma peculiar que parece inalcanzable con las herramientas actuales de diseño. Para periodos similares a la longitud de onda de la luz incidente, las redes de difracción pueden proporcionar atrapamiento por debajo del máximo teórico pero por encima del límite Lambertiano, sin imponer requisitos irrealizables a la forma de las eficiencias de difracción y en un margen de longitudes de onda razonablemente amplio. El método de cálculo desarrollado se usa también para diseñar y optimizar redes de difracción para el atrapamiento de la luz en células solares. La red propuesta consiste en un red hexagonal de pozos cilíndricos excavados en la cara posterior del sustrato absorbente de la célula solar. La red se encapsula en una capa dieléctrica y se cubre con un espejo posterior. Se simula esta estructura para una célula solar de silicio y para una de banda intermedia y puntos cuánticos. Numéricamente, se determinan los valores óptimos del periodo de la red y de la profundidad y las dimensiones laterales de los pozos para ambos tipos de células. Los valores se explican utilizando conceptos físicos sencillos, lo que nos permite extraer conclusiones generales que se pueden aplicar a células de otras tecnologías. Las texturas con redes de difracción se fabrican en sustratos de silicio cristalino mediante litografía por nanoimpresión y ataque con iones reactivos. De los cálculos precedentes, se conoce el periodo óptimo de la red que se toma como una constante de diseño. Los sustratos se procesan para obtener estructuras precursoras de células solares sobre las que se realizan medidas ópticas. Las medidas de reflexión en función de la longitud de onda confirman que las redes cuadradas biperiódicas consiguen mejor atrapamiento que las uniperiódicas. Las estructuras fabricadas se simulan con la herramienta de cálculo descrita en los párrafos precedentes y se obtiene un buen acuerdo entre la medida y los resultados de la simulación. Ésta revela que una fracción significativa de los fotones incidentes son absorbidos en el reflector posterior de aluminio, y por tanto desaprovechados, y que este efecto empeora por la rugosidad del espejo. Se desarrolla un método alternativo para crear la capa dieléctrica que consigue que el reflector se deposite sobre una superficie plana, encontrándose que en las muestras preparadas de esta manera la absorción parásita en el espejo es menor. La siguiente tarea descrita en la tesis es el estudio de la absorción de fotones en puntos cuánticos semiconductores. Con la aproximación de masa efectiva, se calculan los niveles de energía de los estados confinados en puntos cuánticos de InAs/GaAs. Se emplea un método de una y de cuatro bandas para el cálculo de la función de onda de electrones y huecos, respectivamente; en el último caso se utiliza un hamiltoniano empírico. La regla de oro de Fermi permite obtener la intensidad de las transiciones ópticas entre los estados confinados. Se investiga el efecto de las dimensiones del punto cuántico en los niveles de energía y la intensidad de las transiciones y se obtiene que, al disminuir la anchura del punto cuántico respecto a su valor en los prototipos actuales, se puede conseguir una transición más intensa entre el nivel intermedio fundamental y la banda de conducción. Tomando como datos de partida los niveles de energía y las intensidades de las transiciones calculados como se ha explicado, se desarrolla un modelo de equilibrio o balance detallado realista para células solares de puntos cuánticos. Con el modelo se calculan las diferentes corrientes debidas a transiciones ópticas entre los numerosos niveles intermedios y las bandas de conducción y de valencia bajo ciertas condiciones. Se distingue de modelos de equilibrio detallado previos, usados para calcular límites de eficiencia, en que se adoptan suposiciones realistas sobre la absorción de fotones para cada transición. Con este modelo se reproducen datos publicados de eficiencias cuánticas experimentales a diferentes temperaturas con un acuerdo muy bueno.
