NCCP Extravasation Classification of Systemic Anti-Cancer Therapy

Total Page:16

File Type:pdf, Size:1020Kb

NCCP Extravasation Classification of Systemic Anti-Cancer Therapy NCCP BACKGROUND DOCUMENT EXTRAVASATION CLASSIFICATION OF SYSTEMIC ANTI-CANCER THERAPY Version Date Amendment Approved by 1 21/06/2017 Version 1 NCCP 2 21/11/2019 Document reviewed to: NCCP 1. Amendment of MOCIS to NCIS 2. Inclusion of tallman lettering 3. Addition of avelumab, atezolizumab, blinatumomab, dinutuximab, durvalumab, inotuzumab, ramucirumab, vinflunine, All comments and feedback are welcome at [email protected] NCCP Background Document 0010| Extravasation Classification of SACT| V2| 2019 Background Drugs used in Systemic Anti Cancer Therapy (SACT) particularly cytotoxics, can be extremely irritating and cause damage if they extravasate or infiltrate into surrounding tissues during intravenous administration. Extravasation refers to the inadvertent infiltration of any liquid (fluid or drug) from a vein into the subcutaneous or subdermal tissues during intravenous administration (1). Depending on the type, extravasation can result in damage to the tissues, cause pain, erythema, swelling and blistering. If left undiagnosed or inappropriately treated, this can lead to necrosis, secondary infection and functional loss of the tissue or possible permanent damage to the limb involved (2). Management of an extravasation depends on which drug has accidentally leaked into the tissues. Therefore, it is vital that the classification of the drug is known in order to direct the management of the extravasation. Currently, most hospital delivering HSE funded SACT services maintain their own extravasation classification lists and there are some variations between hospitals. The introduction of the National Cancer Information System (NCIS) presents a potential opportunity to implement a series of standardised documents for inclusion within the (NCIS) configuration. The NCCP has developed a standardised nursing document for the assessment of a suspected or diagnosed extravasation injury and an accompanying list of extravasation drug classifications for use in Irish hospitals and if possible, for inclusion within the NCIS configuration. The extravasation classification list is based on current International evidence (3-15). The NCCP extravasation classification list (Appendix 1) will classify parenteral SACT into four different types depending on their ability to cause local damage after extravasation. These categories should be implemented in all future extravasation recording documentation and electronic systems where possible. Vesicants DNA Binding Vesicants Non DNA Binding Irritants Neutrals (Non vesicants) As per the NCCP Oncology Medication Safety Review Report (16), each hospital is required to have a policy governing the prevention, recognition and treatment of extravasation. This should be developed in line with local practices and incorporate references to the documentation as described above. This document is based on internationally accepted guidance on the extravasation classification of drugs. Any clinician seeking to apply or consult these documents is expected to use independent medical judgement in the context of individual clinical circumstances to determine any patient's care or treatment. Please refer to local hospital extravasation policy for more details on the treatment of extravasation Use of this document is the responsibility of the user and is subject to HSE’s terms of use available at http://www.hse.ie/eng/Disclaimer This information is valid only on the day of printing, for any updates please check https://www.hse.ie/eng/services/list/5/cancer/profinfo/medonc/sactguidance/ NCCP Document 0010 Extravasation Classifications Published: 21 June 2017 Version: 2 of Systemic Anti Cancer Therapy Review: 21 November 2022 Page 2 of 4 NCCP Background Document 0010| Extravasation Classification of SACT| V2| 2019 Appendix 1. Extravasation Classification of Systemic Anti-Cancer Therapy Vesicants Vesicants DNA Binding Vesicants Non DNA Binding Amsacrine EpiRUBicin PACLitaxel VinBLAStine Bendamustine IDArubicin PACLitaxel NAB