Diatonic Harmony
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Naming a Chord Once You Know the Common Names of the Intervals, the Naming of Chords Is a Little Less Daunting
Naming a Chord Once you know the common names of the intervals, the naming of chords is a little less daunting. Still, there are a few conventions and short-hand terms that many musicians use, that may be confusing at times. A few terms are used throughout the maze of chord names, and it is good to know what they refer to: Major / Minor – a “minor” note is one half step below the “major.” When naming intervals, all but the “perfect” intervals (1,4, 5, 8) are either major or minor. Generally if neither word is used, major is assumed, unless the situation is obvious. However, when used in naming extended chords, the word “minor” usually is reserved to indicate that the third of the triad is flatted. The word “major” is reserved to designate the major seventh interval as opposed to the minor or dominant seventh. It is assumed that the third is major, unless the word “minor” is said, right after the letter name of the chord. Similarly, in a seventh chord, the seventh interval is assumed to be a minor seventh (aka “dominant seventh), unless the word “major” comes right before the word “seventh.” Thus a common “C7” would mean a C major triad with a dominant seventh (CEGBb) While a “Cmaj7” (or CM7) would mean a C major triad with the major seventh interval added (CEGB), And a “Cmin7” (or Cm7) would mean a C minor triad with a dominant seventh interval added (CEbGBb) The dissonant “Cm(M7)” – “C minor major seventh” is fairly uncommon outside of modern jazz: it would mean a C minor triad with the major seventh interval added (CEbGB) Suspended – To suspend a note would mean to raise it up a half step. -
MTO 0.7: Alphonce, Dissonance and Schumann's Reckless Counterpoint
Volume 0, Number 7, March 1994 Copyright © 1994 Society for Music Theory Bo H. Alphonce KEYWORDS: Schumann, piano music, counterpoint, dissonance, rhythmic shift ABSTRACT: Work in progress about linearity in early romantic music. The essay discusses non-traditional dissonance treatment in some contrapuntal passages from Schumann’s Kreisleriana, opus 16, and his Grande Sonate F minor, opus 14, in particular some that involve a wedge-shaped linear motion or a rhythmic shift of one line relative to the harmonic progression. [1] The present paper is the first result of a planned project on linearity and other features of person- and period-style in early romantic music.(1) It is limited to Schumann's piano music from the eighteen-thirties and refers to score excerpts drawn exclusively from opus 14 and 16, the Grande Sonate in F minor and the Kreisleriana—the Finale of the former and the first two pieces of the latter. It deals with dissonance in foreground terms only and without reference to expressive connotations. Also, Eusebius, Florestan, E.T.A. Hoffmann, and Herr Kapellmeister Kreisler are kept gently off stage. [2] Schumann favours friction dissonances, especially the minor ninth and the major seventh, and he likes them raw: with little preparation and scant resolution. The sforzato clash of C and D in measures 131 and 261 of the Finale of the G minor Sonata, opus 22, offers a brilliant example, a peculiarly compressed dominant arrival just before the return of the main theme in G minor. The minor ninth often occurs exposed at the beginning of a phrase as in the second piece of the Davidsbuendler, opus 6: the opening chord is a V with an appoggiatura 6; as 6 goes to 5, the minor ninth enters together with the fundamental in, respectively, high and low peak registers. -
Day 17 AP Music Handout, Scale Degress.Mus
Scale Degrees, Chord Quality, & Roman Numeral Analysis There are a total of seven scale degrees in both major and minor scales. Each of these degrees has a name which you are required to memorize tonight. 1 2 3 4 5 6 7 1 & w w w w w 1. tonicw 2.w supertonic 3.w mediant 4. subdominant 5. dominant 6. submediant 7. leading tone 1. tonic A triad can be built upon each scale degree. w w w w & w w w w w w w w 1. tonicw 2.w supertonic 3.w mediant 4. subdominant 5. dominant 6. submediant 7. leading tone 1. tonic The quality and scale degree of the triads is shown by Roman numerals. Captial numerals are used to indicate major triads with lowercase numerals used to show minor triads. Diminished triads are lowercase with a "degree" ( °) symbol following and augmented triads are capital followed by a "plus" ( +) symbol. Roman numerals written for a major key look as follows: w w w w & w w w w w w w w CM: wI (M) iiw (m) wiii (m) IV (M) V (M) vi (m) vii° (dim) I (M) EVERY MAJOR KEY FOLLOWS THE PATTERN ABOVE FOR ITS ROMAN NUMERALS! Because the seventh scale degree in a natural minor scale is a whole step below tonic instead of a half step, the name is changed to subtonic, rather than leading tone. Leading tone ALWAYS indicates a half step below tonic. Notice the change in the qualities and therefore Roman numerals when in the natural minor scale. -
