Dimer Formation Drives the Activation of the Cell Death Protease Caspase 9

Total Page:16

File Type:pdf, Size:1020Kb

Dimer Formation Drives the Activation of the Cell Death Protease Caspase 9 Dimer formation drives the activation of the cell death protease caspase 9 Martin Renatus, Henning R. Stennicke, Fiona L. Scott, Robert C. Liddington, and Guy S. Salvesen* Program in Apoptosis and Cell Death Research, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037 Communicated by Erkki Ruoslahti, The Burnham Institute, La Jolla, CA, August 31, 2001 (received for review August 3, 2001) A critical step in the induction of apoptosis is the activation of the competent form, and here we describe studies that illustrate such apoptotic initiator caspase 9. We show that at its normal physio- a mechanism. logical concentration, caspase 9 is primarily an inactive monomer (zymogen), and that activity is associated with a dimeric species. At Materials and Methods the high concentrations used for crystal formation, caspase 9 is Recombinant Proteins. Full-length and ⌬CARD (caspase recruit- dimeric, and the structure reveals two very different active-site ment domain) human caspase 9 (lacking the first 138 residues) conformations within each dimer. One site closely resembles the were expressed in soluble form and purified from Escherichia catalytically competent sites of other caspases, whereas in the coli (5). A cleavage-defective mutant of caspase 9 containing second, expulsion of the ‘‘activation loop’’ disrupts the catalytic Asp͞Ala substitutions at the underlined residues PEPDA and machinery. We propose that the inactive domain resembles mo- DQLDA within the interdomain linker segment was generated, nomeric caspase 9. Activation is induced by dimerization, with expressed, and purified as described (5). Further mutations that interactions at the dimer interface promoting reorientation of the abrogated cleavage of caspase 9 were generated by replacing the activation loop. These observations support a model in which three acidic residues PEDES in the interdomain linker segment recruitment by Apaf-1 creates high local concentrations of caspase by Ala residues (21). The final noncleavable constructs con- 9 to provide a pathway for dimer-induced activation. tained all five Ala substitutions, and are designated as single- chain forms. apoptosis ͉ crystal structure ͉ zymogen activation Reagents. The polycaspase inhibitor benzoxycarbonyl-Val-Ala- Asp-fluoromethyl ketone (Z-VAD-FMK) and the caspase 9 he protease caspase 9 is the central participant in a multi- substrate acetyl-Leu-Glu-His-Asp-7-amino-4-trifluoromethyl component complex known as the apoptosome, which con- T coumarin (Ac-LEHD-AFC) were from Enzyme Systems Prod- trols cell deletion during development of the central nervous ucts, and the N-deblocked VAD-FMK was custom synthesized system and the apoptotic response to lethal cellular insults such by Enzyme Systems Products (Livermore, CA). The irreversible as ionizing radiation or chemotherapeutic drugs (1–3). The task inhibitor benzoxycarbonyl-Glu-Val-Asp-dichlorobenzylmethyl of caspase 9 is to generate the active forms of caspases 3 and 7 ketone (Z-EVD-Dcbmk) was a gift of Joe Wu, Idun Pharma- by limited proteolysis, and thereby transmit the apoptotic signal ceuticals (San Diego). to the execution phase. Most proteases exist in their biologically relevant locations in a latent form, and caspase 9 is no exception. Caspase 9 Assays. Hydrolysis of Ac-LEHD-AFC by caspase 9 was However, caspase 9 is unusual among its close relatives in that followed on a Molecular Devices fmax plate reader at 37°C. The proteolysis between the large and small subunit is not sufficient assay buffer was 10 mM Pipes͞0.1 M NaCl͞0.1 mM EDTA͞10 for conversion of the latent zymogen to the catalytic form (4, 5). mM DTT͞10% sucrose͞0.1% 3-[(3-cholamidopropyl)dimeth- In common with other initiators of proteolytic pathways (6–8), ylammonio]-1-propanesulfonate (CHAPS), pH 7.2. Cleavage of caspase 9 requires association with specific cofactors for its the substrate as a function of time was followed by monitoring activation, in this case an activated form of Apaf-1 within the the emission at 510 nm on excitation at 405 nm, and the initial apoptosome (1). velocity