VinCRIStine Carmustine Mechlorethamine Vindesine DACTINomycin MitoXANTRONE Vinfluine DAUNOrubicin MitoMYcin C Vinorelbine DOXOrubicin Trabectedin VinBLAStine Irritants Arsenic trioxide CISplatin Flourouracil Streptozocin AzaCITIDine Dacarbazine Gemtuzumab Ozogamicin Teniposide Bortezomib DOCEtaxel Ifosfamide Temsozolomide Busulfan Liposomal DAUNOrubicin Irinotecan Topotecan Cabazitaxel Liposomal DOXOrubicin Melphalan Trastuzumab Emtansine (Kadcyla®) CARBOplatin Etoposide Oxaliplatin Streptozocin Non Vesicants/Neutrals Aflibercept Cetuximab Inotuzumab Pemetrexed Aldesleukin Cladribine Interferons Pentostatin Alemtuzumab Clofarabine ipilimumab Pertuzumab Amifostine Cyclophosphamide Methotrexate Pixantrone Asparaginase Cytarabine Mifamurtide Raltitrexed Atezolizumab Daratumumab Nelarabine Ramucirumab Avelumab Decitabine Nivolumab RiTUXimab Bevacizumab Dinutuximab Obinutuzumab Ruxolitinib Bleomycin Durvalumab Ofatumumab Siltuximab Blinatumomab EriBULin Panitumumab Temsirolimus Brentuximab-vedotin Fludarabine Pegaspargase Thiotepa Carfilzomib Gemcitabine Pembrolizumab Trastuzumab (Herceptin®) This document is based on internationally accepted guidance on the extravasation classification of drugs. Any clinician seeking to apply or consult these documents is expected to use independent medical judgement in the context of individual clinical circumstances to determine any patient's care or treatment. Please refer to local hospital extravasation policy for more details on the treatment of extravasation Use of this document is the responsibility of the user and is subject to HSE’s terms of use available at http://www.hse.ie/eng/Disclaimer This information is valid only on the day of printing, for any updates please check https://www.hse.ie/eng/services/list/5/cancer/profinfo/medonc/sactguidance/ NCCP Document 0010 Extravasation Classifications Published: 21 June 2017 Version: 2 of Systemic Anti Cancer Therapy Review: 21 November 2022 Page 3 of 4 NCCP Background Document 0010| Extravasation Classification of SACT| V2| 2019 References 1. Fidalgo J.A, et al. Management of chemotherapy extravasation: ESMO-EONS Clinical Practice. Guidelines. Annals of Oncology 2012; 23: 167-173. 2. NHS East Midlands. Guidelines for Management of Extravasation, 2015. 3. Quicklinks table, eviQ Extravasation Management, 2019. 4. Extravasation Guidelines Implementation Toolkit, EONS 2007. 5. Management of chemotherapy extravasation: ESMO-EONS Clinical Practice Guidelines. 6. Chemotherapy extravasation guideline, WOSCAN 2009. 7. Assessment, Prevention & Management of Extravasation of Cytotoxic Medications GONG Cancer Care Guidelines 2009. 8. Extravasation policy for all drugs, chemotherapy & non chemotherapy, NHS Tayside, 2008. 9. Policy for the Treatment of extravasation Injury, NHS, Avon, Somerset and Wiltshire 2012. 10. Guideline for Management of Extravasation, NHS East Midland, 2018. 11. Extravasation Hazard Table, BCCA 2019. 12. Guidelines on Treatment of extravasation with Cytotoxic Drugs, NHS Thames Valley 2014. 13. Policy on the Management of Extravasation, Network Site Specific Group 2016. 14. Extravasation injury from chemotherapy and other non-antineoplastic vesicants, UpToDate 2017. 15. Cancer Care Ontario Drug Formulary. 16. NCCP. Oncology Medication Safety Review Report 2014. This document is based on internationally accepted guidance on the extravasation classification of drugs. Any clinician seeking to apply or consult these documents is expected to use independent medical judgement in the context of individual clinical circumstances to determine any patient's care or treatment. Please refer to local hospital extravasation policy for more details on the treatment of extravasation Use of this document is the responsibility of the user and is subject to HSE’s terms of use available at http://www.hse.ie/eng/Disclaimer This information is valid only on the day of printing, for any updates please check https://www.hse.ie/eng/services/list/5/cancer/profinfo/medonc/sactguidance/ NCCP Document 0010 Extravasation Classifications Published: 21 June 2017 Version: 2 of Systemic Anti Cancer Therapy Review: 21 November 2022 Page 4 of 4 .
