FINAL REPORT Development and Use of Genetic Methods for Assessing Aquatic Environmental Condition and Recruitment Dynamics of Native Stream Fishes on Pacific Islands

Total Page:16

File Type:pdf, Size:1020Kb

FINAL REPORT Development and Use of Genetic Methods for Assessing Aquatic Environmental Condition and Recruitment Dynamics of Native Stream Fishes on Pacific Islands FINAL REPORT Development and Use of Genetic Methods for Assessing Aquatic Environmental Condition and Recruitment Dynamics of Native Stream Fishes on Pacific Islands SERDP Project RC-1646 APRIL 2014 Michael J. Blum Tulane University James F. Gilliam North Carolina State University Peter B. McIntyre University of Wisconsin Distribution Statement A Table of Contents List of Tables ii List of Figures iii List of Acronyms v Keywords ix Acknowledgments x 1 Abstract 1 2 Objectives 3 3 Background 5 3.0 Oceanic Island Watersheds and Stream Ecosystems 5 3.1 Genetic Assessment of Aquatic Environmental Condition 8 3.2 Historical Colonization and Contemporary Connectivity 9 3.2.1 Genetic Analysis of Historical Colonization and Contemporary Connectivity 11 3.2.2 Use of Otolith Microchemistry for Estimating Contemporary Connectivity 12 3.2.3 Use of Oxygen Isotopes in Otoliths for Reconstructing Life History 14 3.2.4 Coupled Biophysical Modeling of Larval Dispersal 16 3.3 Genetic and Integrative Assessment of Pacific Island Watersheds 18 3.3.1 Among-Watershed Assessment of Environmental Condition 18 3.3.2 Within-Watershed Assessment of Environmental Condition 19 3.3.3 Mark-recapture Calibration of Snorkel Surveys 22 4 Materials and Methods 26 4.0 Historical Colonization and Contemporary Connectivity 26 4.0.1 Genetic Analysis of Historical Colonization and Contemporary Connectivity 26 4.0.2 Otolith Microchemistry Analysis of Contemporary Connectivity 32 4.0.3 Use of Oxygen Isotopes in Otoliths for Reconstructing Life History 38 4.0.4 Coupled Biophysical Modeling of Larval Dispersal 41 4.1 Genetic and Integrative Assessment of Pacific Island Watersheds 43 4.1.1 Among-Watershed Assessment of Environmental Condition 44 4.1.2 Within-Watershed Assessment of Environmental Condition 48 4.1.3 Mark-recapture Calibration of Snorkel Surveys 51 5 Results and Discussion 55 5.0 Historical Colonization and Contemporary Connectivity 55 5.0.1 Genetic Analysis of Historical Colonization 55 5.0.2 Genetic Analysis of Contemporary Connectivity 64 5.0.3 Otolith-based Analysis of Life History Variation and Movement Potential 74 5.0.4 Use of Oxygen Isotopes in Otoliths for Reconstructing Life History 82 5.0.5 Coupled Biophysical Modeling of Larval Dispersal 89 5.1 Genetic and Integrative Assessment of Pacific Island Watersheds 96 5.1.1 Among-Watershed Assessment of Environmental Variation 96 5.1.2 Sensitivity of Genetic, Population, & Community Metrics to 102 Among-Watershed Environmental Variation 5.1.3 Sensitivity of Genetic, Population, & Community Metrics to 129 Within-Watershed Environmental Variation 5.1.4 Mark-recapture Calibration of Snorkel Surveys 145 6 Conclusions and Implications for Future Research and Implementation 150 7 Literature Cited 156 8 Appendix A. Scientific and Technical Publications 179 i List of Tables Table 1: Specimens of Awaous stamineus and Sicyopterus stimpsoni sampled, sequenced 27 and genotyped per island. Table 2: Microsatellite loci developed for Sicyopterus stimpsoni in the Hawaiian Islands. 