was determined from the linear portion of progress There are two fundamental ways in which protease zymogens curve. The enzymatically active concentration of caspase 9 was are maintained in an inactive conformation. In one case, exem- determined by titration with Z-VAD-FMK as described (22). plified by the lysosomal cysteine proteases (9) and the matrix metalloproteinases (10), the catalytic site is in an active confor- Gel Filtration. Gel filtration of caspase 9 derivatives was per- mation, but access is blocked; limited proteolysis removes the formed on a Amersham Pharmacia Superdex 200 column in 20 blocking N-terminal propeptide. In the second case, such as the mM Tris͞100 mM NaCl buffer (pH 8.0) with a flow rate of 1 chymotrypsin family exemplified by the coagulation serine pro- ml⅐minϪ1. The column dimensions were 30 ϫ 1 cm, and 0.5-ml teases, the catalytic site is not yet formed, and structural fractions were collected for analysis. rearrangements are required (11). These structural rearrange- ments can occur by limited proteolysis, or by cofactor binding Caspase-9 Crosslinking. Catalytically active ⌬CARD caspase 9, irrespective of proteolysis. Thus the executioner of the coagu- and ⌬CARD caspase 9 covalently inhibited with Z-VAD-FMK lation pathway, thrombin, is activated simply by proteolysis (12), were dialyzed against 100 mM phosphate buffer (pH 7.5), and but the initiator of the extrinsic branch of the coagulation the protein concentration was adjusted to 2.4 ␮M. The crosslink- pathway, factor VII, is inactive until bound by its cofactor (tissue factor; ref. 13). The structure of active caspases 1, 3, 7, and 8 with peptidyl Abbreviations: Z, benzoxycarbonyl; AFC, 7-amino-4-trifluoromethyl coumarin; FMK, flu- oromethyl ketone; Dcbmk, dichlorobenzyl methylketone. inhibitors occupying their catalytic sites has clarified the com- Data deposition: The caspase 9 coordinates have been deposited in the Protein Data Bank, mon mechanism of the enzymes (14–20), yet little was known of www.rcsb.org (PDB ID code 1JXQ). the molecular basis of activation of the latent forms, nor the *To whom reprint requests should be addressed. E-mail: [email protected]. molecular mechanism of maintenance of the inactive zymogens. The publication costs of this article were defrayed in part by page charge payment. This Because proteolysis is not required for activation of caspase 9, article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. there must exist another mechanism to achieve the catalytically §1734 solely to indicate this fact. 14250–14255 ͉ PNAS ͉ December 4, 2001 ͉ vol. 98 ͉ no. 25 www.pnas.org͞cgi͞doi͞10.1073͞pnas.231465798 Fig. 1. Identification of the active form of caspase 9. (A) Gel filtration of caspase 9 on a Amersham Pharmacia Superdex 200 column reveals that most of the protein for each form (smooth curge; right ordinate, mAU ϭ milli-absorbance units at 280 nm) eluted as a monomer (Ϸ35 kDa for the ⌬CARD forms and Ϸ48 kDa for the full-length form), but the majority of activity against the substrate Ac-LEHD-AFC (step curve; left ordinate, Rfu ϭ relative fluorescence units) is present in the fraction corresponding to dimers (Ϸ70 kDa for the ⌬CARD forms and Ϸ100 kDa for the full length form). Insets demonstrate the integrity of the purified recombinant proteins run in SDS͞PAGE before gel filtration. The arrow marks the position of the protein peak for two chain caspase 9 inhibited by Z-VAD-FMK. (B) Crosslinking of ⌬CARD caspase 9 by glutaraldehyde in the absence (Upper) or presence (Lower)of1.0␮M Z-VAD-FMK. The gray triangle above the gels indicates the glutaraldehyde concentration (ranging from 500 to 0.032 mM). The majority of caspase 9 material is a monomer, and inhibitor binding forces the dimeric form. Thus, it appears that the inhibitor either drives or traps the dimeric form of caspase 9, indicating that the dimer is the active form of the enzyme. ing reaction was performed by incubating 50 ␮l of the protein ing kits from Hampton Research (Riverside, CA), and crystals solution with 50 ␮l of aqueous glutaraldehyde solutions at where obtained from 0.1 M Mes (pH 6.5), 12% PEG 20,000. BIOCHEMISTRY different concentrations (500 mM to 32 ␮M) for 5 min at 23°C. Two-chain ⌬CARD caspase 9 inhibited with Z-EVD-Dcbmk The