Modifying Secretion and Post-Translational Processing in Insect Cells Eric Ailor and Michael J Betenbaugh*

Total Page:16

File Type:pdf, Size:1020Kb

Modifying Secretion and Post-Translational Processing in Insect Cells Eric Ailor and Michael J Betenbaugh* 142 Modifying secretion and post-translational processing in insect cells Eric Ailor and Michael J Betenbaugh* The baculovirus–insect cell system is a valuable tool for the An innovative approach to overcome these limitations in expression of heterologous proteins. Due to limitations in the the baculovirus–insect cell system is to engineer the intracellular processing environment, however, heterologous secretory pathway by supplementing secretory process- secreted and membrane proteins are often insoluble, poorly ing proteins absent or limited in supply in the host insect processed, or contain ‘non-human’ modifications. Recent cell intracellular environment. The focus of this paper is attempts to modify the insect cell secretory pathway by to review secretory processing in insect cells and high- overexpressing processing factors have demonstrated the light recent attempts to improve secretion and potential to overcome these limitations. post-translational modifications in insect cells by overex- pressing heterologous proteins involved in these Addresses processing steps. Department of Chemical Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA The secretory pathway *e-mail: [email protected] The eukaryotic secretory pathway is a complex multi- Current Opinion in Biotechnology 1999, 10:142–145 organelle system which provides for the folding, assembly, post-translational modification, and transport of newly http://biomednet.com/elecref/0958166901000142 translated polypeptides. Associated with each of these © Elsevier Science Ltd ISSN 0958-1669 compartments is a collection of cellular proteins which Abbreviations facilitate the secretion process. BEVS baculovirus expression vector system BiP immunoglobulin heavy chain binding protein Cytosolic processing and chaperones ER endoplasmic reticulum Secreted proteins are initially translated from ribosome- Glc glucose bound mRNA in the cytosol prior to translocation across GlcNAc N-acetylglucosamine IgG immunoglobulin G the endoplasmic reticulum (ER) membrane. Polypeptide Man mannose translocation across the ER membrane can occur either PDI protein disulfide isomerase by a cotranslational or post-translational mechanism [7]. SP signal peptidase Transport in mammalian cells is primarily cotranslational, TGF transforming growth factor though both post-translational and cotranslational routes are used in yeast. The predominant mechanism in insect Introduction cells is not currently known. The baculovirus expression vector system (BEVS) is one of the major recombinant DNA expression systems used The cytosolic chaperone hsp70 is believed to assist in today for the production of a wide variety of heterologous the translocation process by maintaining cytosolic proteins [1•]. One of the major advantages of BEVS is polypeptides in a translocation-competent form. In addi- that it can be used to produce relatively large quantities tion, this cytosolic chaperone may suppress aggregation of post-translationally modified heterologous proteins of these polypeptides by preventing nonspecific inter- [2•]. These proteins are used in a number of applications, molecular hydrophobic interactions [8]. including diagnostics, structure-function studies, and vaccines. A large fraction of the recombinant protein pro- In coexpression studies of human hsp70 and murine duced in insect cells using BEVS, however, can immunoglobulin G (IgG) in insect cells using BEVS, sometimes be poorly processed and accumulate as aggre- hsp70 was shown to bind to IgG chains in soluble cell gates [3••]. The production of very high levels of fractions and enhance solubility of the IgG light chain polypeptide with the strong baculovirus polyhedrin pro- precursor [9••]. As a result of higher soluble levels of the moter and the shut down of host protein synthesis light chain precursor, subsequent processing of the light following baculovirus infection may lead to a limitation in chain precursor into its mature form led to an increase in the supply of secretory assistance factors [4,5]. In addi- secreted levels of IgG. tion, although post-translational processing in insect cells is more similar to mammalian cells than bacteria and Eukaryotic cytosolic hsp70 functions in concert with a col- yeast, it is not always identical and, for applications such lection