Discover Seventh Chords
Seventh Chords Stack of Thirds - Begin with a major or natural minor scale (use raised leading tone for chords based on ^5 and ^7) - Build a four note stack of thirds on each note within the given key - Identify the characteristic intervals of each of the seventh chords w w w w w w w w % w w w w w w w Mw/M7 mw/m7 m/m7 M/M7 M/m7 m/m7 d/m7 w w w w w w % w w w w #w w #w mw/m7 d/wm7 Mw/M7 m/m7 M/m7 M/M7 d/d7 Seventh Chord Quality - Five common seventh chord types in diatonic music: * Major: Major Triad - Major 7th (M3 - m3 - M3) * Dominant: Major Triad - minor 7th (M3 - m3 - m3) * Minor: minor triad - minor 7th (m3 - M3 - m3) * Half-Diminished: diminished triad - minor 3rd (m3 - m3 - M3) * Diminished: diminished triad - diminished 7th (m3 - m3 - m3) - In the Major Scale (all major scales!) * Major 7th on scale degrees 1 & 4 * Minor 7th on scale degrees 2, 3, 6 * Dominant 7th on scale degree 5 * Half-Diminished 7th on scale degree 7 - In the Minor Scale (all minor scales!) with a raised leading tone for chords on ^5 and ^7 * Major 7th on scale degrees 3 & 6 * Minor 7th on scale degrees 1 & 4 * Dominant 7th on scale degree 5 * Half-Diminished 7th on scale degree 2 * Diminished 7th on scale degree 7 Using Roman Numerals for Triads - Roman Numeral labels allow us to identify any seventh chord within a given key. -
Music in Theory and Practice
CHAPTER 4 Chords Harmony Primary Triads Roman Numerals TOPICS Chord Triad Position Simple Position Triad Root Position Third Inversion Tertian First Inversion Realization Root Second Inversion Macro Analysis Major Triad Seventh Chords Circle Progression Minor Triad Organum Leading-Tone Progression Diminished Triad Figured Bass Lead Sheet or Fake Sheet Augmented Triad IMPORTANT In the previous chapter, pairs of pitches were assigned specifi c names for identifi cation CONCEPTS purposes. The phenomenon of tones sounding simultaneously frequently includes group- ings of three, four, or more pitches. As with intervals, identifi cation names are assigned to larger tone groupings with specifi c symbols. Harmony is the musical result of tones sounding together. Whereas melody implies the Harmony linear or horizontal aspect of music, harmony refers to the vertical dimension of music. A chord is a harmonic unit with at least three different tones sounding simultaneously. Chord The term includes all possible such sonorities. Figure 4.1 #w w w w w bw & w w w bww w ww w w w w w w w‹ Strictly speaking, a triad is any three-tone chord. However, since western European music Triad of the seventeenth through the nineteenth centuries is tertian (chords containing a super- position of harmonic thirds), the term has come to be limited to a three-note chord built in superposed thirds. The term root refers to the note on which a triad is built. “C major triad” refers to a major Triad Root triad whose root is C. The root is the pitch from which a triad is generated. 73 3711_ben01877_Ch04pp73-94.indd 73 4/10/08 3:58:19 PM Four types of triads are in common use. -
Major and Minor Scales Half and Whole Steps
Dr. Barbara Murphy University of Tennessee School of Music MAJOR AND MINOR SCALES HALF AND WHOLE STEPS: half-step - two keys (and therefore notes/pitches) that are adjacent on the piano keyboard whole-step - two keys (and therefore notes/pitches) that have another key in between chromatic half-step -- a half step written as two of the same note with different accidentals (e.g., F-F#) diatonic half-step -- a half step that uses two different note names (e.g., F#-G) chromatic half step diatonic half step SCALES: A scale is a stepwise arrangement of notes/pitches contained within an octave. Major and minor scales contain seven notes or scale degrees. A scale degree is designated by an Arabic numeral with a cap (^) which indicate the position of the note within the scale. Each scale degree has a name and solfege syllable: SCALE DEGREE NAME SOLFEGE 1 tonic do 2 supertonic re 3 mediant mi 4 subdominant fa 5 dominant sol 6 submediant la 7 leading tone ti MAJOR SCALES: A major scale is a scale that has half steps (H) between scale degrees 3-4 and 7-8 and whole steps between all other pairs of notes. 1 2 3 4 5 6 7 8 W W H W W W H TETRACHORDS: A tetrachord is a group of four notes in a scale. There are two tetrachords in the major scale, each with the same order half- and whole-steps (W-W-H). Therefore, a tetrachord consisting of W-W-H can be the top tetrachord or the bottom tetrachord of a major scale. -
Ninth, Eleventh and Thirteenth Chords Ninth, Eleventh and Thirteen Chords Sometimes Referred to As Chords with 'Extensions', I.E