Recommended publications
  • Effect of Strain on the Optical Properties of Gan Films, and Gan/Algan Heterostructure and Laser Lift-Off for Gan/Algan Multilayer
    Effect of Strain on the Optical Properties of GaN Films, and GaN/AlGaN Heterostructure and Laser Lift-Off for GaN/AlGaN Multilayer By AMAL MOSTAFA ELGAWADI MASTER OF SCIENCE IN PHYSICS Polytechnic University Brooklyn, New York 2001 MASTER OF SCIENCE IN ELELCTRICAL ENGINEERING Polytechnic University Brooklyn, New York 2001 Submitted to the Faculty of The Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy July 2005 COPYRIGHT By Amal Mostafa Elgawadi July 2005 Effect of Strain on the Optical Properties of GaN Films, and GaN/AlGaN Heterostructure and Laser Lift-Off for GaN/AlGaN Multilayer Dissertation Approved: Dr. Jerzy Krasinski Dissertation Adviser Dr. Paul Westhaus Dr. Weili Zhang Dr. Yamin Zhang Dr. A. Gordon Emslie Dean of the Graduate College iii DEDICATION To the Spirit of My Father, To My Dear Mother, To my wife and my Son, To My Sister and My Brothers, To My Family and Instructors iv ACKNOWLEDGEMENTS I express gratitude to my advisor, Dr. Jerzy Krasinski, for his support, and guidance. His expertise and guidance has prepared me well for preparing this dissertation and for my professional future. I would like to thank him for taking the advisory assignment after Dr. Jin-Joo Song. This allowed me to continue my research and projects on III- Nitride group. I would like to thank my ex-advisor, Dr. Jin-Joo Song, for her terrific and outstanding supervising during my first years in Oklahoma State University. She provided me with the working environment to perform state-of-the-art using top-of-the- line equipment.
    [Show full text]
  • Theoretical Framework for Performance Evaluation of Silicon Quantum Dot Solar Cell Under Low Concentration Illumination
    Accepted Manuscript Theoretical framework for performance evaluation of silicon quantum dot solar cell under low concentration illumination Zeel Purohit, Brijesh Tripathi PII: S0749-6036(16)31184-3 DOI: 10.1016/j.spmi.2016.10.036 Reference: YSPMI 4581 To appear in: Superlattices and Microstructures Received Date: 10 October 2016 Accepted Date: 12 October 2016 Please cite this article as: Z. Purohit, B. Tripathi, Theoretical framework for performance evaluation of silicon quantum dot solar cell under low concentration illumination, Superlattices and Microstructures (2016), doi: 10.1016/j.spmi.2016.10.036. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Theoretical framework for performance evaluation of silicon quantum dot solar cell under low concentration illumination Zeel Purohit, Brijesh Tripathi* Department of Science, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar - 382007 (India) *Corresponding Author: Ph: +91-79-23275455, Fax: +91-79-2327-5030, Email: [email protected] ABSTRACT This article describes a silicon quantum dot (Si QD) solar cell with absorption enhancement due to quantum-confinement in the front-side emitter region, which helps in the improvement of the short-circuit current density. The Si QD solar cell is theoretically mimicked using an equivalent circuit to account the possible recombination losses under low concentration illumination.
    [Show full text]
  • Combined Effects of Pressure, Temperature, and Magnetic Field on the Ground State of Donor Impurities in a Gaas/Algaas Quantum Heterostructure
    Int. J. Nano Dimens., 10 (4): 375-390, Autumn 2019 ORIGINAL ARTICLE Combined effects of pressure, temperature, and magnetic field on the ground state of donor impurities in a GaAs/AlGaAs quantum heterostructure Samah Abuzaid, Ayham Shaer, Mohammad Elsaid* Department of Physics, An-Najah National University, Nablus,West Bank, Jordan Received 09 February 2019; revised 15 July 2019; accepted 20 July 2019; available online 30 July 2019 Abstract In the present work, the exact diagonalization method had been implemented to calculate the ground state energy of shallow donor impurity located at finite distance along the growth axis in GaAs/AlGaAs heterostructure in the presence of a magnetic field taken to be along z direction. The impurity binding energy of the ground state had been calculated as a function of confining frequency and magnetic field * * strength. We found that the ground state donor binding energy (BE) calculated at ωc =2 R and ω0 = 5.421R , decreases from BE=7.59822 R * to BE=2.85165 R * , as we change the impurity position from d=0.0 a* to d=0.5 a* , respectively .In addition, the combined effects of pressure and temperature on the binding energy, as a function of magnetic field strength and impurity position, had been shown using the effective-mass approximation. The numerical results show that the donor impurity binding energy enhances with increasing the pressure while it decreases as the temperature decreases. Keywords: Binding Energy; Donor Impurity; Exact Diagonalization Method; Heterostructure; Magnetic Field. How to cite this article Abuzaid S, Shaer A, Elsaid M. Combined effects of pressure, temperature, and magnetic field on the ground state of donor impurities in a GaAs/AlGaAs quantum heterostructure.
