Fourier Transform of a Gaussian and Convolution

Total Page:16

File Type:pdf, Size:1020Kb

Fourier Transform of a Gaussian and Convolution ESS 522 Exercise 2. Fourier Transform of a Gaussian and Convolution Note that your written answers can be brief but please turn in printouts of plots. 1. In class we have looked at the Fourier transform of continuous functions and we have shown that the Fourier transform of a delta function (an impulse) is equally weighted in all frequencies. A sharp function in the time domain yields a very broad function in the frequency domain, and vice versa. This is a form of the uncertainty principle and a very important concept in signal analysis – it is not possible to have a very narrowband signal of short duration. We can demonstrate this by considering the Gaussian or normal distribution that we will encounter later on in the class The Gaussian distribution is given by 1 1 $ t 2 ' g(t) = 1 exp # , # * < t < * (1) 2 & 2 ) (2! ) " % 2" ( This function has a mean of zero and a root mean squared (RMS) deviation (a measure of its width) of τ, which is defined by " " # t 2g(t)dt # g(t)dt . (2) !" !" It turns out that the Fourier transform of a Gaussian is another Gaussian (showing so requires the use of complex variable theory). (i) Write a MATLAB function that returns the Gaussian distribution given input arguments of a vector of times t and a value of RMS deviation tau. Plot an example. (ii) Write a second function to calculate equation (2) and verify that the input Gaussian distribution has an RMS deviation of τ. (Note: since you are doing the integration numerically you will not show this exactly but you should be able to get pretty close provided your input times are fairly finely sampled and extend from -5τ to 5τ) (iii) On the class web site you will find a function amplitudespectrum.m which computes the amplitude spectrum (the absolute value of the Fourier transform) of a time (or space) series. Explore qualitatively with the help of plots how changes in the width of the Gaussian function you create in the time domain (i.e., variations in parameter τ) affect the width of the amplitude spectrum. (iv) By applying the function you wrote in (2) to the amplitude spectra of the Gaussian function with different values of τ, deduce a relationship between the width of a Gaussian in the time domain and the width of its amplitude spectrum. 2. The MATLAB file atg1year.mat which you can find on the web site contains one year’s worth of temperature data for the ATG roof. The first sample is dated 04/05/2005 19:27 UTC and the sample interval is 5 minutes. 1 ESS 522 (i) Plot the data. Are there any bad or suspect readings? How might you get rid of these? (There is no need to get rid of any bad data). (ii) A common means to smooth data is to compute an N-point running mean. That is, each point is taken as an average of N points centered upon the point of interest – it is simplest to chose N odd with N = 2M + 1. Explain how this is equivalent to convolving the data with a time series of N points with values of 1/N. (iii) Smooth the temperature data with this method using the MATLAB conv command for different choices of N. Note: that the MATLAB version of conv uses a built in function so you cannot see how it works but it performs convolution in the time domain just like we discussed in class. You will have to discard M points at either end of the convolved time series to get a time series of the same length as your input time series (or else you can make use of the 3rd argument of conv to do this for you). What is the best choice of N to get rid of daily (diurnal) fluctuations? Why is this value best? What happens at either end of the time series after convolving? (iv) You can also attempt the convolution in the frequency domain for the optimal choice of N. Create a “boxcar” time series of the same length as the temperature data which is zero everywhere except for the first M+1 points and the last M points where it has a value 1/N. Do not try to convolve these with the conv command unless you fancy a coffee break because it will take a while to compute (at least on slower machines of 2005 vintage). Instead compute the FT of the temperature data and the boxcar using (MATLAB command fft), multiply the results together, then compute the inverse FT (MATLAB command ifft). Plot the result on top of the temperature time series obtained using conv. They should be the same except at the ends. Convolution in the frequency domain performs a cyclical convolution – we will explain what this is in class but you can think of the two time series wrapped around the edges of two disks which rotate relative to each other so that for each offset, every sample in one time series is matched with another for the convolution. (v) Use the function amplitudespectrum to create a plot of the amplitude spectrum of the boxcar time series. Zoom in on the region around zero frequency and comment on its shape. Given that convolution is equivalent to multiplication what are the implications for using a boxcar (running mean) to eliminate high frequency noise. Again we will discuss this further in class. (vi) We can also smooth the temperature data by convolving it with a Gaussian. Create a Gaussian function using the command you wrote for the last exercise whose RMS deviation τ is equivalent to the half-width of the boxcar. Multiply the Gaussian by a constant so that the sum of all the points in unity. Perform convolution in the time domain. Can you see any significant differences to the result from smoothing with a boxcar. Use the MATLAB zoom tool or function to look at a few days in detail. (vii) Now pad Gaussian with zeros so that it is the same length as the temperature time series and use the amplitudespectrum command to create a plot of the amplitude spectrum. How does it differ from the plot for the boxcar? Again we will discuss this further in class. 2 .