30 Table 3: The number of Awaous stamineus included in the study of otolith microchemistry 33 and the proportion of fishes that showed marine and freshwater larval chemistry. Table 4: The numbers of individuals encountered in visual surveys, batch mark-recapture 54 events, and individual mark-recapture events, per site. Table 5: The number and diversity of Awaous stamineus mtDNA haplotypes recovered on 57 Kauai, Oahu, Molokai, Maui and Hawaii. Table 6: Pair-wise values of ФST based on cytochrome b haplotype variation in Awaous 58 stamineus among islands. Table 7: Age and growth statistics for nine Awaous stamineus collected for otolith micro- 84 structure analysis. Table 8: Summary of postlarval (stream) chemistry for nine Awaous stamineus individuals 85 from five watersheds across the Hawaiian archipelago. Table 9: Stepwise regressions models of Awaous stamineus genetic diversity and population 113 density, as well as native, non-native, and total species richness among watersheds. Table 10:Stepwise regressions models of Awaous stamineus genetic diversity and population 114 density, as well as native, non-native, and total species richness among sites. Table 11:Stepwise regressions models of Sicyopterus stimpsoni genetic diversity and population 115 density among watersheds. Table 12:Stepwise regressions models of Sicyopterus stimpsoni genetic diversity and population 116 density among sites. Table 13:Site information and estimates of Awaous stamineus population characteristics. 131 Table 14:Site-specific estimates of native goby species richness, Awaous stamineus demographic 132 characteristics, as well as estimates of genetic diversity and effective population size. Table 15:Analysis of molecular variance for microsatellite allelic variation among watersheds 134 on Hawaii and Oahu. Table 16:Pairwise FST values for 4 watersheds on Hawaii and Oahu. 135 Table 17:Pairwise FST values for comparisons by month and elevation and across 4 watersheds 136 on Hawaii and Oahu. Table 18:Results of stepwise regression of Awaous stamineus genetic diversity for sites in 3 138 watersheds on Hawaii. Table 19:Results of stepwise regression of Awaous stamineus genetic diversity and density, 139 native goby density and species richness in 4 watersheds on Hawaii and Oahu. Table 20:General linear model results for Awaous stamineus genetic diversity and demography, 141 as well as total goby density, goby richness, and Poeciliid density. Table 21:Comparison of population density estimates from visual surveys, individual mark- 145 recapture, and batch mark-recapture for watersheds across the Hawaiian Islands. Table 22:Regression results for density estimates from visual survey versus mark-recapture. 146 Table 23:General linear models of y-axis residuals from the geometric mean regressions of 147 visual survey and individual mark-recapture data. Table 24:Statistical comparison of the observed size distributions from visual surveys and 148 individual mark-recapture. ii List of Figures Figure 1: Conceptual model of an oceanic island stream ecosystem. 6 Figure 2: Hypotheses of geographic structure and larval recruitment of native 11 amphidromous fishes in the Hawaiian Islands. Figure 3: Photos of the two study species, Awaous stamineus and Sicyopterus stimpsoni 12 Figure 4: Example of an otolith cross-section, resolution of daily growth rings, and 13 a transect analysis of an otolith cross section to reconstruct life history. Figure 5: Longitudinal distribution of native amphidromous species in a Hawaiian stream. 20 Figure 6: Watersheds where A. stamineus and/or S. stimpsoni were sampled in the Hawaiian 28 archipelago, categorized according to dominant land use or stewardship. Figure 7: Map of the Hawaiian archipelago, with the streams sampled for the study of 36 otolith microchemistry. Figure 8: Example of amphidromous and non-amphidromous otolith profiles. 37 Figure 9: Structure of the coupled biophysical model implemented to estimate larval dispersal 42 across the Hawaiian Islands. Figure 10: Stream mouth locations for release and settlement of virtual larvae across the five 43 Hawaiian Islands with perennial streams. Figure 11: The location of individual mark-recapture study watersheds on the north shore of 49 Oahu and along the Hamakua coast of Hawaii. Figure 12: Cytochrome b haplotype network for Awaous stamineus in Hawaii and 55 Awaous guamensis in Guam. Figure 13: Occurrence and prevalence of shared cytochrome b haplotypes in Awaous stamineus. 