reaction mixture was reduced for 30 min at 37°C with 20 ␮l crystallized under the same conditions and diffracted to 2.8 Å. of 2 M NaBH4. The crosslinked protein was precipitated by The crystal symmetry and the unit cell dimensions where adding 50 ␮l of 80% trichloroacetic acid, washed, and run in identical to those of the first crystal. Molecular replacement was SDS͞PAGE in gels of 8–18% linear acrylamide gradient with a performed with AMoRe (25) and caspase 3 as search model, 2-amino-2-methyl-1,3-propanediol͞glycine͞HCl system (23). map interpretation was done in MAIN (26), data processing and Samples for SDS͞PAGE were boiled in SDS sample buffer scaling were done in DENZO͞SCALEPACK (27), and crystallo- containing 50 mM DTT for 5 min and then loaded onto the graphic refinement (simulated annealing, positional- and stacking gel. temperature-factor refinement) in Crystallography & NMR System (28). Noncrystallographic symmetry restraints were used N-Terminal Sequencing of Protein Samples. For N-terminal se- between the two dimers in the asymmetric unit, but not between quencing, protein samples were resolved by SDS͞PAGE or the catalytic in each dimer. In the Ramachandran plot of the nondenaturing PAGE and transferred to Immobilon-P mem- 2.8-Å structure final model 90.2% of the ␺͞␾ angles fall in the brane (Millipore) by electroblotting (24). The membrane was core region and 9.8% in the additional allowed region.
Recommended publications
  • Α Are Regulated by Heat Shock Protein 90
    The Levels of Retinoic Acid-Inducible Gene I Are Regulated by Heat Shock Protein 90- α Tomoh Matsumiya, Tadaatsu Imaizumi, Hidemi Yoshida, Kei Satoh, Matthew K. Topham and Diana M. Stafforini This information is current as of October 2, 2021. J Immunol 2009; 182:2717-2725; ; doi: 10.4049/jimmunol.0802933 http://www.jimmunol.org/content/182/5/2717 Downloaded from References This article cites 44 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/182/5/2717.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on October 2, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology The Levels of Retinoic Acid-Inducible Gene I Are Regulated by Heat Shock Protein 90-␣1 Tomoh Matsumiya,*‡ Tadaatsu Imaizumi,‡ Hidemi Yoshida,‡ Kei Satoh,‡ Matthew K. Topham,*† and Diana M. Stafforini2*† Retinoic acid-inducible gene I (RIG-I) is an intracellular pattern recognition receptor that plays important roles during innate immune responses to viral dsRNAs.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • New Tricks for Old Nods Eric M Pietras* and Genhong Cheng*†‡
    Minireview New tricks for old NODs Eric M Pietras* and Genhong Cheng*†‡ Addresses: *Department of Microbiology, Immunology and Molecular Genetics, †Molecular Biology Institute, ‡Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA. Correspondence: Genhong Cheng. Email: [email protected] Published: 25 April 2008 Genome Biology 2008, 9:217 (doi:10.1186/gb-2008-9-4-217) The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2008/9/4/217 © 2008 BioMed Central Ltd Abstract Recent work has identified the human NOD-like receptor NLRX1 as a negative regulator of intracellular signaling leading to type I interferon production. Here we discuss these findings and the questions and implications they raise regarding the function of NOD-like receptors in the antiviral response. Upon infection with a pathogen, the host cell must recognize with a single amino-terminal CARD in the adaptor protein its presence, communicate this to neighboring cells and MAVS (also known as IPS-1, VISA or Cardif), which is tissues and initiate a biological response to limit the spread anchored to the outer mitochondrial membrane [4-7]. MAVS of infection and clear the pathogen. Recognition of invading complexes with the adaptor protein TRAF3, recruiting the microbes proceeds via specialized intracellular and extra- scaffold protein TANK and the IκB kinases (IKKs) TANK- cellular proteins termed pattern recognition receptors (PRRs), binding kinase 1 (TBK1) and IKKε, which activate the trans- which recognize conserved molecular motifs found on patho- cription factor IRF3. IRF3 activation leads to the trans- gens, known as pathogen-associated molecular patterns criptional activation of a number of antiviral genes, includ- (PAMPs).