Recommended publications
  • Problem Set 2
    22.02 – Introduction to Applied Nuclear Physics Problem set # 2 Issued on Wednesday Feb. 22, 2012. Due on Wednesday Feb. 29, 2012 Problem 1: Gaussian Integral (solved problem) 2 2 1 x /2σ The Gaussian function g(x) = e− is often used to describe the shape of a wave packet. Also, it represents √2πσ2 the probability density function (p.d.f.) of the Gaussian distribution. 2 2 ∞ 1 x /2σ a) Calculate the integral √ 2 e− −∞ 2πσ Solution R 2 2 x x Here I will give the calculation for the simpler function: G(x) = e− . The integral I = ∞ e− can be squared as: R−∞ 2 2 2 2 2 2 ∞ x ∞ ∞ x y ∞ ∞ (x +y ) I = dx e− = dx dy e− e− = dx dy e− Z Z Z Z Z −∞ −∞ −∞ −∞ −∞ This corresponds to making an integral over a 2D plane, defined by the cartesian coordinates x and y. We can perform the same integral by a change of variables to polar coordinates: x = r cos ϑ y = r sin ϑ Then dxdy = rdrdϑ and the integral is: 2π 2 2 2 ∞ r ∞ r I = dϑ dr r e− = 2π dr r e− Z0 Z0 Z0 Now with another change of variables: s = r2, 2rdr = ds, we have: 2 ∞ s I = π ds e− = π Z0 2 x Thus we obtained I = ∞ e− = √π and going back to the function g(x) we see that its integral just gives −∞ ∞ g(x) = 1 (as neededR for a p.d.f). −∞ 2 2 R (x+b) /c Note: we can generalize this result to ∞ ae− dx = ac√π R−∞ Problem 2: Fourier Transform Give the Fourier transform of : (a – solved problem) The sine function sin(ax) Solution The Fourier Transform is given by: [f(x)][k] = 1 ∞ dx e ikxf(x).
    [Show full text]
  • The Error Function Mathematical Physics
    R. I. Badran The Error Function Mathematical Physics The Error Function and Stirling’s Formula The Error Function: x 2 The curve of the Gaussian function y e is called the bell-shaped graph. The error function is defined as the area under part of this curve: x 2 2 erf (x) et dt 1. . 0 There are other definitions of error functions. These are closely related integrals to the above one. 2. a) The normal or Gaussian distribution function. x t2 1 1 1 x P(, x) e 2 dt erf ( ) 2 2 2 2 Proof: Put t 2u and proceed, you might reach a step of x 1 2 P(0, x) eu du P(,x) P(,0) P(0,x) , where 0 1 x P(0, x) erf ( ) Here you can prove that 2 2 . This can be done by using the definition of error function in (1). 0 u2 I I e du Now you need to find P(,0) where . To find this integral you have to put u=x first, then u= y and multiply the two resulting integrals. Make the change of variables to polar coordinate you get R. I. Badran The Error Function Mathematical Physics 0 2 2 I 2 er rdr d 0 From this latter integral you get 1 I P(,0) 2 and 2 . 1 1 x P(, x) erf ( ) 2 2 2 Q. E. D. x 2 t 1 2 1 x 2.b P(0, x) e dt erf ( ) 2 0 2 2 (as proved earlier in 2.a).