    [Show full text]
  • Advanced Quantum Electronic and Spin Systems: Artificial Graphene and Nitrogen-Vacancy Centers in Diamond
    Advanced Quantum Electronic and Spin Systems: Artificial Graphene and Nitrogen-Vacancy Centers in Diamond Diego Scarabelli Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2016 © 2016 Diego Scarabelli All rights reserved ABSTRACT Advanced Quantum Electronic and Spin Systems: Artificial Graphene and Nitrogen-Vacancy Centers in Diamond Diego Scarabelli When nature is observed at the nanoscale, quantum physics is typically the most accurate model to describe and predict its behavior. Furthermore, quantum effects are increasingly at the core of the operation of new advanced electronic and photonic devices, which, in some cases, are designed on the basis of controlling quantum systems. This thesis focuses on two such systems, united by the methods used to realize them. These methods represent the cutting-edge of nanofabrication, which is the structuring of matter at ultra-small dimensions with a degree of precision and control that has not been previously attained. Pushing these methods to their limits enables the emergence of unique phenomena in the quantum systems explored here. The first system involves the realization of artificial graphene in an AlGaAs/GaAs quantum heterostructure. The appearance of massless charge carriers in graphene, which are described by the relativistic Dirac equation, originates from the linear energy-momentum dispersion of the electronic states in proximity to the K and K’ points of the hexagonal Brillouin zone. This unique quantum behavior is a direct result of the honeycomb symmetry of the graphene lattice. The prospect of reproducing this physics in an adjustable, artificial honeycomb lattice, known as artificial graphene, offers a platform for the exploration of novel quantum regimes of massless Dirac fermions beyond the limits imposed by the inability to manipulate the lattice of the natural material.
    [Show full text]
  • Theoretical Comparison Between Hgcdte and Algaas Heterostructure Quantum Well Laser Systems
    Theoretical Comparison between HgCdTe and AlGaAs Heterostructure Quantum Well Laser Systems A thesis Submitted to the Council of the College of Education for Pure Science Ibn Al-Haitham, University of Baghdad in partial fulfillment of requirements for the degree of Master of Science in Physics By Wedian Kadhoum Abad Al-zubady B.Sc. Physics (University of Baghdad) 2013 Supervised by Dr. Ebtisam M-T. Salman 2016 A.C 1437 A.H "ﺑﺴﻢ ﺍﷲ ﺍﻟﺮﲪﻦ ﺍﻟﺮﺣﻴﻢ" ﺹﺩﻕ ﺍﷲ ﺍﻟﻌﻠﻲ ﺍﻟﻌﻈﻴﻢ ﺳﻮﺭﺓ ﺍﻟﻨﻮﺭ(ﺍﻳﺔ 35) This thesis is dedicated to: The souls o f Martyrs of Iraq, my dear parents, and my supervisor Wedian Acknowledgements I would like to extend my thanks and appreciation to my supervisor of Dr.Ebtisam Mohammad T. For the proposed research topic and for her guidance and help in the duration of search, may God prolong her age to remain a beacon luminous in the way of science and scientists. Also, I extend my thanks and gratitude to the College of Education, Ibn al-Haytham for pure sciences and the presidency of the Department of physics for their help and to all my professors, especially Dr. Ahlam.H.Jaffar AlMousawy who was the source of and guidance and tangible impact in that research until it shows the final image. My thanks to all who gave me advice and guidance particularly by Dr. Mudhir Sh. Ahmed for giving me valuable guidance during the study. Special thanks to Dr. Mahmood Radhi, I greatly appreciate his support and advice. And also with pride and appreciation I would like to extend my thanks and gratitude to Mr.