    [Show full text]
  • Regulation of Caspase-9 by Natural and Synthetic Inhibitors Kristen L
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Open Access Dissertations 5-2012 Regulation of Caspase-9 by Natural and Synthetic Inhibitors Kristen L. Huber University of Massachusetts Amherst, [email protected] Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations Part of the Chemistry Commons Recommended Citation Huber, Kristen L., "Regulation of Caspase-9 by Natural and Synthetic Inhibitors" (2012). Open Access Dissertations. 554. https://doi.org/10.7275/jr9n-gz79 https://scholarworks.umass.edu/open_access_dissertations/554 This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. REGULATION OF CASPASE-9 BY NATURAL AND SYNTHETIC INHIBITORS A Dissertation Presented by KRISTEN L. HUBER Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY MAY 2012 Chemistry © Copyright by Kristen L. Huber 2012 All Rights Reserved REGULATION OF CASPASE-9 BY NATURAL AND SYNTHETIC INHIBITORS A Dissertation Presented by KRISTEN L. HUBER Approved as to style and content by: _________________________________________ Jeanne A. Hardy, Chair _________________________________________ Lila M. Gierasch, Member _________________________________________ Robert M. Weis,
    [Show full text]
  • Subcellular Localization and CARD-Dependent Oligomerization of the Death Adaptor RAIDD
    Cell Death and Differentiation (2000) 7, 155 ± 165 ã 2000 Macmillan Publishers Ltd. All rights reserved 1350-9047/00 $15.00 www.nature.com/cdd Subcellular localization and CARD-dependent oligomerization of the death adaptor RAIDD 1 1 ,1, 2 LM Shearwin-Whyatt , NL Harvey and S Kumar* Introduction 1 Hanson Centre for Cancer Research, Institute of Medical and Veterinary The execution phase of apoptosis involves the activation of a Science, Frome Road, Adelaide, Australia family of cysteine proteases termed caspases.1±3 The fully 2 Department of Medicine, The University of Adelaide, Australia mature, catalytically active caspases are comprised of a * Corresponding author: S Kumar, Hanson Centre for Cancer Research, IMVS, heterotetramer made of two subunits derived from the PO Box 14, Rundle Mall, Adelaide, SA 5000, Australia. Tel: +61-8-8222-3738; proteolytic processing of the caspase precursors. In addition Fax: +61-8-8222-3139; E-mail: [email protected] to the region that gives rise to the two subunits of the active enzyme, procaspase molecules contain an amino terminal Received 7.7.99; revised 13.9.99; accepted 2.11.99 prodomain of varying length. Caspases have been subdivided Edited by S Martin into two classes on the basis of the length of their prodomains.4 Class I caspases, including caspase-2, -8, -9 and -10, contain long prodomains and class II caspases, Abstract including caspase-3, -6 and -7, lack or contain short prodomains. To some extent, this division also reflects a RAIDD, a caspase recruitment domain (CARD) containing functional hierarchy within the caspase family, with class I molecule, interacts with procaspase-2 in a CARD-dependent caspases lying upstream of class II caspases in the apoptotic manner.