56 Figure 14: Cytochrome b haplotype network for Sicyopterus stimpsoni. 59 Figure 15: Cytochrome oxidase one haplotype network for Sicyopterus stimpsoni. 59 Figure 16: Bayesian population assignment results for Awaous stamineus across the Hawaiian 66 archipelago in 2009 and 2011. Figure 17: Genetic contour plots of larval dispersal between source and destination island populations 67 of Awaous stamineus in 2009 and 2011. Figure 18: Bayesian population assignment results for Sicyopterus stimpsoni across the Hawaiian 68 achipelago in 2009 and 2011. Figure 19: Genetic contour plots of larval dispersal between source and destination island populations of 69 S. stimpsoni in 2009 and 2011. Figure 20: Results of the Delta K information criterion for determining the “true” number of k 75 groups in the marine core otolith chemistry data. Figure 21: Sr:Ca ratios for adult and putatively freshwater larvae and marine larvae. 76 Figure 22: Principle components analysis (PC) showing the orientation of the different chemical 77 groupings in PC space. Figure 23: Correlations between adult and larval Cu:Ca concentrations. 78 Figure 24: Cumulative frequency curves illustrating development and growth differences between 79 amphidromous and non-amphidromous larvae. Figure 25: The daily growth profile for nine Awaous stamineus. 82 Figure 26: Early larval growth anomalies. 83 Figure 27: Correlation between early larval growth anomaly duration and late larval duration. 84 Figure 28: Otolith transect profiles of δ18O and Sr:Ca for five Awaous stamineus. 85 Figure 29: Correlation between Sr:Ca in the early larval growth periods and the duration of 86 the early larval growth anomaly. Figure 30: The proportion of successfully settled propagules according to their island of origin for 89 Kauai, Oahu, Molokai, Maui and Hawaii under conditions of short larval life duration and long larval life duration under constant spawning output. Figure 31: Connectivity matrix showing settlement probabilities for 51 streams on five islands in 90 the main Hawaiian
Recommended publications
  • Breeding Pattern and Nest Guarding in Sicyopterus Lagocephalus, a Widespread Amphidromous Gobiidae
    J Ethol DOI 10.1007/s10164-013-0372-2 ARTICLE Breeding pattern and nest guarding in Sicyopterus lagocephalus, a widespread amphidromous Gobiidae N. Teichert • P. Keith • P. Valade • M. Richarson • M. Metzger • P. Gaudin Received: 18 December 2012 / Accepted: 4 April 2013 Ó Japan Ethological Society and Springer Japan 2013 Abstract Amphidromous gobies are usually nest spaw- probably because of male–male competition for available ners. Females lay a large number of small eggs under stones nests. Our results suggest that the male’s choice relies upon a or onto plant stems, leaves or roots while males take care of similarity to the female size, while the female’s choice was the clutch until hatching. This study investigates the breed- based on both body and nest stone sizes. ing pattern and paternal investment of Sicyopterus lago- cephalus in a stream on Reunion Island. In February 2007 Keywords Mating system Á Nest guarding Á Sexual and January 2010, a total of 170 nests were found and the selection Á Nest size Á Nest choice presence of a goby was recorded at 61 of them. The number of eggs in the nests ranged from 5,424 to 112,000 with an average number of 28,629. We showed that males accepted a Introduction single female spawning in the nest and cared for the eggs until hatching. The probability for a nest to be guarded Freshwater gobies are usually nest spawners (Manacop increased with the number of eggs within it, suggesting that 1953; Daoulas et al. 1993; Fitzsimons et al. 1993; Keith paternal investment depends on a trade-off between the 2003; Yamasaki and Tachihara 2006; Tamada 2008).