of cofactors, including hsp40 [10], Hip [11], and as therapeutic proteins, this may be critical [6]. Improper Hop [12], in a cycle of binding and release of target secretory processing can be especially problematic at sev- polypeptides which enhances the chaperoning efficiency eral days postinfection when the host cell’s of hsp70. Coexpression of these cofactors may, therefore, post-translational processing machinery has deteriorated. be necessary to optimize hsp70 function. Modifying secretion and post-translational processing in insect cells Ailor and Betenbaugh 143 ER processing Like cytosolic hsp70, BiP functions optimally in the Following translocation, the polypeptides fold, assem- presence of cofactors in a similar binding and release ble, and may undergo additional processing in the ER. cycle. Modeling studies have indicated that BiP’s activi- As this environment includes very high concentrations of ty is not yet optimized when the chaperone is expressed unfolded polypeptides, chaperones, foldases, and other independently [22•]. Altering the kinetics of BiP release enzymes are necessary to assist folding and limit aggre- from a target polypeptide by coexpressing a cofactor gation of the polypeptides [13]. could reduce polypeptide aggregation and further increase secreted protein yields. Signal peptide processing For secreted and many membrane-associated proteins, a There are a number of additional chaperones, including signal peptide at the amino-terminus is responsible for calnexin and calreticulin, within the ER compartment targeting the polypeptide to the ER [14]. In some cases, that act independently or in concert with other factors to however, the signal peptide may remain attached to the facilitate processing of both secreted and membrane polypeptide indicating improper processing in the secre- proteins along the correct folding pathway. Calnexin has tory pathway. Tessier et al. [15] noted the accumulation been identified as a membrane-bound chaperone which of prepropapain aggregates in the cytoplasm of infected associates with a number of membrane proteins [23] and insect cells and modified the prepropapain to include a secreted glycoprotein folding intermediates [24] prior to insect-cell-derived signal peptide from bee melittin. their folding and transport from the ER. Calreticulin is The replacement of the heterologous prepropapain sig- the ER lumen homolog of calnexin and exhibits many of nal peptide with the honeybee melittin signal peptide the same binding characteristics as calnexin. Calnexin resulted in a fivefold increase in propapain secretion. appeared to be instrumental in facilitating the assembly The use of alternative signal peptides including bee of class I histocompatability molecule heavy chains in melittin, cecropin B, and baculovirus structural 64K gly- Drosophila melanogaster cells [25]. Recent research indi- coprotein, however, does not ensure the proper cates that overexpression of calnexin and calreticulin processing of recombinant proteins [16]. For example, using BEVS can also assist folding and assembly of aggregates of precursor single chain antibody fragments membrane proteins in Spodoptera frugiperda cells (scFv) using the bee melittin signal peptide can accu- (CG Tate, EM Whiteley and MJ Betenbaugh, unpub- mulate following expression in insect cells [17••]. lished data). Cleavage of the amino-terminal signal peptide in the ER is Whereas chaperones prevent intermediates from follow- accomplished by signal peptidase (SP). SP is a single mem- ing unproductive folding pathways, catalytic enzymes in brane protein in bacteria and a protein complex in the ER can accelerate folding along the proper pathway. eukaryotes; however, both bacterial and eukaryotic SPs In this way, these cellular enzymes collaborate with can cleave signal peptides from either source interchange- chaperones to maximize production of functional pro- ably [18]. A recent study demonstrated that overexpression teins. Disulfide bond formation occurs as polypeptides of a bacterial signal peptidase enhanced the processing of pass into the ER, which is a more oxidizing environment a single chain antibody fragment precursor [17••]. than the cytosol. The ER enzyme protein disulfide iso- merase (PDI) is known to catalyze oxidization, ER chaperones and foldases reduction, and isomerization of disulfide bonds in vitro As in the cytosol, chaperones act to improve protein fold- [26]. A recent study has demonstrated that overexpres- ing and assembly in the ER by binding to regions of sion of PDI increases the folding and secretion of nascent polypeptides that would otherwise form improp- heterologous IgG from insect cells [27]; however, a er associations and aggregate. Immunoglobulin heavy mutation in the PDI carboxyl-terminus catalytic site can chain binding protein (BiP) is an ER-resident chaperone actually reduce protein solubility in vivo in an anti-chap- of the hsp70 protein family that complexes with a num- eroning role [28•]. The presence of the mutations may ber of polypeptides destined for secretion [19] and may destabalize the PD1 molecule and cause it to aggregate also be involved in assisting translocation of polypep- with other polypeptides