    [Show full text]
  • Sharmin Supple Legend 150706
    Supplemental data Supplementary Figure 1 Generation of NPHS1-GFP iPS cells (A) TALEN activity tested in HEK 293 cells. The targeted region was PCR-amplified and cloned. Deletions in the NPHS1 locus were detected in four clones out of 10 that were sequenced. (B) PCR screening of human iPS cell homologous recombinants (C) Southern blot screening of human iPS cell homologous recombinants Supplementary Figure 2 Human glomeruli generated from NPHS1-GFP iPS cells (A) Morphological changes of GFP-positive glomeruli during differentiation in vitro. A different aggregate from the one shown in Figure 2 is presented. Lower panels: higher magnification of the areas marked by rectangles in the upper panels. Note the shape changes of the glomerulus (arrowheads). Scale bars: 500 µm. (B) Some, but not all, of the Bowman’s capsule cells were positive for nephrin (48E11 antibody: magenta) and GFP (green). Scale bars: 10 µm. Supplementary Figure 3 Histology of human podocytes generated in vitro (A) Transmission electron microscopy of the foot processes. Lower magnification of Figure 4H. Scale bars: 500 nm. (B) (C) The slit diaphragm between the foot processes. Higher magnification of the 1 regions marked by rectangles in panel A. Scale bar: 100 nm. (D) Absence of mesangial or vascular endothelial cells in the induced glomeruli. Anti-PDGFRβ and CD31 antibodies were used to detect the two lineages, respectively, and no positive signals were observed in the glomeruli. Podocytes are positive for WT1. Nuclei are counterstained with Nuclear Fast Red. Scale bars: 20 µm. Supplementary Figure 4 Cluster analysis of gene expression in various human tissues (A) Unbiased cluster analysis across various human tissues using the top 300 genes enriched in GFP-positive podocytes.
    [Show full text]
  • The Death Domain Superfamily in Intracellular Signaling of Apoptosis and Inflammation
    ANRV306-IY25-19 ARI 11 February 2007 12:51 The Death Domain Superfamily in Intracellular Signaling of Apoptosis and Inflammation Hyun Ho Park,1 Yu-Chih Lo,1 Su-Chang Lin,1 Liwei Wang,1 Jin Kuk Yang,1,2 and Hao Wu1 1Department of Biochemistry, Weill Medical College and Graduate School of Medical Sciences of Cornell University, New York, New York 10021; email: [email protected] 2Department of Chemistry, Soongsil University, Seoul 156-743, Korea Annu. Rev. Immunol. 2007. 25:561–86 Key Words First published online as a Review in Advance on death domain (DD), death effector domain (DED), tandem DED, January 2, 2007 caspase recruitment domain (CARD), pyrin domain (PYD), crystal The Annual Review of Immunology is online at structure, NMR structure immunol.annualreviews.org This article’s doi: Abstract 10.1146/annurev.immunol.25.022106.141656 The death domain (DD) superfamily comprising the death domain Copyright c 2007 by Annual Reviews. (DD) subfamily, the death effector domain (DED) subfamily, the Annu. Rev. Immunol. 2007.25:561-586. Downloaded from arjournals.annualreviews.org by CORNELL UNIVERSITY MEDICAL COLLEGE on 03/29/07. For personal use only. All rights reserved caspase recruitment domain (CARD) subfamily, and the pyrin do- 0732-0582/07/0423-0561$20.00 main (PYD) subfamily is one of the largest domain superfamilies. By mediating homotypic interactions within each domain subfam- ily, these proteins play important roles in the assembly and activation of apoptotic and inflammatory complexes. In this chapter, we review the molecular complexes assembled by these proteins, the structural and biochemical features of these domains, and the molecular in- teractions mediated by them.
    [Show full text]
  • ©Ferrata Storti Foundation
    Original Articles T-cell/histiocyte-rich large B-cell lymphoma shows transcriptional features suggestive of a tolerogenic host immune response Peter Van Loo,1,2,3 Thomas Tousseyn,4 Vera Vanhentenrijk,4 Daan Dierickx,5 Agnieszka Malecka,6 Isabelle Vanden Bempt,4 Gregor Verhoef,5 Jan Delabie,6 Peter Marynen,1,2 Patrick Matthys,7 and Chris De Wolf-Peeters4 1Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium; 2Department of Human Genetics, K.U.Leuven, Leuven, Belgium; 3Bioinformatics Group, Department of Electrical Engineering, K.U.Leuven, Leuven, Belgium; 4Department of Pathology, University Hospitals K.U.Leuven, Leuven, Belgium; 5Department of Hematology, University Hospitals K.U.Leuven, Leuven, Belgium; 6Department of Pathology, The Norwegian Radium Hospital, University of Oslo, Oslo, Norway, and 7Department of Microbiology and Immunology, Rega Institute for Medical Research, K.U.Leuven, Leuven, Belgium Citation: Van Loo P, Tousseyn T, Vanhentenrijk V, Dierickx D, Malecka A, Vanden Bempt I, Verhoef G, Delabie J, Marynen P, Matthys P, and De Wolf-Peeters C. T-cell/histiocyte-rich large B-cell lymphoma shows transcriptional features suggestive of a tolero- genic host immune response. Haematologica. 2010;95:440-448. doi:10.3324/haematol.2009.009647 The Online Supplementary Tables S1-5 are in separate PDF files Supplementary Design and Methods One microgram of total RNA was reverse transcribed using random primers and SuperScript II (Invitrogen, Merelbeke, Validation of microarray results by real-time quantitative Belgium), as recommended by the manufacturer. Relative reverse transcriptase polymerase chain reaction quantification was subsequently performed using the compar- Ten genes measured by microarray gene expression profil- ative CT method (see User Bulletin #2: Relative Quantitation ing were validated by real-time quantitative reverse transcrip- of Gene Expression, Applied Biosystems).