    [Show full text]
  • Zootaxa 3266: 41–52 (2012) ISSN 1175-5326 (Print Edition) Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (Online Edition)
    Zootaxa 3266: 41–52 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Thalasseleotrididae, new family of marine gobioid fishes from New Zealand and temperate Australia, with a revised definition of its sister taxon, the Gobiidae (Teleostei: Acanthomorpha) ANTHONY C. GILL1,2 & RANDALL D. MOOI3,4 1Macleay Museum and School of Biological Sciences, A12 – Macleay Building, The University of Sydney, New South Wales 2006, Australia. E-mail: [email protected] 2Ichthyology, Australian Museum, 6 College Street, Sydney, New South Wales 2010, Australia 3The Manitoba Museum, 190 Rupert Ave., Winnipeg MB, R3B 0N2 Canada. E-mail: [email protected] 4Department of Biological Sciences, 212B Biological Sciences Bldg., University of Manitoba, Winnipeg MB, R3T 2N2 Canada Abstract Thalasseleotrididae n. fam. is erected to include two marine genera, Thalasseleotris Hoese & Larson from temperate Aus- tralia and New Zealand, and Grahamichthys Whitley from New Zealand. Both had been previously classified in the family Eleotrididae. The Thalasseleotrididae is demonstrably monophyletic on the basis of a single synapomorphy: membrane connecting the hyoid arch to ceratobranchial 1 broad, extending most of the length of ceratobranchial 1 (= first gill slit restricted or closed). The family represents the sister group of a newly diagnosed Gobiidae on the basis of five synapo- morphies: interhyal with cup-shaped lateral structure for articulation with preopercle; laterally directed posterior process on the posterior ceratohyal supporting the interhyal; pharyngobranchial 4 absent; dorsal postcleithrum absent; urohyal without ventral shelf. The Gobiidae is defined by three synapomorphies: five branchiostegal rays; expanded and medially- placed ventral process on ceratobranchial 5; dorsal hemitrich of pelvic-fin rays with complex proximal head.
    [Show full text]
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • The Native Stream Fishes of Hawaii
    Summer 2014 American Currents 2 THE NATIVE STREAM FISHES OF HAWAII Konrad Schmidt St. Paul, MN [email protected] Several years ago at the University of Minnesota a poster The “uniqueness” of these species is due not only to the about Hawaii’s native freshwater fishes caught my eye. I high degree of endemism, but also includes their habitat, life was astonished to learn that for a tropical zone the indige- cycle, and evolutionary adaptations. Hawaii’s watersheds nous freshwater ichthyofauna (traditionally and collectively are typically short and small. The healthiest fish populations known as ‘o’opu) is incredibly rich in uniqueness, but very generally inhabit perennial streams located on the windward poor in species diversity, comprising only four gobies and (northeast) side of islands which are drenched with 100-300 one sleeper. Four of the five are endemic to Hawaii. How- inches of rainfall annually. Frequent and turbid flash floods, ever, recent research suggests the ‘o’opu nākea of Hawaii is called freshets, occur on a regular basis; between events, a distinct species from the Pacific River Goby, and is, there- however, stream visibility can exceed 30 feet. On the lee- fore, also endemic. In addition to these fishes, there are only ward, drier sides, populations do persist in some intermit- two native euryhaline species that venture from the ocean tent streams at higher elevations even though lower reaches into the lower and slower reaches of streams not far above may be dry for months or years. These dynamic streams are their mouths: Hawaiian Flagtail (Kuhlia sandvicensis) and continually and naturally in a state of recovery.
    [Show full text]
  • Evolutionary Genomics of a Plastic Life History Trait: Galaxias Maculatus Amphidromous and Resident Populations
    EVOLUTIONARY GENOMICS OF A PLASTIC LIFE HISTORY TRAIT: GALAXIAS MACULATUS AMPHIDROMOUS AND RESIDENT POPULATIONS by María Lisette Delgado Aquije Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at Dalhousie University Halifax, Nova Scotia August 2021 Dalhousie University is located in Mi'kma'ki, the ancestral and unceded territory of the Mi'kmaq. We are all Treaty people. © Copyright by María Lisette Delgado Aquije, 2021 I dedicate this work to my parents, María and José, my brothers JR and Eduardo for their unconditional love and support and for always encouraging me to pursue my dreams, and to my grandparents Victoria, Estela, Jesús, and Pepe whose example of perseverance and hard work allowed me to reach this point. ii TABLE OF CONTENTS LIST OF TABLES ............................................................................................................ vii LIST OF FIGURES ........................................................................................................... ix ABSTRACT ...................................................................................................................... xii LIST OF ABBREVIATION USED ................................................................................ xiii ACKNOWLEDGMENTS ................................................................................................ xv CHAPTER 1. INTRODUCTION ....................................................................................... 1 1.1 Galaxias maculatus ..................................................................................................