    [Show full text]
  • 6 Probability Density Functions (Pdfs)
    CSC 411 / CSC D11 / CSC C11 Probability Density Functions (PDFs) 6 Probability Density Functions (PDFs) In many cases, we wish to handle data that can be represented as a real-valued random variable, T or a real-valued vector x =[x1,x2,...,xn] . Most of the intuitions from discrete variables transfer directly to the continuous case, although there are some subtleties. We describe the probabilities of a real-valued scalar variable x with a Probability Density Function (PDF), written p(x). Any real-valued function p(x) that satisfies: p(x) 0 for all x (1) ∞ ≥ p(x)dx = 1 (2) Z−∞ is a valid PDF. I will use the convention of upper-case P for discrete probabilities, and lower-case p for PDFs. With the PDF we can specify the probability that the random variable x falls within a given range: x1 P (x0 x x1)= p(x)dx (3) ≤ ≤ Zx0 This can be visualized by plotting the curve p(x). Then, to determine the probability that x falls within a range, we compute the area under the curve for that range. The PDF can be thought of as the infinite limit of a discrete distribution, i.e., a discrete dis- tribution with an infinite number of possible outcomes. Specifically, suppose we create a discrete distribution with N possible outcomes, each corresponding to a range on the real number line. Then, suppose we increase N towards infinity, so that each outcome shrinks to a single real num- ber; a PDF is defined as the limiting case of this discrete distribution.
    [Show full text]
  • Neural Network for the Fast Gaussian Distribution Test Author(S)
    Document Title: Neural Network for the Fast Gaussian Distribution Test Author(s): Igor Belic and Aleksander Pur Document No.: 208039 Date Received: December 2004 This paper appears in Policing in Central and Eastern Europe: Dilemmas of Contemporary Criminal Justice, edited by Gorazd Mesko, Milan Pagon, and Bojan Dobovsek, and published by the Faculty of Criminal Justice, University of Maribor, Slovenia. This report has not been published by the U.S. Department of Justice. To provide better customer service, NCJRS has made this final report available electronically in addition to NCJRS Library hard-copy format. Opinions and/or reference to any specific commercial products, processes, or services by trade name, trademark, manufacturer, or otherwise do not constitute or imply endorsement, recommendation, or favoring by the U.S. Government. Translation and editing were the responsibility of the source of the reports, and not of the U.S. Department of Justice, NCJRS, or any other affiliated bodies. IGOR BELI^, ALEKSANDER PUR NEURAL NETWORK FOR THE FAST GAUSSIAN DISTRIBUTION TEST There are several problems where it is very important to know whether the tested data are distributed according to the Gaussian law. At the detection of the hidden information within the digitized pictures (stega- nography), one of the key factors is the analysis of the noise contained in the picture. The incorporated noise should show the typically Gaussian distribution. The departure from the Gaussian distribution might be the first hint that the picture has been changed – possibly new information has been inserted. In such cases the fast Gaussian distribution test is a very valuable tool.