Recommended publications
  • MASCC/ESMO ANTIEMETIC GUIDELINE 2016 with Updates in 2019
    1 ANTIEMETIC GUIDELINES: MASCC/ESMO MASCC/ESMO ANTIEMETIC GUIDELINE 2016 With Updates in 2019 Organizing and Overall Meeting Chairs: Matti Aapro, MD Richard J. Gralla, MD Jørn Herrstedt, MD, DMSci Alex Molassiotis, RN, PhD Fausto Roila, MD © Multinational Association of Supportive Care in CancerTM All rights reserved worldwide. 2 ANTIEMETIC GUIDELINES: MASCC/ESMO These slides are provided to all by the Multinational Association of Supportive Care in Cancer and can be used freely, provided no changes are made and the MASCC and ESMO logos, as well as date of the information are retained. For questions please contact: Matti Aapro at [email protected] Chair, MASCC Antiemetic Study Group or Alex Molassiotis at [email protected] Past Chair, MASCC Antiemetic Study Group 3 ANTIEMETIC GUIDELINES: MASCC/ESMO Consensus A few comments on this guideline set: • This set of guideline slides represents the latest edition of the guideline process. • This set of slides has been endorsed by the MASCC Antiemetic Guideline Committee and ESMO Guideline Committee. • The guidelines are based on the votes of the panel at the Copenhagen Consensus Conference on Antiemetic Therapy, June 2015. • Latest version: March 2016, with updates in 2019. 4 ANTIEMETIC GUIDELINES: MASCC/ESMO Changes: The Steering Committee has clarified some points: 2016: • A footnote clarified that aprepitant 165 mg is approved by regulatory authorities in some parts of the world ( although no randomised clinical trial has investigated this dose ). Thus use of aprepitant 80 mg in the delayed phase is only for those cases where aprepitant 125 mg is used on day 1. • A probable modification in pediatric guidelines based on the recent Cochrane meta-analysis is indicated.
    [Show full text]
  • Monoclonal Antibody: a New Treatment Strategy Against Multiple Myeloma
    antibodies Review Monoclonal Antibody: A New Treatment Strategy against Multiple Myeloma Shih-Feng Cho 1,2,3, Liang Lin 3, Lijie Xing 3,4, Tengteng Yu 3, Kenneth Wen 3, Kenneth C. Anderson 3 and Yu-Tzu Tai 3,* 1 Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan; [email protected] 2 Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan 3 LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; [email protected] (L.L.); [email protected] (L.X.); [email protected] (T.Y.); [email protected] (K.W.); [email protected] (K.C.A.) 4 Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, No. 324, Jingwu Road, Jinan 250021, China * Correspondence: [email protected]; Tel.: +1-617-632-3875; Fax: +1-617-632-2140 Received: 20 October 2017; Accepted: 10 November 2017; Published: 14 November 2017 Abstract: 2015 was a groundbreaking year for the multiple myeloma community partly due to the breakthrough approval of the first two monoclonal antibodies in the treatment for patients with relapsed and refractory disease. Despite early disappointments, monoclonal antibodies targeting CD38 (daratumumab) and signaling lymphocytic activation molecule F7 (SLAMF7) (elotuzumab) have become available for patients with multiple myeloma in the same year. Specifically, phase 3 clinical trials of combination therapies incorporating daratumumab or elotuzumab indicate both efficacy and a very favorable toxicity profile. These therapeutic monoclonal antibodies for multiple myeloma can kill target cells via antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent phagocytosis, as well as by direct blockade of signaling cascades.
