Practical Instructions for the 2018 ESC Guidelines for the Diagnosis And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pediatric Autonomic Disorders
STATE-OF-THE-ART REVIEW ARTICLE Editor’s Note The Journal is interested in receiving for review short articles (1000 words) summarizing recent advances which have been made in the past 2 or 3 years in specialized areas of research and patient care. Pediatric Autonomic Disorders Felicia B. Axelrod, MDa, Gisela G. Chelimsky, MDb, Debra E. Weese-Mayer, MDc aDepartment of Pediatrics and Neurology, New York University School of Medicine, New York, New York; bDepartment of Pediatrics, Case Western Reserve School of Medicine, Cleveland, Ohio; cDepartment of Pediatrics, Rush University School of Medicine, Chicago, Illinois The authors have indicated they have no financial relationships relevant to this article to disclose. ABSTRACT The scope of pediatric autonomic disorders is not well recognized. The goal of this review is to increase awareness of the expanding spectrum of pediatric autonomic disorders by providing an overview of the autonomic nervous system, including www.pediatrics.org/cgi/doi/10.1542/ peds.2005-3032 the roles of its various components and its pervasive influence, as well as its doi:10.1542/peds.2005-3032 intimate relationship with sensory function. To illustrate further the breadth and Key Words complexities of autonomic dysfunction, some pediatric disorders are described, autonomic nervous system, cardiovascular, concentrating on those that present at birth or appear in early childhood. sympathetic nervous system, parasympathetic nervous system, viscerosensory Abbreviations FD—familial dysautonomia ANS—autonomic nervous system CAN—central autonomic network PHOX2B—paired-like homeobox 2B NGF—nerve growth factor CFS—chronic fatigue syndrome HSAN—hereditary sensory and autonomic neuropathy CIPA—congenital insensitivity to pain with anhidrosis CCHS—congenital central hypoventilation syndrome CVS—cyclic vomiting syndrome POTS—postural orthostatic tachycardia Accepted for publication Feb 13, 2006 Address correspondence to Felicia B. -
IAEM Syncope
IAEM Clinical Guideline Management of syncope in the emergency department Version 1 April, 2019 Authors: Dr Áine Mitchell, in collaboration with Dr Rosa McNamara, Professor Rose Anne Kenny and the IAEM Guideline Development Committee. DISCLAIMER IAEM recognises that patients, their situations, Emergency Departments and staff all vary. These guidelines cannot cover all clinical scenarios. The ultimate responsibility for the interpretation and application of these guidelines, the use of current information and a patient's overall care and wellbeing resides with the treating clinician. GLOSSARY OF TERMS AAA: Abdominal aortic aneurysm AFib: Atrial fibrillation ARVC: Arrythmogenic right ventricular cardiomyopathy AV: Atrioventricular βHCG: Beta human chorionic gonadotropin BP: Blood pressure BSL: Blood sugar level CCF: Congestive cardiac failure CM: Cardiomyopathy ECG: Electrocardiogram ED: Emergency Department EF: Ejection fraction ESC: European Society of Cardiology FHx: Family history GI: Gastrointestinal GP: General practitioner HCT: Haematocrit HOCM: Hypertrophic obstructive cardiomyopathy Hx: History IAEM: Irish Association for Emergency Medicine ICD: Implanted cardioverter defibrillator IHD: Ischaemic heart disease MI: Myocardial Infarction OPD: Out-patient department PCM: Physical counter-pressure manoeuvres PE: Pulmonary embolus PMHx: Past Medical History PPM: Permanent pacemaker RSA: Road safety authority SAH: Sub-arachnoid haemorrhage SBP: Systolic blood pressure SCD: Sudden cardiac death SVT: Supra-ventricular tachycardia TIA: Transient ischaemic attack T-LOC: Transient loss of consciousness VT: Ventricular tachycardia WPW: Wolff-Parkinson-White 2 IAEM CG: Management of syncope in the emergency department Version 1 April 2019 INTRODUCTION Syncope is defined as a transient loss of consciousness (T-LOC) due to cerebral hypoperfusion. It is characterised by a rapid onset, short duration and spontaneous complete recovery. -
Clinical Presentation of Orthostatic Hypotension in the Elderly