Recommended publications
  • A Unique Structure at the Carboxyl Terminus of the Largest Subunit of Eukaryotic RNA Polymerase II (Transcription/Gene Expression/Protein Phosphorylation) JEFFRY L
    Proc. Natl. Acad. Sci. USA Vol. 82, pp. 7934-7938, December 1985 Biochemistry A unique structure at the carboxyl terminus of the largest subunit of eukaryotic RNA polymerase II (transcription/gene expression/protein phosphorylation) JEFFRY L. CORDEN*, DEBORAH L. CADENAt, JOSEPH M. AHEARN, JR.*, AND MICHAEL E. DAHMUSt *Howard Hughes Medical Institute Laboratory, Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; and tDepartment of Biochemistry and Biophysics, University of California, Davis, CA 95616 Communicated by Daniel Nathans, August 2, 1985 ABSTRACT Purified eukaryotic nuclear RNA polymerase alous mobility in NaDodSO4 gels due to postsynthetic mod- II consists of three subspecies that differ in the apparent ification cannot be ruled out. The three forms of the largest molecular masses of their largest subunit, designated Ho, Ha, subunit Ho (240 kDa), Iha (210-220 kDa), and lIb (170-180 and HIb for polymerase species HO, HA, and BIB, respectively. kDa) also differ in their ability to be phosphorylated both in Subunits Ho, Ha, and IHb are the products of a single gene. We vitro and in vivo (14). Subunit lIc (140 kDa) is structurally present here the amino acid composition of calf thymus different from IHo, Iha, and IIb (2, 33) and is present in all subunits Ha and lIb and the C-terminal amino acid sequence three forms of RNA polymerase II in equimolar stoichiom- of subunit Ha (Ho) inferred from the nucleotide sequence of etry with the largest subunit. part of the mouse gene encoding this RNA polymerase subunit. A monoclonal antibody prepared against calfthymus RNA The calculated amino acid composition ofthe peptide unique to polymerase II has been shown to recognize a determinant on subunit Ha indicates that subunit Ha contains a domain rich in subunit Iha (IIo) but not on IIb (15).
    [Show full text]
  • Lysis of Red Blood Cells and Alveolar Epithelial Toxicity by Therapeutic Pulmonary Surfactants
    0031-3998/95/3701-0026$03.0010 PEDIATRIC RESEARCH Vol. 37, No. 1, 1995 Copyright 0 1994 International Pediatric Research Foundation, Inc. Printed in U.S.A. Lysis of Red Blood Cells and Alveolar Epithelial Toxicity by Therapeutic Pulmonary Surfactants RICHARD D. FINDLAY, H. WILLIAM TAEUSCH, REMEDIOS DAVID-CU, AND FRANS J. WALTHER Division of Neonatology, Department of Pediatrics, Martin Luther King, Jr./Drew University Medical Center, UCLA School of Medicine, Los Angeles, Calijornia 90059 The risk of pulmonary hemorrhage is increased in extremely rats were treated with Survanta, Exosurf, the Exosurf compo- low birth weight infants treated with surfactant. The pathogenesis nents tyloxapol and hexadecanol, melittin, or culture medium of this increased risk is far from clear. We tested whether alone. After 24 h of incubation, lactate dehydrogenase release exposure of cell membranes to surfactant may lead to increased into the media was measured as a percent of total lactate dehy- membrane permeability, hypothesizing that this process may drogenase activity to indicate cytotoxicity. Lactate dehydroge- contribute to the occurrence of alveolar hemorrhage after surfac- nase release was <lo% for control experiments but increased tant treatment. Aliquots of washed packed red blood cells (used sharply with Exosurf and its components tyloxapol and hexade- as membrane model) were suspended in 0.9% NaCl with various canol. These results indicate that surfactant may be associated concentrations of Survanta or Exosurf for either 2 or 24 h at with in vitro cytotoxicity and that this property differs for dif- 37°C. Cytolysis was measured by spectrophotometric determi- ferent surfactants and different dosages. (Pediatr Res 37: 26-30, nation of free Hb after centrifugation.