    [Show full text]
  • Error and Complementary Error Functions Outline
    Error and Complementary Error Functions Reading Problems Outline Background ...................................................................2 Definitions .....................................................................4 Theory .........................................................................6 Gaussian function .......................................................6 Error function ...........................................................8 Complementary Error function .......................................10 Relations and Selected Values of Error Functions ........................12 Numerical Computation of Error Functions ..............................19 Rationale Approximations of Error Functions ............................21 Assigned Problems ..........................................................23 References ....................................................................27 1 Background The error function and the complementary error function are important special functions which appear in the solutions of diffusion problems in heat, mass and momentum transfer, probability theory, the theory of errors and various branches of mathematical physics. It is interesting to note that there is a direct connection between the error function and the Gaussian function and the normalized Gaussian function that we know as the \bell curve". The Gaussian function is given as G(x) = Ae−x2=(2σ2) where σ is the standard deviation and A is a constant. The Gaussian function can be normalized so that the accumulated area under the
    [Show full text]
  • PROPERTIES of the GAUSSIAN FUNCTION } ) ( { Exp )( C Bx Axy
    PROPERTIES OF THE GAUSSIAN FUNCTION The Gaussian in an important 2D function defined as- (x b)2 y(x) a exp{ } c , where a, b, and c are adjustable constants. It has a bell shape with a maximum of y=a occurring at x=b. The first two derivatives of y(x) are- 2a(x b) (x b)2 y'(x) exp{ } c c and 2a (x b)2 y"(x) c 2(x b)2 exp{ ) c2 c Thus the function has zero slope at x=b and an inflection point at x=bsqrt(c/2). Also y(x) is symmetric about x=b. It is our purpose here to look at some of the properties of y(x) and in particular examine the special case known as the probability density function. Karl Gauss first came up with the Gaussian in the early 18 hundreds while studying the binomial coefficient C[n,m]. This coefficient is defined as- n! C[n,m]= m!(n m)! Expanding this definition for constant n yields- 1 1 1 1 C[n,m] n! ... 0!(n 0)! 1!(n 1)! 2!(n 2)! n!(0)! As n gets large the magnitude of the individual terms within the curly bracket take on the value of a Gaussian. Let us demonstrate things for n=10. Here we have- C[10,m]= 1+10+45+120+210+252+210+120+45+10+1=1024=210 These coefficients already lie very close to a Gaussian with a maximum of 252 at m=5. For this discovery, and his numerous other mathematical contributions, Gauss has been honored on the German ten mark note as shown- If you look closely, it shows his curve.
    [Show full text]
  • The Gaussian Distribution
    The Gaussian distribution Probability density function: A continuous prob- ability density function, p(x), satisfies the fol- lowing properties: 1. The probability that x is between two points a and b Z b P (a < x < b) = p(x)dx a 2. It is non-negative for all real x. 3. The integral of the probability function is one, that is Z 1 p(x)dx = 1 −∞ Extending to the case of a vector x, we have non-negative p(x) with the following proper- ties: 1 1. The probability that x is inside a region R Z P = p(x)dx R 2. The integral of the probability function is one, that is Z p(x)dx = 1 The Gaussian distribution: The most com- monly used probability function is Gaussian func- tion (also known as Normal distribution) ! 1 (x − µ)2 p(x) = N (xjµ, σ2) = p exp − 2πσ 2σ2 where µ is the mean, σ2 is the variance and σ is the standard deviation. 2 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 −0.1 −0.2 −5 −4 −3 −2 −1 0 1 2 3 4 5 Figure: Gaussian pdf with µ = 0, σ = 1. We are also interested in Gaussian function de- fined over a D-dimensional vector x ( ) 1 1 N (xjµ, Σ) = exp − (x − µ)TΣ−1(x − µ) (2π)D=2jΣjD=2 2 where µ is called the mean vector, Σ is called covariance matrix (positive definite). jΣj is called the determinant of Σ.