Postgrad Med J: first published as 10.1136/pgmj.70.827.638 on 1 September 1994. Downloaded from Postgrad Med J (1994) 70, 638 - 642 © The Fellowship of Postgraduate Medicine, 1994 Medicine in the Elderly Clinical presentation oforthostatic hypotension in the elderly G.M. Craig Formerly Consultant Geriatrician, Northampton Health Authority, Northampton, UK Summary: Fifty cases of orthostatic hypotension in the elderly are analysed. Three main modes of presentation were identified: (1) falls or mobility problems; (2) mental confusion or dementia; or (3) predominantly cardiac symptoms. Selected case histories are given to illustrate diagnostic difficulties. Medication was responsible for orthostatic hypotension in 66% of patients and striking examples of polypharmacy were encountered. However, 34% of cases were not iatrogenic. Only 14% of patients had overtly postural symptoms. A high index ofsuspicion is needed to diagnose orthostatic hypotension in the elderly and the condition is often overlooked. The paper provides useful diagnostic clues for clinicians. Introduction Orthostatic hypotension is common in hospital reason the patients' age is not on record in ten The condition in cases. With this proviso the mean age was 80 years geriatric practice. may present by copyright. unusual ways in the elderly and can easily be (n = 40, range 63-97 years). There were 24 men overlooked. Some cases are a consequence of and 26 women in the series. autonomic failure. Physiological and pathology aspects, and treatment of autonomic failure are quite well covered in the literature.'I Detailed tests Clinical presentation have been devised to locate the precise level of neuronal dysfunction once the diagnosis has been The presenting features in order of frequency are established6 and the clinical features have been well shown in Table I. -
Evaluation and Management in an Urgent Care Setting
Syncope Evaluation and Management in an Urgent Care Setting Urgent message: When a patient presents to urgent care after a syncopal event, the clinician’s charge is to determine whether the episode was of benign or potentially life-threatening etiology and whether the patient should be transferred for further evaluation. Kenneth V. Iserson, MD, MBA, FACEP, FAAEM, Professor of Emergency Medicine, The University of Arizona, Tucson, AZ Introduction yncope is a sudden, transient loss of consciousness with a loss of postural tone (typically, falling). It results from an abrupt, transient, and diffuse cerebral Smalfunction and is quickly followed by sponta- neous recovery. The term syncope excludes seizures, coma, shock, or other states of altered consciousness. Many patients will ascribe their syncopal episode to a sit- uationally mediated vasovagal episode. Despite this, the goals in the urgent care setting include the following: Ⅲ Determining whether the patient’s episode was actually a syncopal or presyncopal event, and if it could have a life-threatening etiology Ⅲ Stabilizing the patient Ⅲ Transferring those patients who need further diag- nostic studies or therapeutic interventions © John Bolesky, Artville © John Bolesky, Epidemiology Syncope accounts for up to 3% of emergency depart- common in young adults, while cardiac syncope ment (ED) visits and up to 6% of hospital admissions becomes increasingly more frequent with advancing each year in the United States.1,2 At some time in their age.4 The chance of having at least one syncopal episode lives, up to about half the population (12% to 48%) of in childhood is between 15% and 50%.5 Though a people may experience syncope.3 benign cause is usually found, syncope in children war- Syncope occurs in all age groups, but it is most com- rants prompt detailed evaluation.6 mon in adults. -
Towards an International Classification of Vestibular Disorders
Journal of Vestibular Research 19 (2009) 1–13 1 DOI 10.3233/VES-2009-0343 IOS Press Classification of vestibular symptoms: Towards an international classification of vestibular disorders First consensus document of the Committee for the Classification of Vestibular Disorders of the B ar´ any´ Society Alexandre Bisdorffa,∗, Michael Von Brevernb, Thomas Lempertc and David E. Newman-Tokerd aDepartment of Neurology, Centre Hospitalier Emile Mayrisch, L-4005 Esch-sur-Alzette, Luxembourg bVestibular Research Group Berlin, Department of Neurology, Park-Klinik Weissensee, Berlin, Germany cVestibular Research Group Berlin, Department of Neurology, Schlosspark-Klinik, Berlin, Germany dDepartment of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA On behalf of the Committee for the Classification of Vestibular Disorders of the Bar´ any´ Society: Pierre Bertholon, Alexandre Bisdorff, Adolfo Bronstein, Herman Kingma, Thomas Lempert, Jose Antonio Lopez Escamez, Måns Magnusson, Lloyd B. Minor, David E. Newman-Toker, Nicolas´ Perez,´ Philippe Perrin, Mamoru Suzuki, Michael von Brevern, John Waterston and Toshiaki Yagi Received 4 February 2009 Accepted 1 September 2009 1. Introduction such as psychiatry and headache, where often there is no histopathologic, radiographic, physiologic, or other The Committee for Classification of Vestibular Dis- independent diagnostic standard available. However, orders of the Bar´ any´ Society was inaugurated at the diagnostic standards and classification are also crucial meeting of the Bar´ any´ Society in Uppsala 2006. Its in areas of medicine such as epilepsy and rheumatolo- charge is to promote development of an implementable gy, where, although confirmatory tests do exist, there classification of vestibular disorders. is substantial overlap in clinical features or biomarkers Symptom and disease definitions are a fundamen- across syndromes. -