    [Show full text]
  • Cellular Models and Assays to Study NLRP3 Inflammasome Biology
    International Journal of Molecular Sciences Review Cellular Models and Assays to Study NLRP3 Inflammasome Biology 1 1, 1, 2 2,3 Giovanni Zito , Marco Buscetta y, Maura Cimino y, Paola Dino , Fabio Bucchieri and Chiara Cipollina 1,3,* 1 Fondazione Ri.MED, via Bandiera 11, 90133 Palermo, Italy; [email protected] (G.Z.); [email protected] (M.B.); [email protected] (M.C.) 2 Dipartimento di Biomedicina Sperimentale, Neuroscenze e Diagnostica Avanzata (Bi.N.D.), University of Palermo, via del Vespro 129, 90127 Palermo, Italy; [email protected] (P.D.); [email protected] (F.B.) 3 Istituto per la Ricerca e l’Innovazione Biomedica-Consiglio Nazionale delle Ricerche, via Ugo la Malfa 153, 90146 Palermo, Italy * Correspondence: [email protected]; Tel.: +39-091-6809191; Fax: +39-091-6809122 These authors contributed equally to this work. y Received: 19 May 2020; Accepted: 12 June 2020; Published: 16 June 2020 Abstract: The NLRP3 inflammasome is a multi-protein complex that initiates innate immunity responses when exposed to a wide range of stimuli, including pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). Inflammasome activation leads to the release of the pro-inflammatory cytokines interleukin (IL)-1β and IL-18 and to pyroptotic cell death. Over-activation of NLRP3 inflammasome has been associated with several chronic inflammatory diseases. A deep knowledge of NLRP3 inflammasome biology is required to better exploit its potential as therapeutic target and for the development of new selective drugs. To this purpose, in the past few years, several tools have been developed for the biological characterization of the multimeric inflammasome complex, the identification of the upstream signaling cascade leading to inflammasome activation, and the downstream effects triggered by NLRP3 activation.
    [Show full text]
  • Containing Helicase Cleaved During Apoptosis, Accelerates DNA Degradation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Current Biology, Vol. 12, 838–843, May 14, 2002, 2002 Elsevier Science Ltd. All rights reserved. PII S0960-9822(02)00842-4provided by Elsevier - Publisher Connector Overexpression of Helicard, a CARD- Containing Helicase Cleaved during Apoptosis, Accelerates DNA Degradation Magdalena Kovacsovics,1 Fabio Martinon,1 human cells may express more than 50 different heli- Olivier Micheau,1 Jean-Luc Bodmer,1 cases [8]. These estimates are largely based on the Kay Hofmann,2 and Ju¨ rg Tschopp1,3 presence of seven highly conserved motifs identified in 1Institute of Biochemistry most known helicases (see below). Recent studies have University of Lausanne shown that helicases, via DNA twisting, have also an Chemin des Boveresses 155 effect on chromatin remodeling [9]. This activity can CH-1066 Epalinges alter the position of nucleosomes along DNA, transfer Switzerland histone octamers from one DNA fragment to another, 2 MEMOREC Stoffel GmbH and thus modulates the access of transcription factors Stoeckheimer Weg 1 to DNA. D-50829 Koeln In proapoptotic signaling pathways, the interaction Germany between the different initiator units, such as the death receptor Fas, the various adaptor proteins, and cas- pases is primarily mediated by three structurally related Summary protein-protein domains called death domain (DD), death effector domain (DED), and caspase-recruitment Apoptotic cell death is characterized by several morpho- domain (CARD) [10]. Therefore, to identify novel candi- logical nuclear changes, such as chromatin condensa- date proteins that are implicated in proapoptotic signal- tion and extensive fragmentation of chromosomal DNA ing pathways, we screened public databases with a [1].