    [Show full text]
  • Combining Paclitaxel and Lapatinib As Second-Line Treatment for Patients with Metastatic Transitional Cell Carcinoma: a Case Series
    ANTICANCER RESEARCH 32: 3949-3952 (2012) Combining Paclitaxel and Lapatinib as Second-line Treatment for Patients with Metastatic Transitional Cell Carcinoma: A Case Series STÉPHANE CULINE, ZINEB SELLAM, LINDA BOUAITA, ELIAS ASSAF, CATHERINE DELBALDO, MURIEL VERLINDE-CARVALHO and DAMIEN POUESSEL Department of Medical Oncology, Henri Mondor Hospital, Créteil, France Abstract. Background: Current first-line cisplatin-based trial comparing vinflunine with best supportive care (BSC) combination chemotherapy regimens provide interesting to BSC alone, an estimated difference in overall survival response rates but limited impact on survival for patients with (OS) of 2 months was reached in the intent-to-treat metastatic transitional cell carcinoma of the urothelium. Such population. However, a significant difference in OS was only results leave a significant patient population in need of salvage seen after removing patients who had major protocol therapy. Patients and Methods: As the epidermal growth factor violations (2). Therefore therapy for patients who fail first- receptors 1 and 2 (EGFR and HER2) are frequently line cisplatin-based chemotherapy remains a highly unmet overexpressed in urothelial carcinoma, we explored the medical need. feasibility of a combination of paclitaxel (80 mg/m2/week) and In a phase II study led by the French Genito-Urinary lapatinib (1,500 mg orally daily) for six patients who were Tumor group (GETUG), the activity of weekly paclitaxel as treated after failure of first-line platinum-based chemotherapy. second-line chemotherapy was assessed in 45 patients with Results: Only one out of six patients was able to receive the MTCCU. A low objective response rate (9%) along with a full doses during the first six weeks of treatment, while grade high rate of stabilization (38%) suggested limited impact as 2 or 3 diarrhea events required lapatinib dose reduction (one a single agent (3).
    [Show full text]
  • Blincyto Pi Hcp English.Pdf
    HIGHLIGHTS OF PRESCRIBING INFORMATION These highlights do not include all the information needed to use BLINCYTO® safely and effectively. See full prescribing information for BLINCYTO. - Premedicate with dexamethasone. (2.2) BLINCYTO® (blinatumomab) for injection, for intravenous use • Refer to Full Prescribing Information for important preparation and Initial U.S. Approval: 2014 administration information. (2.4, 2.5, 2.6) • Administer as a continuous intravenous infusion at a constant flow rate using an infusion pump. (2.5, 2.6) WARNING: CYTOKINE RELEASE SYNDROME and - See Section 2.5 for infusion over 24 hours or 48 hours. NEUROLOGICAL TOXICITIES - See Section 2.6 for infusion over 7 days using Bacteriostatic 0.9% See full prescribing information for complete boxed warning. Sodium Chloride Injection, USP (containing 0.9% benzyl alcohol). This option is not recommended for patients weighing less than 22 kg. • Cytokine Release Syndrome (CRS), which may be life-threatening or fatal, occurred in patients receiving BLINCYTO. Interrupt or ---------------------DOSAGE FORMS AND STRENGTHS---------------------- discontinue BLINCYTO and treat with corticosteroids as For injection: 35 mcg of lyophilized powder in a single-dose vial for recommended. (2.3, 5.1) reconstitution. (3) • Neurological toxicities, which may be severe, life-threatening, or fatal, occurred in patients receiving BLINCYTO. Interrupt or discontinue -------------------------------CONTRAINDICATIONS------------------------------ BLINCYTO as recommended. (2.3, 5.2) Known hypersensitivity