    [Show full text]
  • [Sample B: Approval/Signature Sheet]
    SQUARAINE DONOR BASED ORGANIC SOLAR CELLS By Guodan Wei A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Materials Science and Engineering) in the University of Michigan 2012 Doctoral Committee: Prof. Stephen R. Forrest, Chair Prof. Pallab Bhattacharya Prof. Rachel S. Goldman Prof. Max Shtein © Copyright by Guodan Wei, 2012 All Rights Reserved DEDICATION To my two sons Anderson Shao, Allen Shao and my husband Jing Shao ii ACKNOWLEDGEMENTS I would like to thank many people for their enormous assistance, contributions and encouragement. With all their support and help, I could continue to work for the completion of this thesis work. Formost, I would like to express my deep appreciation to my advisor Prof. Stephen R. Forrest for his continuous support, instruction and encouragement of my Ph.D course study and research work, for his enormous patience, motivation, enthusism and immense knowledge. His instructive guidance helped me keep the right track of the projects all the time and speed up their completions. Especially, his careful correction and revision have refreshed and deepened each manuscript I have written, where I have gained precious lessons that will benefit my life in the future. Besides my advisor, I would like to thank the rest of my thesis committee: Prof. Rachel S. Goldman, Prof. Max Shtein and Prof. Pallab Bhattacharya, for their encouragement, insightful comments and suggestions. Especially, I would like to thank Prof. Goldman for her kind words and strong support through my ways to find a balance between a graduate student and a working mom.
    [Show full text]
  • Interband Optical Properties in Wide Band Gap Group-III Nitride Quantum Dots
    Advances in Nano Research, Vol. 3, No. 1 (2015) 13-27 DOI: http://dx.doi.org/10.12989/anr.2015.3.1.013 13 Interband optical properties in wide band gap group-III nitride quantum dots K. Jaya Bala1a and A. John Peter2 1Department of Physics, GTN Arts College, Dindigul-624 005, India 2P.G & Research Department of Physics, Government Arts College, Melur-625 106, Madurai, India (Received November 4, 2014, Revised March 23, 2015, Accepted March 26, 2015) Abstract. Size dependent emission properties and the interband optical transition energies in group-III nitride based quantum dots are investigated taking into account the geometrical confinement. Exciton binding energy and the optical transition energy in Ga0.9In0.1N/GaN and Al0.395In0.605N /AlN quantum dots are studied. The largest intersubband transition energies of electron and heavy hole with the consideration of geometrical confinement are brought out. The interband optical transition energies in the quantum dots are studied. The exciton oscillator strength as a function of dot radius in the quantum dots is computed. The interband optical absorption coefficients in GaInN/GaN and AlInN/AlN quantum dots, for the constant radius, are investigated. The result shows that the largest intersubband energy of 41% (10%) enhancement has been observed when the size of the dot radius is reduced from 50 Å to 25 Å of Ga0.9In0.1N/GaN (Al0.395In0.605N /AlN) quantum dot. Keywords: oscillator strength; exciton; quantum dot 1. Introduction Semiconducting quantum dots are given a great deal of interests due to their unique opto- electronic properties which can be optimized by tailoring their band gaps.