    [Show full text]
  • The Crosstalk: Exosomes and Lipid Metabolism
    Wang et al. Cell Communication and Signaling (2020) 18:119 https://doi.org/10.1186/s12964-020-00581-2 REVIEW Open Access The crosstalk: exosomes and lipid metabolism Wei Wang1,2†, Neng Zhu3†, Tao Yan1,2†, Ya-Ning Shi1,2, Jing Chen4, Chan-Juan Zhang1,2, Xue-Jiao Xie5, Duan-Fang Liao1,2* and Li Qin1,2* Abstract Exosomes have been considered as novel and potent vehicles of intercellular communication, instead of “cell dust”. Exosomes are consistent with anucleate cells, and organelles with lipid bilayer consisting of the proteins and abundant lipid, enhancing their “rigidity” and “flexibility”. Neighboring cells or distant cells are capable of exchanging genetic or metabolic information via exosomes binding to recipient cell and releasing bioactive molecules, such as lipids, proteins, and nucleic acids. Of note, exosomes exert the remarkable effects on lipid metabolism, including the synthesis, transportation and degradation of the lipid. The disorder of lipid metabolism mediated by exosomes leads to the occurrence and progression of diseases, such as atherosclerosis, cancer, non- alcoholic fatty liver disease (NAFLD), obesity and Alzheimer’s diseases and so on. More importantly, lipid metabolism can also affect the production and secretion of exosomes, as well as interactions with the recipient cells. Therefore, exosomes may be applied as effective targets for diagnosis and treatment of diseases. Keywords: Exosome, Lipid metabolism, Atherosclerosis, Cancer Background the membrane [8]. Similar to the cell membrane, the lipid Exosomes display cup-like shape of 30 ~ 100 nm in diam- bilayer protects exosome contents from various stimuli in eter, and are secreted by multi-type cells, such as nerve thecirculatingfluid.Therefore,somecontentsinexo- cells [1], natural killer cells [2, 3], cancer cells [4, 5]and somes are usually transported remotely in circulating body adipocytes [6].
    [Show full text]
  • Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2013 Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance Alyssa Lea MacMillan University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Virology Commons Recommended Citation MacMillan, Alyssa Lea, "Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance" (2013). Publicly Accessible Penn Dissertations. 894. https://repository.upenn.edu/edissertations/894 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/894 For more information, please contact [email protected]. Interactions Between APOBEC3 and Murine Retroviruses: Mechanisms of Restriction and Drug Resistance Abstract APOBEC3 proteins are important for antiretroviral defense in mammals. The activity of these factors has been well characterized in vitro, identifying cytidine deamination as an active source of viral restriction leading to hypermutation of viral DNA synthesized during reverse transcription. These mutations can result in viral lethality via disruption of critical genes, but in some cases is insufficiento t completely obstruct viral replication. This sublethal level of mutagenesis could aid in viral evolution. A cytidine deaminase-independent mechanism of restriction has also been identified, as catalytically inactive proteins are still able to inhibit infection in vitro. Murine retroviruses do not exhibit characteristics of hypermutation by mouse APOBEC3 in vivo. However, human APOBEC3G protein expressed in transgenic mice maintains antiviral restriction and actively deaminates viral genomes. The mechanism by which endogenous APOBEC3 proteins function is unclear. The mouse provides a system amenable to studying the interaction of APOBEC3 and retroviral targets in vivo.