Neurocardiogenic Syncope and Associated Conditions: Insight Into Autonomic Nervous System Dysfunction
Türk Kardiyol Dern Arş - Arch Turk Soc Cardiol 2013;41(1):75-83 doi: 10.5543/tkda.2013.44420 75 Neurocardiogenic syncope and associated conditions: insight into autonomic nervous system dysfunction Nörokardiyojenik senkop ve ilişkili durumlar: Otonomik sinir sistemi işlev bozukluğuna bir bakış Antoine Kossaify, M.D., Kamal Kallab, M.D. Department of Syncope and Electrophysiology, ND Secours/USEK University Hospital, Byblos, Lebanon Summary– Neurocardiogenic syncope is known to be asso- Özet– Nörokardiyojenik senkopun mekanizması hala tam ola- ciated with autonomic nervous system dysfunction, although rak aydınlatılamamasına ragmen otonom sinir sistemi işlev the mechanism has not been entirely elucidated. In this study, bozukluğu ile ilişkili olduğu bilinmektedir. Bu yazıda nörokardi- we sought to highlight the pathogenic role of the autonomic yojenik senkop patogenezinde otonom sinir sisteminin rolünü nervous system in neurocardiogenic syncope and to review destekleyen en göze çarpıcı konuları araştırırken, temelinde the associated co-morbidities known to have a dysautonomic otonom sinir sistemi bozukluğunun olduğu bilinen komorbid basis. Herein we discuss migraine, orthostatic hypotension, durumları da gözden geçidik. Bu amaçla otonom sinir siste- postural orthostatic tachycardia syndrome, endothelial dys- minin patogenezdeki rolü ve klinik çıkarımları üzerine odak- function, chronic fatigue syndrome, and carotid sinus hyper- lanarak migren, ortostatik hipotansiyon, postüral ortostatik sensitivity with a focus on the pathogenic role of the autonom- taşikardi sendromu, endotel işlev bozukluğu, kronik yorgunluk ic nervous system and any consecutive clinical implications. sendromu ve karotis sinüs hipersensitivitesi tartışıldı. Tilt testi Other conditions, such as pre-syncopal heart rate acceleration sırasında ortaya çıkabilen senkop öncesi kalp atımlarında hız- and/or instability and pre-syncopal breathing instability, which lanma ve/veya instabilite ve senkop öncesi instabil solunum occur during a tilt test, are discussed in the same perspective. -
What Is the Autonomic Nervous System?
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.74.suppl_3.iii31 on 21 August 2003. Downloaded from AUTONOMIC DISEASES: CLINICAL FEATURES AND LABORATORY EVALUATION *iii31 Christopher J Mathias J Neurol Neurosurg Psychiatry 2003;74(Suppl III):iii31–iii41 he autonomic nervous system has a craniosacral parasympathetic and a thoracolumbar sym- pathetic pathway (fig 1) and supplies every organ in the body. It influences localised organ Tfunction and also integrated processes that control vital functions such as arterial blood pres- sure and body temperature. There are specific neurotransmitters in each system that influence ganglionic and post-ganglionic function (fig 2). The symptoms and signs of autonomic disease cover a wide spectrum (table 1) that vary depending upon the aetiology (tables 2 and 3). In some they are localised (table 4). Autonomic dis- ease can result in underactivity or overactivity. Sympathetic adrenergic failure causes orthostatic (postural) hypotension and in the male ejaculatory failure, while sympathetic cholinergic failure results in anhidrosis; parasympathetic failure causes dilated pupils, a fixed heart rate, a sluggish urinary bladder, an atonic large bowel and, in the male, erectile failure. With autonomic hyperac- tivity, the reverse occurs. In some disorders, particularly in neurally mediated syncope, there may be a combination of effects, with bradycardia caused by parasympathetic activity and hypotension resulting from withdrawal of sympathetic activity. The history is of particular importance in the consideration and recognition of autonomic disease, and in separating dysfunction that may result from non-autonomic disorders. CLINICAL FEATURES c copyright. General aspects Autonomic disease may present at any age group; at birth in familial dysautonomia (Riley-Day syndrome), in teenage years in vasovagal syncope, and between the ages of 30–50 years in familial amyloid polyneuropathy (FAP). -
The Latest in Research in Familial Dysautonomia
