Estuarine and catchment disturbance indicators and the response of the zooplankton biomass size frequency distribution ICES/PICES 6ZPS 2016/W1

Iain Suthers, Emma Tang, Jason D. Everett, Jocelyn Dela Cruz and Darren Ryder Wednesday 11 May 2016, Bergen Sydney Institute of Marine Science UNSW

Equal partnership of 4 universities Zooplankton biomass size4.0 frequency distribution

Coral Sea 3

- 3.0 Great Barrier Reef1 Great Barrier Reef2 GBR-Lagoon

2.0 Biomass m Biomass

Coral Sea (Suthers et al. 2004, L&O

1.0 2006, MEPS) Normalised

~nauplii ~copepods ~krill

0.0 Log10 Log10 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 0.1 mg, 1.0 mg, 10 mg 0.6 mm esd 1.2 mm esd 3 mm esd Log10 biomass size bins (mg) Lagoon, unpubl

The OPC GBR Reefs, unpubl. -2.0

-3.0 Dynamic !

• Entrainment from the inner shelf; • The ‘bump’ composed of juvenile krill – E. similis • And small salps – T. democratica • And many larval fish

Mullaney & Suthers 2013, L&O Everett et al. 2011, JGR -1 slope

NB In situ-OPC suffered high co-incidence of diatoms <<100 µm (very flat slopes)

Solution? We rinsed over 100 µm sieve and laboratory-OPC

Slopes -1.5 to -2.7 !!

Moore & Suthers 2006 JGR Estuary disturbance indices for SE ?? Estuary disturbance indices for SE Australia • Over 50 indices! – Chl-a, turbidity, %change in seagrass-mangroves, fish community, % clearing, population/km2, etc – Disturbance Index DI = Total N flow / estimated historical TN (Roper et al. 2011) – i.e. 1x historical? Double? Triple? (5 is bad) • But a DI is static! • Estuaries are dynamic, rainfall, seasonal • Kuprika et al. (2012) – Geometric Mean Size, Pareto intercept and slope, – Continental Shelf Res. 36: 29-40 Ecosystem indicators

4 Zooplankton Fish community 3 Oysters ?

2

1 Chl-a Periphyton & Seagrasses;

Epiphytes Mangoves Ecosystem trophic level Ecosystem trophiclevel

0 Macronutrients N, P, Si

Minutes Hours Days Weeks Months Years Time Aims

• Comparison of NBSS between 2 estuaries – Slope (linearity?) – Weighted average size? • Quantitative indices of water quality? • Problems in estuaries – detritus, seasonality • Opportunities in estuaries – citizen science Method Problem - detritus, faecal pellets Solution? – mostly carbon; ~10% threshold

WT110 = Watsons Taylor1 in October 2011 CH110 CH110-2

HR103

HR103

Each size category includes omnivores, but also vastly different rates Monthly changes in the Jan12 3.0 Mar11 Apr11 May11 2.5 Jun11 Jul11 Aug11

2.0 Sept11 )

3 Oct11 - Nov11 1.5

Log10 NB (m NB Log10 1.0

0.5

0.0 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 Log10 biomass size bin (mg) -0.5

-1.0 Summer, 2 sites each

2.5

)

3 - Key points:

2 • Normalised biomass • Log10 biomass (mg) • Narrow size range • 0.3- 2 mm ESD 1.5 • 0.01-1 mg • :. mostly linear (else Pareto) 1

-1 slope

0.5

Log10 normalised biomass concentration (m concentration biomass normalised Log10 Log10 biomass size bin (mg) 0 -2; -1; 0; (0.01 mg (0.1 mg (1.0 mg 0.27 mm) 0.58 mm) 1.24 mm) -0.5 “pristine” Camden Haven ?? versus rural (in summer):

2.5

)

3 - 2

Stratified, anoxic bottom later

1.5

1

-1 slope

0.5

Log10 biomass size bin (mg) Log10 normalised biomass concentration (m concentration biomass normalised Log10 0 -2; -1; 0; (0.01 mg (0.1 mg (1.0 mg 0.27 mm) 0.58 mm) 1.24 mm)

-0.5 Proposed indices of size spectra

• Slope = assimilation of nutrients – Predation (Zhou & Huntley) – Steeper slope, better water quality

• [Chlorophyll-a] : small biomass ratio – Small ratio = good; Big ratio =eutrophic • Or ~Geometric Mean Size ? – Big bugs = good; small bugs = less good Hastings R.