    [Show full text]
  • Parasites of Hawaiian Stream Fishes: Sources and Impacts
    Biology of Hawaiian Streams and Estuaries. Edited by N.L. Evenhuis 157 & J.M. Fitzsimons. Bishop Museum Bulletin in Cultural and Environmental Studies 3: 157–169 (2007). Parasites of Hawaiian Stream Fishes: Sources and Impacts WILLIAM F. FONT Department of Biological Sciences, Southeastern Louisiana University, Hammond, Louisiana 70402, USA; email: [email protected] Abstract Introduced freshwater fishes impact native Hawaiian stream fishes in two important ways. In addition to direct negative effects associated factors such as predation, competition, and interference, indirect effects may occur when exotic fishes transfer their parasites to native hosts. Six species of helminths that have been introduced with alien live-bearing fishes, including guppies, green swordtails, shortfin mollies, and mosquitofish which now parasitize the five species of gobioids that occur naturally in Hawaiian streams. Some of these exotic parasites form large populations and produce heavy infec- tions in native fishes that can result in disease. Sources, host specificity, distribution, and life cycles of these parasites were studied to assess their potential for pathogenicity and to aid in the formulation of comprehensive conservation and management plans for native stream species in Hawai‘i. Introduction Vitousek et al. (1997) regarded introduced species to be second only to habitat destruction as a threat to biodiversity. Although he was referring to the global distribution of alien species, his experience with the negative impacts of introductions was gained through his extensive research in Hawai‘i. Much research has been conducted on species introduced either accidentally or deliberately into ter- restrial ecosystems within the archipelago by humans. Maciolek (1984) and Devick (1991) ad- dressed the problem of introduced species in Hawaiian streams.
    [Show full text]
  • Final Report Posted
    FINAL REPORT Control and Mitigation of Aquatic Invasive Species in Pacific Island Streams SERDP Project RC-2447 MAY 2020 Michael Blum Tulane University J. Derek Hogan Texas A&M University – Corpus Christi Peter B. McIntyre Cornell University Distribution Statement A Page Intentionally Left Blank This report was prepared under contract to the Department of Defense Strategic Environmental Research and Development Program (SERDP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense. Page Intentionally Left Blank Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202- 4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
    [Show full text]
  • 2019-JMIH-Program-Book-MASTER
    W:\CNCP\People\Richardson\FY19\JMIH - Rochester NY\Program\2018 JMIH Program Book.pub 2 Organizing Societies American Elasmobranch Society 34th Annual Meeting President: Dave Ebert Treasurer: Christine Bedore Secretary: Tonya Wiley Editor and Webmaster: Chuck Bangley Immediate Past President: Dean Grubbs American Society of Ichthyologists and Herpetologists 98th Annual Meeting President: Kathleen Cole President Elect: Chris Beachy Past President: Brian Crother Prior Past President: Carole Baldwin Treasurer: Katherine Maslenikov Secretary: Prosanta Chakrabarty Editor: W. Leo Smith Herpetologists’ League 76th Annual Meeting President: Willem Roosenburg Vice-President: Susan Walls Immediate Past President: David Sever (deceased) Secretary: Renata Platenburg Treasurer: Laurie Mauger Communications Secretary: Max Lambert Herpetologica Editor: Stephen Mullin Herpetological Monographs Editor: Michael Harvey Society for the Study of Amphibians and Reptiles 61th Annual Meeting President: Marty Crump President-Elect: Kirsten Nicholson Immediate Past-President: Richard Shine Secretary: Marion R. Preest Treasurer: Ann V. Paterson Publications Secretary: Cari-Ann Hickerson 3 Thanks to our Sponsors! PARTNER SPONSOR SUPPORTER SPONSOR 4 We would like to thank the following: Local Hosts Alan Savitzky, Utah State University, LHC Co-Chair Catherine Malone, Utah State University, LHC Co-Chair Diana Marques, Local Host Logo Artist Marty Crump, Utah State University Volunteers We wish to thank the following volunteers who have helped make the Joint Meeting