    [Show full text]
  • High-Performance III-V Quantum-Dot Lasers Monolithically Grown on Si and Ge Substrates for Si Photonics
    High-Performance III-V Quantum- Dot Lasers Monolithically Grown on Si and Ge Substrates for Si Photonics Ting Wang A thesis submitted to University College London for the degree of Doctor of Philosophy Department of Electronic and Electrical Engineering University College London February 2012 I, Ting Wang, confirm that the work presented in this thesis is my own. Where information has been derived from other resources, I confirm that this has been indicated in the thesis. Abstract Abstract Self-assembled III-V quantum dots (QDs) attract intense research interest and effort due to their unique physical properties arising from the three-dimensional confinement of carriers and discrete density of states. Semiconductor III-V QD laser structures exhibit dramatically improved device performance in comparison with their quantum well (QW) counterparts, notably their ultra low threshold current density, less sensitivity to defects and outstanding thermal stability. Therefore, integrating a high-quality QD laser structure onto silicon-based platform could potentially constitute a hybrid technology for the realization of optical inter-chip communications. This thesis is devoted to the development of high-performance InAs/GaAs QD lasers directly grown on silicon substrates and germanium substrates for silicon photonics. In the integration of III-V on silicon, direct GaAs heteroepitaxy on silicon is extremely challenging due to the substantial lattice and thermal expansion mismatch between GaAs and Si. The inherent high-density propagating dislocations can degrade the performance of III-V based lasers on silicon substrates. To enhance the device performance, QW dislocation filters are used here to create a strain field, which bends the propagating dislocations back towards the substrate.
    [Show full text]
  • Band Parameters for III–V Compound Semiconductors and Their Alloys
    Band parameters for III–V compound semiconductors and their alloys Cite as: Journal of Applied Physics 89, 5815 (2001); https://doi.org/10.1063/1.1368156 Submitted: 04 October 2000 . Accepted: 14 February 2001 . Published Online: 07 June 2001 I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan ARTICLES YOU MAY BE INTERESTED IN Detailed Balance Limit of Efficiency of p-n Junction Solar Cells Journal of Applied Physics 32, 510 (1961); https://doi.org/10.1063/1.1736034 First-principles calculations for defects and impurities: Applications to III-nitrides Journal of Applied Physics 95, 3851 (2004); https://doi.org/10.1063/1.1682673 Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures Journal of Applied Physics 87, 334 (2000); https://doi.org/10.1063/1.371866 Journal of Applied Physics 89, 5815 (2001); https://doi.org/10.1063/1.1368156 89, 5815 © 2001 American Institute of Physics. JOURNAL OF APPLIED PHYSICS VOLUME 89, NUMBER 11 1 JUNE 2001 APPLIED PHYSICS REVIEW Band parameters for III–V compound semiconductors and their alloys I. Vurgaftmana) and J. R. Meyer Code 5613, Naval Research Laboratory, Washington, DC 20375 L. R. Ram-Mohan Worcester Polytechnic Institute, Worcester, Massachusetts 01609 ͑Received 4 October 2000; accepted for publication 14 February 2001͒ We present a comprehensive, up-to-date compilation of band parameters for the technologically important III–V zinc blende and wurtzite compound semiconductors: GaAs, GaSb, GaP, GaN, AlAs, AlSb, AlP, AlN, InAs, InSb, InP, and InN, along with their ternary and quaternary alloys. Based on a review of the existing literature, complete and consistent parameter sets are given for all materials.