Camden Haven R. Council requested dynamic “traffic light”

CH-O 10.0

v. poor

HR-N poor CH-M CW-N HR-O fair HR-M CH-N

HR-J 1.0 WRWT-MQL-O LI-M QL-N LI-O MR-O good WT-NCW-O

MR-N MR-M QL-M LI-N CH-J a to small zooplankton ratio small zooplankton a to GL-N WR-J

- MR-J

v. good GL-O Chl

QL-J 0.1 -2.0 -1.5 -1.0 -0.5 NBSS slope Khappinghat (Lagoon, 1.3) Wallamba (R, 1.5) Myall Study sites

Narrabeen Lake Manly Lagoon

Durras Lake Clyde River Tuross River

Wonboyn River 100 km 3.5 p = 0.1 r2 = 0.3 3 Wonboyn

2.5 Myall Narrabeen

2 Clyde Durras Khappinghat

Manly Rivers lope

S Tuross 1.5 Wallamba Lakes 1 Lagoons

0.5

0 0 1 2 3 4 5 6 Disturbance ranking 0.10

0.09 R=0.27 0.08

0.07

0.06

0.05 WAVGSIZE (mm) WAVGSIZE

0.04

0.03 0 1 2 3 4 Disturbance index (=present TN load/ historical TN load) 0.10

0.09 R= -0.36

0.08

0.07

0.06 WAVGSIZE (mm) WAVGSIZE 0.05

0.04

0.03 0 5 10 15 20 25 Chlorophyll-a (ug/L) 4 Bay of Fundy (unpubl) Estuaries?

3 3 - • The planktonic 2 Coral Sea Suthers et al. 2004, 2006 size-based Salps+krill NSW estuaries Frontal eddy

Biomass m Biomass ecosystem! 1 • Summarised by

0 East Australian Current the size Mullaney &Suthers 2013 Normalised frequency -1 GBR lagoon distribution Log10 Log10 • speculate on -2 production,

Great Barrier Reef-1,2 predation -3 -2 ~nauplii -1 ~copepods0 1, ~krill 2 • See Jason 0.1 mg, 1.0 mg, 10 mg 0.6 mm esd 1.2 mm esd 3 mm esd Everett’s poster Log10 biomass size bins (mg) Conclusion & discussion points:

• In situ counters vs. net samples – Coincidence from << 100 um particles – Nets are better for estuarine samples • Detritus and arbitrary <10% threshold ? • Difficulty of perfect flow meter data ? – Slope is independent of volume filtered – Also Geometric Mean Size (GMS) • Slope (assimilation, predation) and GMS, (small-biomass:Chl-a ratio?) as useful indices

0

R= 0.314

-1

-2

NBSSSLOPE -3

-4 0 1 2 3 4 Disturbance index https://en.wikipedia.org/wiki/Camden_Haven

Rivers, Lakes, Lagoon

• Geomorphology of estuaries (Roy et al. 2001)

– Rivers frequently flushed (Roper et al. 2011) Narrabeen Lake

– Lakes high dilution but less tide Manly Lagoon – Lagoons – smaller, shallower and lower dilution 3 High nutrients High nutrients High production Low production QL-J

QL-M LI-M

Biomass at 1.5 Biomass at CH-J 2 GL-N CH-N CH-M WR-J MRGL-WRWT-JO --M MR-N LI-N HR-J WT-N HR-O HR-N LI-O MR-O Normalised HR-M QL-N 1 MR-M CW-N CW-O

Estimated Estimated QL-O Low nutrients Low nutrients High production CH-O Low production 0 -2.0 -1.5 -1.0 -0.5 NBSS- slope 3

QL-J

QL-M CH-J LI-M WRGL--NJ CH-N CH-M 2 GLMR-O -J WRWT-M LI-MRN -N WT-N HR-J Biomass at 1.5 at Biomass HR-O MRLI-O HR-N HR-M QL-N 1

Normalised MR-M CW-O CW-N QL-O

Estimated Estimated CH-O 0 0 1 2 3 4 5 6 Chlorophyll concentration rank Score Chl : sm slope v good 5 <0.5 >1.75 good 4 0.5 to 1.5 1.25 to 1.75 fair 3 1.5 to 3 1 to 1.25 poor 2 3 to 5 0.75 to 1 v. poor 1 >5 <0.75 rank Range v good >4.2 to 5 Change this to GMS and slopes good >3.4-4.2 fair >2.6-3.4 poor >1.8 to 2.6 v. poor <=1.8 Sample Locations & Variables

100µm net with 0.4m diameter towed for five minutes at 1m/s Traditional measurements Hastings – Temperature – Salinity Port – Turbidity Macquarie Additional data – Total Suspended Solids collected: – Chlorophyll-α Two replicates per site Catchment Land Camden Sampling dates Use (GIS) Haven – 27, 28 October 2014 – 11, 12 November 2014 Streamflow – 4, 5 March 2015 recordings – 18, 19 March 2015

Wilsons River

Maria River

Hastings River

Lake Innes

FTB1 Lake Cathie

Tasman Sea FTB1 Queens Lake

Camden Haven R Googles L

Watsons Taylor

4.00 Cato Reef UML Suthers et al. 2006, MEPS Derwent -all Suthers et al. 2004, L&O 3.00 Myrmidon R-all Helix Reef - all Lagoon 2.00