    [Show full text]
  • Fishes Collected During the 2017 Marinegeo Assessment of Kāne
    Journal of the Marine Fishes collected during the 2017 MarineGEO Biological Association of the ā ‘ ‘ ‘ United Kingdom assessment of K ne ohe Bay, O ahu, Hawai i 1 1 1,2 cambridge.org/mbi Lynne R. Parenti , Diane E. Pitassy , Zeehan Jaafar , Kirill Vinnikov3,4,5 , Niamh E. Redmond6 and Kathleen S. Cole1,3 1Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, MRC 159, Washington, DC 20013-7012, USA; 2Department of Biological Sciences, National University of Singapore, Original Article Singapore 117543, 14 Science Drive 4, Singapore; 3School of Life Sciences, University of Hawai‘iatMānoa, 2538 McCarthy Mall, Edmondson Hall 216, Honolulu, HI 96822, USA; 4Laboratory of Ecology and Evolutionary Biology of Cite this article: Parenti LR, Pitassy DE, Jaafar Aquatic Organisms, Far Eastern Federal University, 8 Sukhanova St., Vladivostok 690091, Russia; 5Laboratory of Z, Vinnikov K, Redmond NE, Cole KS (2020). 6 Fishes collected during the 2017 MarineGEO Genetics, National Scientific Center of Marine Biology, Vladivostok 690041, Russia and National Museum of assessment of Kāne‘ohe Bay, O‘ahu, Hawai‘i. Natural History, Smithsonian Institution DNA Barcode Network, Smithsonian Institution, PO Box 37012, MRC 183, Journal of the Marine Biological Association of Washington, DC 20013-7012, USA the United Kingdom 100,607–637. https:// doi.org/10.1017/S0025315420000417 Abstract Received: 6 January 2020 We report the results of a survey of the fishes of Kāne‘ohe Bay, O‘ahu, conducted in 2017 as Revised: 23 March 2020 part of the Smithsonian Institution MarineGEO Hawaii bioassessment. We recorded 109 spe- Accepted: 30 April 2020 cies in 43 families.
    [Show full text]
  • 9:00 Am PLACE
    CARTY S. CHANG INTERIM CHAIRPERSON DAVID Y. IGE BOARD OF LAND AND NATURAL RESOURCES GOVERNOR OF HAWAII COMMISSION ON WATER RESOURCE MANAGEMENT KEKOA KALUHIWA FIRST DEPUTY W. ROY HARDY ACTING DEPUTY DIRECTOR – WATER AQUATIC RESOURCES BOATING AND OCEAN RECREATION BUREAU OF CONVEYANCES COMMISSION ON WATER RESOURCE MANAGEMENT STATE OF HAWAII CONSERVATION AND COASTAL LANDS CONSERVATION AND RESOURCES ENFORCEMENT DEPARTMENT OF LAND AND NATURAL RESOURCES ENGINEERING FORESTRY AND WILDLIFE HISTORIC PRESERVATION POST OFFICE BOX 621 KAHOOLAWE ISLAND RESERVE COMMISSION LAND HONOLULU, HAWAII 96809 STATE PARKS NATURAL AREA RESERVES SYSTEM COMMISSION MEETING DATE: April 27, 2015 TIME: 9:00 a.m. PLACE: Department of Land and Natural Resources Boardroom, Kalanimoku Building, 1151 Punchbowl Street, Room 132, Honolulu. AGENDA ITEM 1. Call to order, introductions, move-ups. ITEM 2. Approval of the Minutes of the June 9, 2014 N atural Area Reserves System Commission Meeting. ITEM 3. Natural Area Partnership Program (NAPP). ITEM 3.a. Recommendation to the Board of Land and Natural Resources approval for authorization of funding for The Nature Conservancy of Hawaii for $663,600 during FY 16-21 for continued enrollment in the natural area partnership program and acceptance and approval of the Kapunakea Preserve Long Range Management Plan, TMK 4-4-7:01, 4-4-7:03, Lahaina, Maui. ITEM 3.b. Recommendation to the Board of Land and Natural Resources approval for authorization of funding for The Nature Conservancy of Hawaii for $470,802 during FY 16-21 for continued enrollment in the natural area partnership program and acceptance and approval of the Pelekunu Long Range Management Plan, TMK 5-4- 3:32, 5-9-6:11, Molokai.