    [Show full text]
  • The Potential of Adoptive Transfer of Γ9δ2 T Cells to Enhance
    www.nature.com/scientificreports OPEN The potential of adoptive transfer of γ9δ2 T cells to enhance blinatumomab’s antitumor activity against B‑cell malignancy Yun‑Hsiang Chen1, Yun Wang2, Cheng‑Hao Liao3 & Shu‑Ching Hsu4,5,6,7,8,9* Blinatumomab, a bispecifc T cell engager (BiTE) antibody targeting CD19 and CD3ε, can redirect T cells toward CD19‑positive tumor cells and has been approved to treat relapsed/refractory B‑cell acute lymphoblastic leukemia (R/R B‑ALL). However, chemotherapeutic regimens can severely reduce T cells’ number and cytotoxic function, leading to an inadequate response to blinatumomab treatment in patients. In addition, it was reported that a substantial portion of R/R B‑ALL patients failing blinatumomab treatment had the extramedullary disease, indicating the poor ability of blinatumomab in treating extramedullary disease. In this study, we investigated whether the adoptive transfer of ex vivo expanded γ9δ2 T cells could act as the efector of blinatumomab to enhance blinatumomab’s antitumor activity against B‑cell malignancies in vivo. Repeated infusion of blinatumomab and human γ9δ2 T cells led to more prolonged survival than that of blinatumomab or human γ9δ2 T cells alone in the mice xenografted with Raji cells. Furthermore, adoptive transfer of γ9δ2 T cells reduced tumor mass outside the bone marrow, indicating the potential of γ9δ2 T cells to eradicate the extramedullary disease. Our results suggest that the addition of γ9δ2 T cells to the blinatumomab treatment regimens could be an efective approach to enhancing blinatumomab’s therapeutic efcacy. The concept of this strategy may also be applied to other antigen‑specifc BiTE therapies for other malignancies.
    [Show full text]
  • Monotherapy with Pixantrone in Histologically Confirmed Relapsed Or
    research paper Monotherapy with pixantrone in histologically confirmed relapsed or refractory aggressive B-cell non-Hodgkin lymphoma: post-hoc analyses from a phase III trial Ruth Pettengell,1 Catherine Sebban,2 This post hoc analysis of a phase 3 trial explored the effect of pixantrone in Pier Luigi Zinzani,3 Hans Gunter patients (50 pixantrone, 47 comparator) with relapsed or refractory aggres- 4 5 Derigs, Sergey Kravchenko, Jack W. sive B-cell non-Hodgkin lymphoma (NHL) confirmed by centralized histo- 6 7 Singer, Panteli Theocharous, Lixia logical review. Patients received 28-d cycles of 85 mg/m2 pixantrone 7 8 Wang, Mariya Pavlyuk, Kahina M. dimaleate (equivalent to 50 mg/m2 in the approved formulation) on days Makhloufi8 and Bertrand Coiffier9,10 1, 8 and 15, or comparator. The population was subdivided according to 1St George’s University of London, London, UK, 2 previous rituximab use and whether they received the study treatment as Leon Berard Cancer Centre, Lyon, France, – 3Institute of Haematology “Le A Seragnoli”, 3rd or 4th line. Median number of cycles was 4 (range, 2 6) with pix- – University of Bologna, Bologna, Italy, 4St€adt Kli- antrone and 3 (2 6) with comparator. In 3rd or 4th line, pixantrone was Á Á nikum, Frankfurt-Hoeschest, Klinik fur€ Innere associated with higher complete response (CR) (23 1% vs. 5 1% compara- Medizin III, Frankfurt am Main, Germany, tor, P = 0Á047) and overall response rate (ORR, 43Á6% vs. 12Á8%, 5Chemotherapy and Intensive Treatment of Hae- P = 0Á005). In 3rd or 4th line with previous rituximab (20 pixantrone, 18 matology Diseases, Haematology Scientific Centre comparator), pixantrone produced better ORR (45Á0% vs.