1.00

0.00 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-1.00

-2.00

-3.00

Plankton surveys Bay of Fundy:

103 95 105 • First week of November 102 96 106 94 101 112 107 113 – 1972-1998 92 97 68 93 100 111 79 56 67 108 98 99 110 57 69 80 3 45° 109 78 91 • 65 Bongo, 0.5 mm,~500 m 71 81 90 63 77 88 89 73 82 76 87 • Zooplankton 74 83 75 86 84 85 30 – Atlantic Refr. Collection 23 12 29 22 24 13 – beautifully archived + 14 28 21 14 34 25 27 20 15 11 26 taxa abund. categ. 0, <10, 44° 19 10 16 5 9 <100, <1000, >1000 18 17 6 8 4 7 1 – 3 OPC 8 core stations x 27 2 years, ’72-’98

43° 67° 66° 65°

Figure __. Herring larval survey standard station locations and numbers. BoF-bugs5.xls, avg-data Comparison of 333 and 505 µm mesh

100000 Average with 333 um mesh ('72-74, '79-80) Average with 505 um mesh (all other years)

10000

1000

100 no. bugs per 100 m3 100 per bugs no.

10

1 0.50 1.00 1.50 2.00 2.50 3.00 3.50 geometic mean ESD (mm) Bay of Fundy, 1972-1998 archive

5.0 (Small copepods) 4.5 Metridia, Centropages y = -1.34 (size bin) + 3.40

4.0 Other copepods biomass 3.5 Calanus

3.0 Amphipods, mysids,

nomralised sm krill, herring, Sagitta 2.5

2.0 -1 slope

1.5 (0.9 mm) (3.3 mm) 1.0 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 log10(biomass size bin - g) bof-bugs5.xls, avg-data Coefficient of Variation Effect of predation: 20

16

12 BoF-bugs5.xls 8

4 coefficient of variation (%) of variation coefficient

0 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 log10(mg) What is the expected biomass of fish? Of phytoplankton? 0.004-0.04 mm? 5.0

4.5 y = -1.34 (size bin) + 3.40

4.0

3.5

3.0 nomralised biomass nomralised 2.5 -1 slope

2.0

1.5 (0.9 mm) (3.3 mm) 1.0 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 log10(biomass size bin - g) 150-350 mm? Bottom-up forcing? Continuous Plankton Recorder greenness index, PCI “Phytoplankton Colour Index” • Jul-Nov avg PCI is recorded as 0,1,2 and 1972 0.25 6.5 1973 0.50 1974 • Missing data from 1974 – 1990 1975 • Is there a bottom-up effect on 1976 1977 the biomass size distribution? 1991 0.48 • If so, can we predict the 1992 0.96 1993 1.28 missing years of chlorophyll 1994 0.75 from the NBSS? 1995 0.80 1996 0.92 1997 0.42 1998 0.73 Intercept of NBSS (1 mg)

4.00 y = 0.5872x + 2.9863 R² = 0.28 3.80

3.60

3.40

3.20 more phyto

Intercept of NBSS Intercept 3.00 Less phyto 2.80

2.60

2.40 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 CPR phytoplankton colour index (PCI, annual average- July-November) Pseudocalanus spp Temora longicornis Calanus finmarchicus Calanus hyperboreus 4

3

2 REGION$

Bay of Fundy 1 NSW estuaries

NB Cato Reef -UML 0 Derwent Reef Helix Reef -1 GBR Lagoon Cold Core eddy 06 -2 EAC 06 Myrmidon Reef -3 -2 -1 0 1 2 LOG10_BM_

3.0 LOPC NBSS from 142 to 1402 um esd Dec-12 2.5 Feb-13 Apr-13

2.0

3 - 1.5

1.0

0.5 normalisedbiomass m

0.0 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5

log10 size category (mg) -0.5

-1.0

A bio-mechanical, size resolved model • 62 size classes • 19 orders of magn. • Phyto 1-17 • Protozoan 9-21

spawning • Metazoan 18-62 • Complexity stabilises model

growth • Initial conditions? • Coupled hydrogr • Sensitivity: [DIN], protozoa biomass

th th th

Baird & Suthers 2007; 2010

0

R= -0.305

-1

-2

SLOPE -

NBSS -3

-4 0 5 10 15 20 25 CHLRA 6 Smallest NB on Roper-DI

5

4

NB029 3

2

1 0 1 2 3 4 ROPERDI

4.0

3.5

3.0 BoF Coral Sea 2.5 TSea04 E.EAC04 S.EAC04 2.0 S.Shelf04 N.EAC04 1.5 N.Shelf04 E.EAC06 CCeddy06 1.0 S.Shelf06 CCeddy08 0.5 CCeddy09

0.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-0.5