    [Show full text]
  • Migratory Flexibility in Native Hawai'ian Amphidromous Fishes
    Received: 29 August 2019 Accepted: 5 December 2019 DOI: 10.1111/jfb.14224 REGULAR PAPER FISH Migratory flexibility in native Hawai'ian amphidromous fishes Heidi Heim-Ballew1 | Kristine N. Moody2 | Michael J. Blum2 | Peter B. McIntyre3,4 | James D. Hogan1 1Department of Life Sciences, Texas A&M University-Corpus Christi, Corpus Christi, Abstract Texas, USA We assessed the prevalence of life history variation across four of the five native 2 Department of Ecology and Evolutionary amphidromous Hawai'ian gobioids to determine whether some or all exhibit evidence Biology, University of Tennessee-Knoxville, Knoxville, Tennessee, USA of partial migration. Analysis of otolith Sr.: Ca concentrations affirmed that all are 3Center for Limnology, University of amphidromous and revealed evidence of partial migration in three of the four spe- Wisconsin – Madison, Madison, Wisconsin, USA cies. We found that 25% of Lentipes concolor (n= 8), 40% of Eleotris sandwicensis 4Department of Natural Resources, (n=20) and 29% of Stenogobius hawaiiensis (n=24) did not exhibit a migratory life- Cornell University, Ithaca, New York, history. In contrast, all individuals of Sicyopterus stimpsoni (n= 55) included in the USA study went to sea as larvae. Lentipes concolor exhibited the shortest mean larval dura- Correspondence tion (LD) at 87 days, successively followed by E. sandwicensis (mean LD = 102 days), Heidi Heim-Ballew, Department of Life Sciences, Texas A&M University-Corpus S. hawaiiensis (mean LD = 114 days) and S. stimpsoni (mean LD = 120 days). These Christi, 6300 Ocean Drive, Unit 5800, Corpus findings offer a fresh perspective on migratory life histories that can help improve Christi TX, 78412, USA.
    [Show full text]
  • DNA Barcoding Indonesian Freshwater Fishes: Challenges and Prospects
    DNA Barcodes 2015; 3: 144–169 Review Open Access Nicolas Hubert*, Kadarusman, Arif Wibowo, Frédéric Busson, Domenico Caruso, Sri Sulandari, Nuna Nafiqoh, Laurent Pouyaud, Lukas Rüber, Jean-Christophe Avarre, Fabian Herder, Robert Hanner, Philippe Keith, Renny K. Hadiaty DNA Barcoding Indonesian freshwater fishes: challenges and prospects DOI 10.1515/dna-2015-0018 the last decades is posing serious threats to Indonesian Received December 12, 2014; accepted September 29, 2015 biodiversity. Indonesia, however, is one of the major sources of export for the international ornamental trade Abstract: With 1172 native species, the Indonesian and home of several species of high value in aquaculture. ichthyofauna is among the world’s most speciose. Despite The development of new tools for species identification that the inventory of the Indonesian ichthyofauna started is urgently needed to improve the sustainability of the during the eighteen century, the numerous species exploitation of the Indonesian ichthyofauna. With the descriptions during the last decades highlight that the aim to build comprehensive DNA barcode libraries, the taxonomic knowledge is still fragmentary. Meanwhile, co-authors have started a collective effort to DNA barcode the fast increase of anthropogenic perturbations during all Indonesian freshwater fishes. The aims of this review are: (1) to produce an overview of the ichthyological *Corresponding author: Nicolas Hubert, Institut de Recherche pour le researches conducted so far in Indonesia, (2) to present Développement (IRD), UMR226 ISE-M, Bât. 22 - CC065, Place Eugène an updated checklist of the freshwater fishes reported Bataillon, 34095 Montpellier cedex 5, France, E-mail: nicolas.hubert@ to date from Indonesia’s inland waters, (3) to highlight ird.fr the challenges associated with its conservation and Domenico Caruso, Laurent Pouyaud, Jean-Christophe Avarre, Institut de Recherche pour le Développement (IRD), UMR226 ISE-M, management, (4) to present the benefits of developing Bât.
    [Show full text]