Ninth, Eleventh and Thirteenth chords Ninth, Eleventh and Thirteen chords sometimes referred to as chords with 'extensions', i.e. extending the seventh chord to include tones that are stacking the interval of a third above the basic chord tones. These chords with upper extensions occur mostly on the V chord. The ninth chord is sometimes viewed as superimposing the vii7 chord on top of the V7 chord. The combination of the two chord creates a ninth chord. In major keys the ninth of the dominant ninth chord is a whole step above the root (plus octaves) w w w w w & c w w w C major: V7 vii7 V9 G7 Bm7b5 G9 ? c ∑ ∑ ∑ In the minor keys the ninth of the dominant ninth chord is a half step above the root (plus octaves). In chord symbols it is referred to as a b9, i.e. E7b9. The 'flat' terminology is use to indicate that the ninth is lowered compared to the major key version of the dominant ninth chord. Note that in many keys, the ninth is not literally a flatted note but might be a natural. 4 w w w & #w #w #w A minor: V7 vii7 V9 E7 G#dim7 E7b9 ? ∑ ∑ ∑ The dominant ninth usually resolves to I and the ninth often resolves down in parallel motion with the seventh of the chord. 7 ˙ ˙ ˙ ˙ & ˙ ˙ #˙ ˙ C major: V9 I A minor: V9 i G9 C E7b9 Am ˙ ˙ ˙ ˙ ˙ ? ˙ ˙ The dominant ninth chord is often used in a II-V-I chord progression where the II chord˙ and the I chord are both seventh chords and the V chord is a incomplete ninth with the fifth omitted. -
The Thirteenth Amendment: Modern Slavery, Capitalism, and Mass Incarceration Michele Goodwin University of California, Irvine
Cornell Law Review Volume 104 Article 4 Issue 4 May 2019 The Thirteenth Amendment: Modern Slavery, Capitalism, and Mass Incarceration Michele Goodwin University of California, Irvine Follow this and additional works at: https://scholarship.law.cornell.edu/clr Part of the Constitutional Law Commons Recommended Citation Michele Goodwin, The Thirteenth Amendment: Modern Slavery, Capitalism, and Mass Incarceration, 104 Cornell L. Rev. 899 (2019) Available at: https://scholarship.law.cornell.edu/clr/vol104/iss4/4 This Article is brought to you for free and open access by the Journals at Scholarship@Cornell Law: A Digital Repository. It has been accepted for inclusion in Cornell Law Review by an authorized editor of Scholarship@Cornell Law: A Digital Repository. For more information, please contact [email protected]. THE THIRTEENTH AMENDMENT: MODERN SLAVERY, CAPITALISM, AND MASS INCARCERATION Michele Goodwint INTRODUCTION ........................................ 900 I. A PRODIGIOUS CYCLE: PRESERVING THE PAST THROUGH THE PRESENT ................................... 909 II. PRESERVATION THROUGH TRANSFORMATION: POLICING, SLAVERY, AND EMANCIPATION........................ 922 A. Conditioned Abolition ....................... 923 B. The Punishment Clause: Slavery's Preservation Through Transformation..................... 928 C. Re-appropriation and Transformation of Black Labor Through Black Codes, Crop Liens, Lifetime Labor, Debt Peonage, and Jim Crow.. 933 1. Black Codes .......................... 935 2. Convict Leasing ........................ 941 -
Download Music Theory IV Syllabus 2018
MUSC 212 Prof. Tim Tollefson Music Theory IV Office: YFAC 206 Spring, 2018 [email protected] MWF 10:30-11:20 AM Office Phone: 382 Course Description This is the final course in a series (MUSC 111, 112, 211, and 212) that is designed to give the student a firm grasp of the concepts and practices commonly found in Western art music. Music of the 19th and 20th centuries will be the primary focus. Contemporary music (late 20th century and early 21st century) will also be discussed, although not in as much detail. The initial focus will be on the increased use of chromaticism and enharmonic chords, and then later we will study some of the new methods of music composition that came to the fore when the traditional tonal system broke down. This course supports the music department's overall objective for music theory, composition and music skills, which reads as follows: Students will be able to create, manipulate and analyze musical structures typical of the major historical periods, utilizing the many elements of musical language such as melody, harmony, rhythm, form, timbre, and notation. (Program Learning Outcome 1) Learning Outcomes for Music Theory IV: A student who gets an “A” in this course will be able to: --explain the numerous musical terms covered in the course --do a Roman numeral analysis of musical compositions involving the various types of chords covered in Music Theory I-IV --label embellishing tones in a tonal composition --recognize, create and use doubly augmented 4th chords, enharmonic diminished 7ths, enharmonic German -
Generalized Interval System and Its Applications