    [Show full text]
  • Transitional Cell Carcinoma: Options Beyond Nsaids Julie Marie Gillem, DVM, DACVIM (Oncology) Overview
    Transitional Cell Carcinoma: Options Beyond NSAIDs Julie Marie Gillem, DVM, DACVIM (Oncology) Overview ✦ Background ✦ Surgical Options ✦ Pathology ✦ Medical Options ✦ Location and staging ✦ Radiation Therapy ✦ Behavior Options ✦ Etiology and risk factors ✦ Palliative care ✦ Work up and diagnosis ✦ What about cats? Objectives ✦ How do we determine when NSAIDs fail? ✦ When should we intervene with surgery, chemotherapy, radiation therapy, and additional palliative care? Pathology ✦ ~2% of canine cancer ✦ Invasive transitional cell carcinoma (TCC) most common ✦ Others: SCC, adenocarcinoma, undifferentiated carcinoma, rhabdomyosarcoma, fibroma, and other mesenchymal tumors Location and Staging ✦ TCC in dogs most often found in the trigone of the bladder ✦ Series of 102 dogs at PUVTH ✦ Urethra and bladder in 56% ✦ Prostate involvement in 29% male dogs ✦ Lymph node mets in 16% at diagnosis ✦ Distant mets in 14% at diagnosis ✦ Distant mets in 50% at death Location ✦ TCC in dogs most often is found in the trigone region of the bladder. ✦ In a series of dogs with TCC examined at the PUVTH, the tumor involved the urethra as well as the bladder in 57 of 102 dogs (56%), and it involved the prostate in 11 of 38 (29%) male dogs. WHO Staging ✦ 78% T2 tumors ✦ 20% T3 tumors Biological Behavior ✦ At diagnosis: ✦ Regional lymph node metastasis in 12-46 % (Norris et al 1992, Knapp et al 2000, Blackburn et al 2013) ✦ Distant metastasis in 16- 23% (Norris et al 1992, Blackburn et al 2013) ✦ Distant metastasis in 50% at death (Norris et al 1992, Knapp et al
    [Show full text]
  • Oxaliplatin, 5-Fluorouracil and Leucovorin (FOLFOX) As Second- Line Therapy for Patients with Advanced Urothelial Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 36 Clinical Research Paper Oxaliplatin, 5-fluorouracil and leucovorin (FOLFOX) as second- line therapy for patients with advanced urothelial cancer Sheng Zhang1, Hongxi Xue2, Qiang Chen3 1Medical Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China 2Rizhao City Hospital of Traditional Chinese Medicine, Rizhao, China 3Department of Clinical Biochemistry, School of Public Health, Taishan Medical University, Tai’an, China Correspondence to: Sheng Zhang, email: [email protected] Keywords: urothelial cancer, oxaliplatin, leucovorin, 5-fluorouracil, clinical trial Received: February 08, 2016 Accepted: June 30, 2016 Published: July 07, 2016 ABSTRACT There is currently no standard treatment for metastatic urothelial cancer after failure of cisplatin-based therapy. The present retrospective study investigated the efficacy and safety of oxaliplatin plus 5-fluorouracil (5-FU) and leucovorin (LV) (FOLFOX) in locally advanced or metastatic urothelial cancer patients following cisplatin-based treatment. Thirty-three patients who had received one or two cisplatin-based regimens were treated with oxaliplatin (85 mg/m2) as a 2-h infusion on day 1, LV (200 mg/m2) as a 2-h infusion followed by bolus 5-FU (400 mg/m2) on day 1, or a 44-h continuous 5-FU (1,200 mg/m2) infusion. Patients were a mean of 67 years old with two involved organs. Metastases were mostly in the lung (43%), lymph nodes (51%) and liver (46%). Based on an intention-to-treat analysis, nine patients achieved a partial response, with an overall response rate of 27%. Eight (24%) patients had stable disease.