2018 – 2019 YEAR IN REVIEW THE LATEST IN RESEARCH IN FAMILIAL DYSAUTONOMIA _______ A MESSAGE FROM OUR DIRECTOR______ ver the last 12 months, the Center’s research efforts have continued us on the path of finding better treatments. There has never been a more O exciting time when it comes to developing new therapies for neurological diseases. In other rare diseases, it has been possible to edit genes, fix protein production, and even cure illnesses with a single infusion. These new treatments have been accomplished thanks to basic scientists and clinicians working together. Over the last 11-years, I have watched the Center grow into a powerhouse of clinical care as well as research built on training, learning, and collaboration. The team at the Center has built a research framework on an international scale, which means no patient will be left behind when it comes to developing treatments. We now follow patients in the United States, Israel, Canada, England, Belgium, Germany, Argentina, Brazil, Australia and Mexico. The natural history study where we collect all clinical and laboratory data is helping us design the trials to get new treatments in to the clinic as required by the US Food and Drug Administration (FDA). In December 2018, I visited Israel to attend the family caregiver conference and made certain that all Israeli patients participate in the natural history study, a critical step to enroll the necessary number of patients. Because FD is a rare disease, we need patients from all corners of the globe to participate. Geographical constraints should not limit be a limit to the progress we can make for FD. -
Syncope in Adults: Systematic Review and Proposal of a Diagnostic and Therapeutic Algorithm
International Journal of Cardiology 162 (2013) 149–157 Contents lists available at SciVerse ScienceDirect International Journal of Cardiology journal homepage: www.elsevier.com/locate/ijcard Review Syncope in adults: Systematic review and proposal of a diagnostic and therapeutic algorithm Salvatore Rosanio a,⁎, Ernst R. Schwarz b, David L. Ware c, Antonio Vitarelli d a University of North Texas Health Science Center (UNTHSC) Department of Internal Medicine, Division of Cardiology 855 Montgomery Street 76107 Fort Worth, TX, United States b Cardiology Division, Cedars Sinai Medical Center, Los Angeles, CA, United States c Cardiology Division, University of Texas Medical Branch, Galveston, TX, United States d Cardio-Respiratory Department, La Sapienza University, Rome, Italy article info abstract Article history: This review aims to provide a practical and up-to-date description on the relevance and classification of syncope Received 19 June 2011 in adults as well as a guidance on the optimal evaluation, management and treatment of this very common clin- Received in revised form 28 October 2011 ical and socioeconomic medical problem. We have summarized recent active research and emphasized the value Accepted 24 November 2011 for physicians to adhere current guidelines. A modern management of syncope should take into account 1) use of Available online 20 December 2011 risk stratification algorithms and implementation of syncope management units to increase the diagnostic yield and reduce costs; 2) early implantable loop recorders rather than late in the evaluation of unexplained syncope; Keywords: fi Syncope and 3) isometric physical counter-pressure maneuvers as rst-line treatment for patients with neurally- Pacing mediated reflex syncope and prodromal symptoms. -
STARS Reflex Syncope (VVS) Booklet.Indd
Reflex Syncope (Vasovagal Syncope) Working together with individuals, families and medical professionals to off er support and information on syncope and refl ex anoxic seizures www.stars.org.ukRegistered Charity No. 1084898 Registered Charity No. 1084898 Glossary of terms Refl ex syncope Refl ex syncope is a transient condition resulting from intermittent dysfunction of the autonomic nervous Contents system, which regulates blood pressure and heart rate. 12-lead ECG What is refl ex 12-lead electrocardiogram (ECG) is used to record heart syncope? rhythms whilst in hospital. Heart rhythm monitor What are the Heart rhythm monitors are used to record heart rhythms symptoms? for up to a week whilst away from hospital. ILR How do I obtain a Implantable loop recorder (ILR) is a small thin device diagnosis? inserted under the skin to record heart rhythms. The device can remain in place for up to three years. What should I do if I Tilt table test feel dizzy or faint? A tilt table test is an autonomic test used to induce an attack whilst connected to heart and blood pressure What should my monitors. friends/family do Collapse if I faint? Abrupt loss of postural