Generalized Interval System and Its Applications Minseon Song May 17, 2014 Abstract Transformational theory is a modern branch of music theory developed by David Lewin. This theory focuses on the transformation of musical objects rather than the objects them- selves to find meaningful patterns in both tonal and atonal music. A generalized interval system is an integral part of transformational theory. It takes the concept of an interval, most commonly used with pitches, and through the application of group theory, generalizes beyond pitches. In this paper we examine generalized interval systems, beginning with the definition, then exploring the ways they can be transformed, and finally explaining com- monly used musical transformation techniques with ideas from group theory. We then apply the the tools given to both tonal and atonal music. A basic understanding of group theory and post tonal music theory will be useful in fully understanding this paper. Contents 1 Introduction 2 2 A Crash Course in Music Theory 2 3 Introduction to the Generalized Interval System 8 4 Transforming GISs 11 5 Developmental Techniques in GIS 13 5.1 Transpositions . 14 5.2 Interval Preserving Functions . 16 5.3 Inversion Functions . 18 5.4 Interval Reversing Functions . 23 6 Rhythmic GIS 24 7 Application of GIS 28 7.1 Analysis of Atonal Music . 28 7.1.1 Luigi Dallapiccola: Quaderno Musicale di Annalibera, No. 3 . 29 7.1.2 Karlheinz Stockhausen: Kreuzspiel, Part 1 . 34 7.2 Analysis of Tonal Music: Der Spiegel Duet . 38 8 Conclusion 41 A Just Intonation 44 1 1 Introduction David Lewin(1933 - 2003) is an American music theorist. -
A Study of Compositional Elements in Ciclo Brasileiro by Heitor Villa- Lobos
A STUDY OF COMPOSITIONAL ELEMENTS IN CICLO BRASILEIRO BY HEITOR VILLA- LOBOS Maria Eduarda Lucena Vieira A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF MUSIC August 2017 Committee: Gene Trantham, Advisor Yu-Lien The ii ABSTRACT Gene Trantham, Advisor Heitor Villa-Lobos, a well-known Brazilian composer, was born in the city of Rio de Janeiro, in 1887, the same place where he died, in 1959. He was influenced by many composers not only from Brazil, but also from around the world, such as Debussy, Igor Stravinsky and Darius Milhaud. Even though Villa-Lobos spent most of his life traveling to Europe and the United States, his works always had a Brazilian musical flavor. This thesis will focus on the Ciclo Brasileiro (Brazilian Cycle) written for piano in 1936. The premiere of this set was initially presented in 1938 as individual pieces including “Impressões Seresteiras” (The Impressions of a Serenade) and “Dança do Indio Branco” (Dance of the White Indian). The other pieces of the set, “Plantio do Caboclo” (The Peasant’s Sowing) and “Festa no Sertão” (The Fete in the Desert) were premiered in 1939. Both performances occurred in Rio de Janeiro. Also in 1936 he wrote two other pieces, “Bazzum”, for men’s voices and Modinhas e canções (Folk Songs and Songs), album 1. My thesis will explore Heitor Villa-Lobos’ Ciclo Brasileiro and hopefully will find direct or indirect elements of the Brazilian culture. In chapter 1, I will present an introduction including Villa-Lobos’ background about his life and music, and how classical and folk influences affected his compositional process in the Ciclo Brasileiro. -
AP Music Theory Syllabus
AP Music Theory Syllabus Course Overview This rigorous course expands upon the skills learned in the choral and instrumental courses offered at our school. Musical composition, sequencing, and Finale software use are some of the many applications employed to further student understanding of music theory. Objectives of the Course This course is designed to develop musical skills that will lead to a thorough understanding of music composition and music theory. Students are prepared to take the AP* Music Theory Exam when they have completed the course. Students planning to major in music in college may be able to enroll in an advanced music theory course, depending on individual colleges’ AP policies. General Course Content 1. Review of music fundamentals, including: scales, key signatures, circle-of-fifths, intervals triads and inversions 2. Daily ear training, including rhythmic, melodic, and harmonic dictation 3. Weekly Sight-Singing using numbers and solfege for pitches 4. The study of modes 5. The study of figured bass 6. The study of two-part counterpoint 7. The study of four-part harmony 8. The study of seventh chords 9. The study of secondary-dominant functions 10. The study of musical form 11. The study of common compositional techniques The objectives below have been adapted from the Expanded Course Specifications posted on the AP Music Theory Home Page on AP Central Expanded Course Objectives 1. Identify and notate pitch in four clefs: treble, bass, alto and tenor. 2. Notate, hear and identify simple and compound meters. 3. Notate and identify all major and minor key signatures. 4. Notate, hear and identify the following scales: chromatic, major and the three minor forms.