    [Show full text]
  • Safe Handling of Cytotoxic, Monoclonal Antibody & Hazardous Non-Cytotoxic Drugs
    PROCEDURE SAFE HANDLING OF CYTOTOXIC, MONOCLONAL ANTIBODY & HAZARDOUS NON-CYTOTOXIC DRUGS TARGET AUDIENCE All nursing, pharmacy and medical staff involved with dispensing, preparation, or administration of medicines. STATE ANY RELATED PETER MAC POLICIES, PROCEDURES OR GUIDELINES Administration and Management of Anti-Cancer Drugs Administration of Cytotoxics in the Home/Community Collection and Disposal of Soiled Linen Dangerous Goods and Hazardous Substances Environmental Management Individual Personal Protective Equipment (Cancer Research Division) Management of Cytotoxic Drug Spill Medication Management Medication Management for Nurses Pharmaceutical Review & Medication Supply Personal Protective Equipment Administration of Intravesical Immunotherapy BCG PURPOSE This procedure provides direction to all hospital staff involved in the management, preparation, transportation, administration of hazardous drugs and related wastes. In particular, safe handling practices for cytotoxic and hazardous non-cytotoxic drugs are outlined. BACKGROUND Hazardous drugs are regulated medicines that have been classified by the National Institute for Occupational Safety and Health (NIOSH) of the United States and/or the Cancer Institute New South Wales as posing a risk to health from occupational exposure. Exposure to hazardous drugs can result in adverse health effects in healthcare workers. The health risk depends on how much exposure a worker has to these drugs and the specific toxicity of the drug. The occupational exposure risk of hazardous drugs is therefore evaluated according to risk of internalisation (by ingestion, absorption through mucous membranes, and penetration of skin) and risk of toxicity (carcinogenicity, genotoxicity, teratogenicity, and reproductive or fertility impairment, organ toxicity) at low doses and continuous exposure. Hazardous drugs include both cytotoxic and non-cytotoxic medicines such as chemotherapy, monoclonal antibodies, immunomodulatory drugs, and some anti-infective drugs.
    [Show full text]
  • High Risk Therapy Made Easy: Supporting High Risk Patients Through Complex Therapy
    8/21/2018 High Risk Therapy Made Easy: Supporting high risk patients through complex therapy Lori Ranney, MSN, APRN, CPNP, CPHON Mylynda Livingston, MSN, APRN, AC PC-PNP, CPON Teresa Herriage, DNP, APRN, CPNP, CPHON Children’s Minnesota Disclaimers and Confidentiality Protections Children’s Minnesota makes no representations or warranties about the accuracy, reliability, or completeness of the content. Content is provided “as is” and is for informational use only. It is not a substitute for professional medical advice, diagnosis, or treatment. Children’s disclaims all warranties, express or implied, statutory or otherwise, including without limitation the implied warranties of merchantability, non-infringement of third parties’ rights, and fitness for a particular purpose. This content was developed for use in Children’s patient care environment and may not be suitable for use in other patient care environments. Children’s does not endorse, certify, or assess third parties’ competency. You hold all responsibility for your use or nonuse of the content. Children’s shall not be liable for claims, losses, or damages arising from or related to any use or misuse of the content. This content and its related discussions are privileged and confidential under Minnesota’s peer review statute (Minn. Stat. § 145.61 et. seq.). Do not disclose unless appropriately authorized. Notwithstanding the foregoing, content may be subject to copyright or trademark law; use of such information requires Children’s permission. This content may include patient protected health information. You agree to comply with all applicable state and federal laws protecting patient privacy and security including the Minnesota Health Records Act and the Health Insurance Portability and Accountability Act and its implementing regulations as amended from time to time.