    [Show full text]
  • The Gaussians Distribution 1 the Real Fourier Transform
    CSE 206A: Lattice Algorithms and Applications Winter 2016 The Gaussians Distribution Instructor: Daniele Micciancio UCSD CSE 1 The real fourier transform Gaussian distributions and harmonic analysis play a fundamental role both in the design of lattice-based cryptographic functions, and the theoretical study of lattice problems. For any function f: n ! such that R jf(x)j dx < 1, the fourier transform of f is defined as R C x2R Z fb(y) = f(x) · e−2πihx;yi dx x2 n p R 2πiz z z where i = −1 is the imaginary unit and e = cos( 2π )+i sin( 2π ) the exponential function from the unit interval z 2 R=Z ≈ [0; 1) to the unit circle on the complex plane e2πiz 2 fc 2 C : jcj = 1g. So, the fourier transform is also a function fb: Rn ! C from the euclidean 2 space Rn to the complex numbers. The gaussian function ρ(x) = e−πkxk naturally arises in harmonic analysis as an eigenfunction of the fourier transform operator. −πkxk2 Lemma 1 The gaussian function ρ(x) = e equals its fourier transform ρb(x) = ρ(x). Proof. It is enough to prove the statement in dimension n = 1, as the general statement follows by Z −2πihx;yi ρb(y) = ρ(x)e dx x2Rn Z Y −2πixkyk = ρ(xk)e dx n x2R k Y Z = ρ(x)e−2πixyk dx k x2R Y = ρb(yk) = ρ(y): k So, let ρ(x) = e−πx2 the one-dimensional gaussian. We compute Z −2πixy ρb(y) = ρ(x)e dx x2R Z = e−π(x2+2ixy) dx x2R Z = e−πy2 e−π(x+iy)2 dx y Z = ρ(y) ρ(x) dx: x2R+iy Finally, we observe that R ρ(x) dx = R ρ(x) dx by Cauchy's theorem, and x2R+iy x2R Z sZ Z ρ(x) dx = ρ(x1) dx1 · ρ(x2) dx2 x2R x12R x22R sZ sZ 1 = ρ(x) dx = 2πrρ(r) dr = 1 x2R2 r=0 0 where the last equality follows from the fact that ρ (r) = −2πr · ρ(r).
    [Show full text]
  • The Fourier Transform of a Gaussian Function
    The Fourier transform of a gaussian function Kalle Rutanen 25.3.2007, 25.5.2007 1 1 Abstract In this paper I derive the Fourier transform of a family of functions of the form 2 f(x) = ae−bx . I thank ”Michael”, Randy Poe and ”porky_pig_jr” from the newsgroup sci.math for giving me the techniques to achieve this. The intent of this particular Fourier transform function is to give information about the frequency space behaviour of a Gaussian filter. 2 Integral of a gaussian function 2.1 Derivation Let 2 f(x) = ae−bx with a > 0, b > 0 Note that f(x) is positive everywhere. What is the integral I of f(x) over R for particular a and b? Z ∞ I = f(x)dx −∞ To solve this 1-dimensional integral, we will start by computing its square. By the separability property of the exponential function, it follows that we’ll get a 2-dimensional integral over a 2-dimensional gaussian. If we can compute that, the integral is given by the positive square root of this integral. Z ∞ Z ∞ I2 = f(x)dx f(y)dy −∞ −∞ Z ∞ Z ∞ = f(x)f(y)dydx −∞ −∞ ∞ ∞ Z Z 2 2 = ae−bx ae−by dydx −∞ −∞ ∞ ∞ Z Z 2 2 = a2e−b(x +y )dydx −∞ −∞ ∞ ∞ Z Z 2 2 = a2 e−b(x +y )dydx −∞ −∞ Now we will make a change of variables from (x, y) to polar coordinates (α, r). The determinant of the Jacobian of this transform is r. Therefore: 2 2π ∞ Z Z 2 I2 = a2 re−br drdα 0 0 2π ∞ Z 1 Z 2 = a2 −2bre−br drdα 0 −2b 0 2 2π ∞ a Z 2 = e−br drdα −2b 0 0 a2 Z 2π = −1dα −2b 0 −2πa2 = −2b πa2 = b Taking the positive square root gives: rπ I = a b 2.2 Example Requiring f(x) to integrate to 1 over R gives the equation: rπ I = a = 1 b ⇔ r b a = π And substitution of: 1 b = 2σ2 Gives the Gaussian distribution g(x) with zero mean and σ variance: 2 1 − x g(x) = √ e 2σ2 σ 2π 3 3 The Fourier transform We will continue to evaluate the bilateral Laplace transform B(s) of f(x) by using the intermediate result derived in the previous section.