    [Show full text]
  • CD81 and Claudin 1 Coreceptor Association: Role in Hepatitis C
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Birmingham Research Portal CD81 and claudin 1 coreceptor association: Role in hepatitis C virus entry Harris, Helen; Farquhar, Michelle; Mee, Christopher; Davis, C; Reynolds, Gary; Jennings, Adam; Hu, Ke; Yuan, F; Deng, H; Hubscher, Stefan; Han, JH; Balfe, Peter; McKeating, Jane DOI: 10.1128/JVI.02286-07 Citation for published version (Harvard): Harris, H, Farquhar, M, Mee, C, Davis, C, Reynolds, G, Jennings, A, Hu, K, Yuan, F, Deng, H, Hubscher, S, Han, JH, Balfe, P & McKeating, J 2008, 'CD81 and claudin 1 coreceptor association: Role in hepatitis C virus entry', Journal of virology, vol. 82, no. 10, pp. 5007-5020. https://doi.org/10.1128/JVI.02286-07 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.
    [Show full text]
  • University of Birmingham CD81 and Claudin 1 Coreceptor Association
    University of Birmingham CD81 and claudin 1 coreceptor association: Role in hepatitis C virus entry Harris, Helen; Farquhar, Michelle; Mee, Christopher; Davis, C; Reynolds, Gary; Jennings, Adam; Hu, Ke; Yuan, F; Deng, H; Hubscher, Stefan; Han, JH; Balfe, Peter; McKeating, Jane DOI: 10.1128/JVI.02286-07 Citation for published version (Harvard): Harris, H, Farquhar, M, Mee, C, Davis, C, Reynolds, G, Jennings, A, Hu, K, Yuan, F, Deng, H, Hubscher, S, Han, JH, Balfe, P & McKeating, J 2008, 'CD81 and claudin 1 coreceptor association: Role in hepatitis C virus entry', Journal of virology, vol. 82, no. 10, pp. 5007-5020. https://doi.org/10.1128/JVI.02286-07 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
    [Show full text]
  • Bee Venom Induces Apoptosis and Suppresses Matrix
    Revista Brasileira de Farmacognosia 27 (2017) 324–328 ww w.elsevier.com/locate/bjp Original Article Bee venom induces apoptosis and suppresses matrix metaloprotease-2 expression in human glioblastoma cells a a b a a Mohsen Sisakht , Baratali Mashkani , Ali Bazi , Hassan Ostadi , Maryam Zare , a c,e d a Farnaz Zahedi Avval , Hamid Reza Sadeghnia , Majid Mojarad , Mohammad Nadri , e a,e,∗ Ahmad Ghorbani , Mohmmad Soukhtanloo a Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran b Faculty of Allied Medical Sciences, Zabol University of Medical Sciences, Zabol, Iran c Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran d Department of Genetic, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran e Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran a b s t r a c t a r t i c l e i n f o Article history: Glioblastoma is the most common malignant brain tumor representing with poor prognosis, therapy Received 7 August 2016 resistance and high metastasis rate. Increased expression and activity of matrix metalloproteinase-2, Accepted 29 November 2016 a member of matrix metalloproteinase family proteins, has been reported in many cancers including Available online 6 March 2017 glioblastoma. Inhibition of matrix metalloproteinase-2 expression has resulted in reduced aggression of glioblastoma tumors in several reports. In the present study, we evaluated effect of bee venom on expres- Keywords: sion and activity of matrix metalloproteinase-2 as well as potential toxicity and apoptogenic properties of Bee venom bee venom on glioblastoma cells.