    [Show full text]
  • Guideline for the Management of Extravasation
    Guideline for the Management of Extravasation Version History Version Date Brief Summary of Change Issued 1.0 19.03.07 Endorsed by the Governance Committee 1.1 21.08.08 Prepared for review 1.2 09.02.09 Changes made following review by Andrew Stanley 1.3 04.10.10 Discussion at Chemotherapy Network Site Specific Group 1.4 14.11.10 With comments from Andrew Stanley 1.5 31.01.11 Discussion at Chemotherapy Network Site Specific Group and updated by Andrew Stanley 1.6 – 01 – 04 Various versions for consideration – sent to NSSG April 2011 1.8 .11 1.9 05.05.11 Final version by Andrew Stanley for review by the Chemotherapy NSSG and Jeanette Hawkins 2.0 14.06.11 Endorsed by the Governance Committee Date Approved by Network Governance June 2011 Date for Review June 2014 Changes since version 1 Part 1 has been added to describe the use of dexrazoxane. The updated version of the Royal Marsden Hospital Manual has been added. ENDORSED BY GOVERNANCE COMMITTEE S:\Cancer Network\Guidelines\Guidelines and Pathways by Speciality\Chemotherapy\Current Approved Versions (Word & PDF)\Management of Extravasation version 2.0.doc Page 1 of 21 1 Scope of the Guideline This guidance has been produced to support the following: The prevention of the extravasation of intravenous anti-cancer drugs. The early detection of the extravasation of intravenous anti-cancer drugs. The treatment of the extravasation of intravenous anti-cancer drugs. 2 Guideline Statement Statement 2 The Network Site Specific Group has agreed to adopt the Royal Marsden Hospital Manual of Clinical Nursing Procedures 7th Edition; Blackwell Publishing (2008), chapter on extravasation, with the addition of a section on dexrazoxane.
    [Show full text]
  • CDER Breakthrough Therapy Designation Approvals Data As of December 31, 2020 Total of 190 Approvals
    CDER Breakthrough Therapy Designation Approvals Data as of December 31, 2020 Total of 190 Approvals Submission Application Type and Proprietary Approval Use Number Number Name Established Name Applicant Date Treatment of patients with previously BLA 125486 ORIGINAL-1 GAZYVA OBINUTUZUMAB GENENTECH INC 01-Nov-2013 untreated chronic lymphocytic leukemia in combination with chlorambucil Treatment of patients with mantle cell NDA 205552 ORIGINAL-1 IMBRUVICA IBRUTINIB PHARMACYCLICS LLC 13-Nov-2013 lymphoma (MCL) Treatment of chronic hepatitis C NDA 204671 ORIGINAL-1 SOVALDI SOFOSBUVIR GILEAD SCIENCES INC 06-Dec-2013 infection Treatment of cystic fibrosis patients age VERTEX PHARMACEUTICALS NDA 203188 SUPPLEMENT-4 KALYDECO IVACAFTOR 21-Feb-2014 6 years and older who have mutations INC in the CFTR gene Treatment of previously untreated NOVARTIS patients with chronic lymphocytic BLA 125326 SUPPLEMENT-60 ARZERRA OFATUMUMAB PHARMACEUTICALS 17-Apr-2014 leukemia (CLL) for whom fludarabine- CORPORATION based therapy is considered inappropriate Treatment of patients with anaplastic NOVARTIS lymphoma kinase (ALK)-positive NDA 205755 ORIGINAL-1 ZYKADIA CERITINIB 29-Apr-2014 PHARMACEUTICALS CORP metastatic non-small cell lung cancer (NSCLC) who have progressed on or are intolerant to crizotinib Treatment of relapsed chronic lymphocytic leukemia (CLL), in combination with rituximab, in patients NDA 206545 ORIGINAL-1 ZYDELIG IDELALISIB GILEAD SCIENCES INC 23-Jul-2014 for whom rituximab alone would be considered appropriate therapy due to other co-morbidities
    [Show full text]