    [Show full text]
  • Appendix D. Dirac Delta Function and the Fourier Transformation
    Appendix D Dirac delta function and the Fourier transformation D.1 Dirac delta function The delta function can be visualized as a Gaussian function (B.15) of infinitely narrow width b (Fig. B.5): 1 −x2=b2 Gb(x) = p e ! d(x) for b ! 0: (D.1) b p The delta function is used in mathematics and physics to describe density distri- butions of infinitely small (singular) objects. For example, the position-dependent density of a one-dimensional particle of mass m located at x = a, can be written as md(x−a). Similarly, the probability density of a continuous “random variable” that takes on a certain value x = a is d(x − a). In quantum mechanics, we use d(x), for example, to write the wave function of a particle that has a well-defined position. The notion of function in mathematics refers to a map that relates a number, x, to another number, f (x). The delta function is hence not a function in the traditional sense: it maps all x 6= 0 to zero, but x = 0 to infinity, which is not a number. It belongs to the class of so-called generalized functions. A rigorous mathematical theory of generalized functions can be found in most mathematical physics textbooks. Here, we discuss only those properties of the delta function that are useful for physicists. Exercise D.1. Show that, for any smooth1, bounded function f (x), +¥ Z lim Gb(x) f (x)dx = f (0): (D.2) b!0 −¥ From Eqs. (D.1) and (D.2) and for any smooth function f (x), we obtain 1 A smooth function is one that has derivatives of all finite orders.
    [Show full text]
  • 3. the Gaussian Kernel
    03 The Gaussian kernel.nb 1 In[5]:= << FEVinit` << FEVFunctions` 3. The Gaussian kernel "Everybody believes in the exponential law of errors: the experimenters, because they think it can be proved by mathematics; and the mathematicians, because they believe it has been established by observation" (Lippman in [Whittaker1967, p. 179]). 3.1 Normalization The Gaussian (better Gaußian) kernel is named after Carl Friedrich Gauß (1777-1855), a brilliant German mathematician. This section discusses many of the nice and peculiar properties of the Gaussian kernel. In[7]:= Show Import "Gauss10DM.gif" ; @ @ DD Figure 3.1. The Gaussian kernel is apparent on every German banknote of DM 10,- where it is depicted next to its famous inventor when he was 55 years old. The new Euro replaces these banknotes. The Gaussian kernel is defined in 1-D, 2D and N-D respectively as - x€€2€€ - x y€€2€ - x€€€€2€€ 1 2 s2 1 2 s 1 2 s2 G1 D x; s = €€€€€€€€€€€€€ e , G2 D x, y; s = 2€ , G x; s = €€N 2 π s 2 2 s »”» The s determinesè the!!!!!!!! width of the Gaussian kernel. In statistics, when we consider the èGaussian!! !!! probability H densityH functionL it is called the standardH deviationL , and the square of it, sH2, the variance. In the rest of this book, when we consider the Gaussian as an aperture function of some observation, we will refer to s as the inner scale or shortly scale. In the whole of this book the scale can only take positive values, s > 0. In the process of observation s can never become zero.
    [Show full text]
  • Delta Functions
    Delta Functions Drew Rollins August 27, 2006 Two distinct (but similar) mathematical entities exist both of which are sometimes referred to as the “Delta Function.” You should be aware of what both of them do and how they differ. One is called the Dirac Delta function, the other the Kronecker Delta. In practice, both the Dirac and Kronecker delta functions are used to “select” the value of a function of interest, f(x) at some specific location in the respective function’s domain (i.e. to evaluate f(x) at some point x = x0). This happens by placing f(x) next to the appropriate delta function inside of an an integral (Dirac) or within a summation (Kronecker). Mathematically: Z ∞ f(x0) = dx δ(x − x0)f(x) (1) −∞ X an = δi,nai (2) i 1 Kronecker Delta The Kronecker Delta δi,j is a function of the 2 arguments i and j. If i and j are the same value (i.e. i = j) then the function δi,j is equal to 1. Otherwise the Kronecker Delta is equal to zero. Formally this is written: 1 i = j δ = (3) i,j 0 i 6= j So for example δ1,1 = δ−1,−1 = δ2006,2006 = 1, while δ0,1 = δ−1,1 = δ1,27 = 0. Get it? Don’t forget of course that the variables i and j don’t always have to be specifically the letters i and j. They could be m and n or whatever letters the author likes. Furthermore, some authors prefer to leave out the comma entirely, i.e.
    [Show full text]