Metric Estimates and Membership Complexity for Archimedean Amoebae and Tropical Hypersurfaces
METRIC ESTIMATES AND MEMBERSHIP COMPLEXITY FOR ARCHIMEDEAN AMOEBAE AND TROPICAL HYPERSURFACES MART´IN AVENDANO,˜ ROMAN KOGAN, MOUNIR NISSE, AND J. MAURICE ROJAS Abstract. Given any complex Laurent polynomial f, Amoeba(f) is the image of its complex zero set under the coordinate-wise log absolute value map. We discuss an efficiently constructible polyhedral approximation, ArchTrop(f), of Amoeba(f), and derive explicit upper and lower bounds, solely as a function of the number of monomial terms of f, for the Hausdorff distance between these two sets. We also show that deciding whether a given point lies in ArchTrop(f) is doable in polynomial-time, for any fixed dimension, unlike the corresponding problem for Amoeba(f), which is NP-hard already in one variable. ArchTrop(f) can thus serve as a canonical low order approximation to start a higher order iterative polynomial system solving algorithm, e.g., homotopy continuation. In memory of Mikael Passare. 1. Introduction One of the happiest coincidences in algebraic geometry is that the norms of roots of polynomials can be estimated through polyhedral geometry. Perhaps the earliest incarnation of this fact was Isaac Newton’s use of a polygon to determine initial exponents of series expansions for algebraic functions in one variable. This was detailed in a letter, dated October 24, 1676 [New76], that Newton wrote to Henry Oldenburg. In modern terminology, Newton counted, with multiplicity, the s-adic valuations of roots of univariate polynomials over the Puiseux series field C s (see, e.g., Theorem 5.7 from Section 5.2 below). Newton’s result has since been extendedhh ii to arbitrary non-Archimedean fields (see, e.g., [Dum06, Wei63]).
[Show full text]