    [Show full text]
  • The Effect of Bee Venom Peptides Melittin, Tertiapin, and Apamin On
    H OH metabolites OH Article The Effect of Bee Venom Peptides Melittin, Tertiapin, and Apamin on the Human Erythrocytes Ghosts: A Preliminary Study 1, 2, 1 3 Agata Swiatły-Błaszkiewicz´ y, Lucyna Mrówczy ´nska y, Eliza Matuszewska , Jan Lubawy , Arkadiusz Urba ´nski 3 , Zenon J. Kokot 1, Grzegorz Rosi ´nski 3 and Jan Matysiak 1,* 1 Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, 60-780 Poznan, Poland; [email protected] (A.S.-B.);´ [email protected] (E.M.); [email protected] (Z.J.K.) 2 Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland; [email protected] 3 Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland; [email protected] (J.L.); [email protected] (A.U.); [email protected] (G.R.) * Correspondence: [email protected] These two authors contributed equally to this work. y Received: 11 April 2020; Accepted: 11 May 2020; Published: 13 May 2020 Abstract: Red blood cells (RBCs) are the most abundant cells in the human blood that have been extensively studied under morphology, ultrastructure, biochemical and molecular functions. Therefore, RBCs are excellent cell models in the study of biologically active compounds like drugs and toxins on the structure and function of the cell membrane. The aim of the present study was to explore erythrocyte ghost’s proteome to identify changes occurring under the influence of three bee venom peptides-melittin, tertiapin, and apamin. We conducted preliminary experiments on the erythrocyte ghosts incubated with these peptides at their non-hemolytic concentrations.
    [Show full text]
  • Physiological Roles of Transverse Lipid Asymmetry of Animal Membranes
    Biochimica et Biophysica Acta – Biomembranes 1862 (2020) 183382 Physiological roles of transverse lipid asymmetry of animal membranes R. J. Clarkea,b, K. R. Hossaina, and K. Caoa a School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia b The University of Sydney Nano Institute, Sydney, NSW 2006, Australia Address correspondence to Assoc. Prof. Ronald J. Clarke, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia. Tel.: 61-2-93514406; Fax: 61-2-93513329; E-mail: [email protected] 1 Abstract The plasma membrane phospholipid distribution of animal cells is markedly asymmetric. Phosphatidylserine (PS) and phosphatidylethanolamine (PE) are concentrated in the inner leaflet, whereas phosphatidylcholine (PC) and sphingomyelin (SM) are concentrated in the outer leaflet. This non-equilibrium situation is maintained by lipid pumps (flippases or floppases), which utilise energy in the form of ATP to translocate lipids from one leaflet to the other. Scramblases, which are activated when physiologically required, transport lipids in both directions across the membrane and can abolish lipid asymmetry. Lipid asymmetry also causes imbalances in the areas occupied by lipid in the two membrane leaflets, contributing to membrane curvature. The asymmetry of PS across the plasma membrane plays a crucial signalling role in numerous physiological processes. Exposure of PS on the external surface of blood platelets stimulates blood coagulation. PS exposure by other cells during apoptosis provides an “eat me” signal to surrounding macrophages. Many peripheral and integral membrane proteins have polybasic PS-binding domains on their cytoplasmic surfaces which either provide a membrane anchor or affect activity. These domains can also determine trafficking within the cell and control regulation via an electrostatic switch mechanism, as well as potentially acting as “death sensors” when cytoplasmic PS is transferred to the extracellular leaflet during apoptosis.
    [Show full text]
  • Peptide Tertiary Structure and Fusion Peptide
    Peptide Tertiary Structure and Fusion Peptide Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Oscar B. Torres, B.S. Graduate Program in Chemistry The Ohio State University 2011 Dissertation Committee: Dr. Dennis Bong, Advisor Dr. Jovica D. Badjic Dr. Karin Musier-Forsyth Copyright by Oscar B. Torres 2011 Abstract In this work synthetic peptides were used to study peptide tertiary structure nucleation and to probe the structural determinants of membrane activity. In the first study, we “crippled” 21-residue sequences derived from the GCN4 leucine zipper by positioning glycine residues in the c and e helix positions of the central heptad, and by leaving the hydrophobic core residues in the a and d positions intact as isoleucine and leucine, respectively. Crosslinking residues (X = Histidine or Azido alanine) were placed in the b and f (i and i + 4) positions to yield the crippled histidine and crippled azidoalanine peptides. Restoration of the secondary and tertiary structures of the crippled histidine peptide was effected by metal complexation. Indeed, the circular dichroism (CD) spectrum of a crippled histidine sequence exhibited a saturable increase in helicity upon treatment with NiCl2, which can be reversed with EDTA. While the free peptide was a completely unfolded monomer, the resulting nickel-complexed peptide melted cooperatively with a Tm of 46 °C, and was found by analytical ultracentrifugation (AUC) to be dimeric. Helix turn stabilization and peptide tertiary structure nucleation of the crippled azidoalanine peptide were probed by double “click” cyloaddition. In this strategy, azidoalanine residues (i and i + 4) were linked by bis-alkynes: meta- diethynylbenzoic acid, ortho-diethynylbenzoic acid, dipropargylated glycine, and hexa- 1,5-diyne.