    [Show full text]
  • Small-Molecule Inhibitors Directly Target CARD9 and Mimic Its Protective Variant in Inflammatory Bowel Disease
    Small-molecule inhibitors directly target CARD9 and mimic its protective variant in inflammatory bowel disease Elizaveta S. Leshchinera,b, Jason S. Rushc, Michael A. Durneyc, Zhifang Caod,e,f, Vlado Dancíkˇ b, Benjamin Chittickb, Huixian Wub, Adam Petronec, Joshua A. Bittkerc, Andrew Phillipsc, Jose R. Perezc, Alykhan F. Shamjib, Virendar K. Kaushikc, Mark J. Dalyg,h, Daniel B. Grahamd,e,f, Stuart L. Schreibera,b,1, and Ramnik J. Xavierd,e,f,1 aDepartment of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138; bCenter for the Science of Therapeutics, Broad Institute, Cambridge, MA 02142; cCenter for the Development of Therapeutics, Broad Institute, Cambridge, MA 02142; dGastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; eCenter for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114; fInfectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142; gMedical and Population Genetics Program, Broad Institute, Cambridge, MA 02142; and hAnalytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114 Contributed by Stuart L. Schreiber, September 7, 2017 (sent for review April 19, 2017; reviewed by Benjamin F. Cravatt and Kevan M. Shokat) Advances in human genetics have dramatically expanded our the gap between genetic knowledge in IBD and its therapeutic understanding of complex heritable diseases. Genome-wide associ- potential by focusing on protective variants that both reveal the ation studies have identified an allelic series of CARD9 variants as- mechanisms of disease pathogenesis and suggest safe and effec- sociated with increased risk of or protection from inflammatory tive therapeutic strategies. bowel disease (IBD).
    [Show full text]
  • A Novel Conditional Akt ‘Survival Switch’ Reversibly Protects Cells from Apoptosis
    Gene Therapy (2002) 9, 233–244 2002 Nature Publishing Group All rights reserved 0969-7128/02 $25.00 www.nature.com/gt RESEARCH ARTICLE A novel conditional Akt ‘survival switch’ reversibly protects cells from apoptosis B Li, SA Desai, RA MacCorkle-Chosnek, L Fan and DM Spencer Department of Immunology, Baylor College of Medicine, Houston, TX, USA The anti-apoptotic Akt kinase is commonly activated by sur- FKBP-⌬PH.Akt. Like endogenous c-Akt, we show that the vival factors following plasma membrane relocalization kinase activity of membrane-localized F3-⌬PH.Akt corre- attributable to the interaction of its pleckstrin homology (PH) lates strongly with phosphorylation at T308 and S473; how- domain with phosphatidylinositol 3-kinase (PI3K)-generated ever, unlike c-Akt, phosphorylation and activation of PI3,4-P2 and PI3,4,5-P3. Once activated, Akt can prevent or inducible Akt (iAkt) is largely PI3K independent. CID- delay apoptosis by phosphorylation-dependent inhibition or mediated activation of iAkt results in phosphorylation of activation of multiple signaling molecules involved in GSK3, and contributes to NF-␬B activation in vivo in a dose- apoptosis, such as BAD, caspase-9, GSK3, and NF-␬B and sensitive manner. Finally, in Jurkat T cells stably expressing forkhead family transcription factors. Here, we describe and iAkt, CID-induced Akt activation rescued cells from characterize a novel, conditional Akt controlled by chemically apoptosis triggered by multiple apoptotic stimuli, including induced dimerization (CID). In this approach, the Akt PH staurosporine, anti-Fas antibodies, PI3K inhibitors and the domain has been replaced with the rapamycin (and FK506)- DNA damaging agent, etoposide.
    [Show full text]