    [Show full text]
  • Polarization Engineering for Deep-Ultraviolet Light-Emitting Diodes
    Rochester Institute of Technology RIT Scholar Works Theses 4-22-2020 Polarization Engineering for Deep-Ultraviolet Light-Emitting Diodes Cheng Liu [email protected] Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Liu, Cheng, "Polarization Engineering for Deep-Ultraviolet Light-Emitting Diodes" (2020). Thesis. Rochester Institute of Technology. Accessed from This Dissertation is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. R•I•T Polarization Engineering for Deep-Ultraviolet Light- Emitting Diodes by Cheng Liu A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Microsystems Engineering Microsystems Engineering Program Kate Gleason College of Engineering Rochester Institute of Technology Rochester, New York April 22nd, 2020 Polarization Engineering for Deep-Ultraviolet Light-Emitting Diodes by Cheng Liu Committee Approval: We, the undersigned committee members, certify that we have advised and/or supervised the candidate on the work described in this dissertation. We further certify that we have reviewed the dissertation manuscript and approve it in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Microsystems Engineering. ______________________________________________________________________________ Dr. Jing Zhang Date Associate Professor
    [Show full text]
  • Experimental Evidences of Quantum Confined 2D Indirect Excitons in Single Barrier Gaas/Alas/Gaas Heterostructure Using Photocapacitance at Room Temperature
    Experimental evidences of quantum confined 2D indirect excitons in single barrier GaAs/AlAs/GaAs heterostructure using photocapacitance at room temperature Amit Bhunia1, Mohit Kumar Singh1, Y. Galvão Gobato 2, Mohamed Henini3,4 and Shouvik Datta1 * 1Department of Physics & Center for Energy Science, Indian Institute of Science Education and Research, Pune 411008, Maharashtra, India 2Departamento de Física, Universidade Federal de São Carlos, 13560-905, São Carlos, SP, Brazil 3School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK 4UNESCO-UNISA Africa Chair in Nanoscience & Nanotechnology Laboratories. College of Graduate Studies, University of South Africa (UNISA), Muckleneuk Ridge, PO Box 392, Pretoria, South Africa *Corresponding author’s email: [email protected] 1 Abstract We investigated excitonic absorptions in GaAs/AlAs/GaAs single barrier heterostructure using both photocapacitance and photocurrent spectroscopies at room temperature. Photocapacitance spectra show well defined resonance peak of indirect excitons formed around the -AlAs barrier. Unlike DC-photocurrent spectra, frequency dependent photocapacitance spectra interestingly red shift, sharpen up and then decrease with increasing tunneling at higher biases. Such dissimilarities clearly point out that different exciton dynamics govern these two spectral measurements. We also argue why such quantum confined dipoles of indirect excitons can have thermodynamically finite probabilities to survive even at room temperature. Finally, our observations
    [Show full text]
  • NONLINEAR DYNAMICS of MULTIPLE QUANTUM WELL LASERS: Chaos and Multistability
    NONLINEAR DYNAMICS OF MULTIPLE QUANTUM WELL LASERS: Chaos and Multistability A THESIS SUBMITTED TO COCHIN UNIVERSITY OF SCIENCE & TECHNOLOGY IN PARTIAL FULFILMENT OF THE m;QUIREMENTS FOR AWARD OF THE DEGREE OF ;.Doctor of ~~ilosop~1) IN THE FACULTY OF SCIENCE by Jijo PU International School of Photonics Cochin university of Science & Technology Cochin 682 022 ll'\])!i\ August 2008 Nonlinear Dynamics of Multiple Quantum Well Lasers: Chaos and Multistability Ph D Thesis in the field of N onlincor Ihmumics Author: Jijo P. U. Research Fellow International School of Photonics, Cochin University of Science and Technology, Cochin 682 022, India E-mail: [email protected] -r .., I {;;2\315 8.2.b(04~ 1;- .• Research Advisor: Dr. V. M. Nandakumamn J\:J Professor International School of Photonics, Cochin University of Science and Technology, Cochin 682 022, India .i E-mail: nandaksucusat.ac.in International School of Photonics, Cochin University of Science and Technology, Cochin, 682 022, India URL: www.photonics.cusat.edu August 2008 Revised in April 2010 TO My Loving Family and My Teachers CERTIFICATE Certified that the work presented in the thesis entitled "Nonlinear Dynamics of Multi­ ple Quantum Well Lasers: Chaos and Multistability" is based on the original work done by Mr. Jijo P. V., under my guidance and supervision at the International School of Photonics, Co chin University of Science and Technology, Cochin 682 022, India and has not been included in any other thesis submitted previously for the award of any degree. ,L-f / I Kochi 22 Prof. V. M. Nandakumaran August 29, 2008 (Supervising Guide) International School of Photonics, CUSAT iii DECLARATION I do hereby declare that the work done in the thesis entitled "Nonlinear Dynamics of Multiple Quantum Well Lasers: Chaos and Multistability" is based on the original work done by me under the supervision of Dr.
    [Show full text]