    [Show full text]
  • Ncomms5764.Pdf
    ARTICLE Received 11 Apr 2014 | Accepted 21 Jul 2014 | Published 28 Aug 2014 DOI: 10.1038/ncomms5764 Crystal structure and its bearing towards an understanding of key biological functions of EpCAM Miha Pavsˇicˇ1, Gregor Guncˇar1, Kristina Djinovic´-Carugo1,2 & Brigita Lenarcˇicˇ1,3 EpCAM (epithelial cell adhesion molecule), a stem and carcinoma cell marker, is a cell surface protein involved in homotypic cell–cell adhesion via intercellular oligomerization and proliferative signalling via proteolytic cleavage. Despite its use as a diagnostic marker and being a drug target, structural details of this conserved vertebrate-exclusive protein remain unknown. Here we present the crystal structure of a heart-shaped dimer of the extracellular part of human EpCAM. The structure represents a cis-dimer that would form at cell surfaces and may provide the necessary structural foundation for the proposed EpCAM intercellular trans-tetramerization mediated by a membrane-distal region. By combining biochemical, biological and structural data on EpCAM, we show how proteolytic processing at various sites could influence structural integrity, oligomeric state and associated functionality of the molecule. We also describe the epitopes of this therapeutically important protein and explain the antigenicity of its regions. 1 Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecˇna pot 113, Ljubljana SI-1000, Slovenia. 2 Department of Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, Campus Vienna Biocenter 5, Vienna AT-1030, Austria. 3 Department of Biochemistry, Molecular and Structural Biology, Institute Jozˇef Stefan, Jamova 39, Ljubljana SI-1000, Slovenia. Correspondence and requests for materials should be addressed to M.P.
    [Show full text]
  • Retention of Native Quaternary Structure in Racemic Melittin Crystals † † ‡ ∥ § Kathleen W
    Communication Cite This: J. Am. Chem. Soc. 2019, 141, 7704−7708 pubs.acs.org/JACS Retention of Native Quaternary Structure in Racemic Melittin Crystals † † ‡ ∥ § Kathleen W. Kurgan, Adam F. Kleman, Craig A. Bingman, Dale F. Kreitler, Bernard Weisblum, ⊥ † Katrina T. Forest,*, and Samuel H. Gellman*, † ‡ § ⊥ Department of Chemistry, Department of Biochemistry, Department of Medicine, and Department of Bacteriology, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States ∥ Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203-1102, United States *S Supporting Information differ, in each case function appears to involve specific modes − ABSTRACT: Racemic crystallography has been used to of self-assembly.12 14 It has been challenging, however, to elucidate the secondary and tertiary structures of peptides characterize these quaternary assemblies. X-ray crystallography and small proteins that are recalcitrant to conventional offers the prospect of atomic resolution structural information, crystallization. It is unclear, however, whether racemic but membrane-associated and membrane-embedded peptides crystallography can capture native quaternary structure, are extraordinarily difficult to crystallize, and few structures are which could be disrupted by heterochiral associations. We available. We seek to harness racemic crystallization to address are exploring the use of racemic crystallography to this challenge. characterize the self-assembly behavior of membrane-
    [Show full text]