control Blackout/T-LoC What can I do to Transient loss of consciousness without neurological prevent syncope defi cit attacks? Syncope T-LoC due to transient global impairment of cerebral Are there any other perfusion treatments? Epilepsy Repeated episodes of excessive asynchronous discharge Driving and refl ex of cortical neurones leading to a clinical event syncope Psychogenic blackouts A cause of apparent blackouts without evidence of Flying and refl ex syncope or epilepsy syncope Fall Patient goes down freely under the infl uence of gravity Misdiagnosis TIA TIA (transient ischaemic attack) is caused by a temporary disruption in the blood supply to part of the brain (also known as a mini stroke) 2 What is reflex syncope? SYNCOPE (sin-co-pee) is a medical term for a This booklet is blackout caused by a sudden lack of blood supply designed for to the brain. -
ILAE Classification and Definition of Epilepsy Syndromes with Onset in Childhood: Position Paper by the ILAE Task Force on Nosology and Definitions
ILAE Classification and Definition of Epilepsy Syndromes with Onset in Childhood: Position Paper by the ILAE Task Force on Nosology and Definitions N Specchio1, EC Wirrell2*, IE Scheffer3, R Nabbout4, K Riney5, P Samia6, SM Zuberi7, JM Wilmshurst8, E Yozawitz9, R Pressler10, E Hirsch11, S Wiebe12, JH Cross13, P Tinuper14, S Auvin15 1. Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesu’ Children’s Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy 2. Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester MN, USA. 3. University of Melbourne, Austin Health and Royal Children’s Hospital, Florey Institute, Murdoch Children’s Research Institute, Melbourne, Australia. 4. Reference Centre for Rare Epilepsies, Department of Pediatric Neurology, Necker–Enfants Malades Hospital, APHP, Member of European Reference Network EpiCARE, Institut Imagine, INSERM, UMR 1163, Université de Paris, Paris, France. 5. Neurosciences Unit, Queensland Children's Hospital, South Brisbane, Queensland, Australia. Faculty of Medicine, University of Queensland, Queensland, Australia. 6. Department of Paediatrics and Child Health, Aga Khan University, East Africa. 7. Paediatric Neurosciences Research Group, Royal Hospital for Children & Institute of Health & Wellbeing, University of Glasgow, Member of European Refence Network EpiCARE, Glasgow, UK. 8. Department of Paediatric Neurology, Red Cross War Memorial Children’s Hospital, Neuroscience Institute, University of Cape Town, South Africa. 9. Isabelle Rapin Division of Child Neurology of the Saul R Korey Department of Neurology, Montefiore Medical Center, Bronx, NY USA. 10. Programme of Developmental Neurosciences, UCL NIHR BRC Great Ormond Street Institute of Child Health, Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children, London, UK 11. -
Reflex Syncope in Children and Adolescents, Its Tclinical Characteristics and Syndromes, the Approach to Diagnosis, and Finally Treatment
Congenital heart disease REFLEX SYNCOPE IN CHILDREN AND Heart: first published as 10.1136/hrt.2003.022996 on 13 August 2004. Downloaded from ADOLESCENTS 1094 Wouter Wieling, Karin S Ganzeboom, J Philip Saul Heart 2004;90:1094–1100. doi: 10.1136/hrt.2003.022996 his article will address the epidemiology of reflex syncope in children and adolescents, its Tclinical characteristics and syndromes, the approach to diagnosis, and finally treatment. c EPIDEMIOLOGY Syncope can be defined as a temporary loss of consciousness and postural tone secondary to a lack of adequate cerebral blood perfusion. The incidence of syncope coming to medical attention appears to be clearly increased in two age groups—that is, in the young and in the old (fig 1).1 An incidence peak occurs around the age of 15 years, with females having more than twice the incidence of males.12 Syncope is an infrequent occurrence in adults. The incidence of syncope progressively increases over the age of about 40 years to become high in the older age groups. A lower peak occurs in older infants and toddlers, most commonly referred to as ‘‘breath-holding spells’’.3 The incidence of syncope in young subjects coming to medical attention varies from approximately 0.5 to 3 cases per 1000 (0.05–0.3%).2 Syncopal events which do not reach medical attention occur much more frequently. In fact, the recently published results of a survey of students averaging 20 years of age demonstrated that about 20% of males and 50% of females report to have experienced at least one syncopal episode.4 By comparison, the prevalence of seizures in a similar age group is about 5 per 1000 (0.5%)5 and cardiac syncope (that is, cardiac arrhythmias or structural heart disease) is even far less common.