The Derivative of the Limit Vs the Limit of Derivatives Question: Under What Conditions ( Lim Fn = Lim F (∗) the Conditions Mu

Total Page:16

File Type:pdf, Size:1020Kb

The Derivative of the Limit Vs the Limit of Derivatives Question: Under What Conditions ( Lim Fn = Lim F (∗) the Conditions Mu Real Analysis Grinshpan The derivative of the limit vs the limit of derivatives ( )0 0 Question: Under what conditions lim fn = lim f ?(∗) n!1 n!1 n The conditions must, in particular, assume or imply that fn are differentiable, converge to a 0 differentiable function, and fn converge as well. Here are a few caveats. The uniform limit of differentiable functions on an interval need not be differentiable. p Example: x2 + 1=n ⇒ jxj on the entire real line. Even if the uniform limit function is differentiable, the sequence of derivatives need not converge. p p Example: sin(nx)= n ⇒ 0 on the entire real line, but n cos(nx) is nowhere convergent. Finally, a sequence of functions whose derivatives converge uniformly may diverge everywhere. − n 0 ⇒ Example: fn(x) = ( 1) diverges, and yet fn 0: In fact, the uniform convergence of derivatives is almost strong enough to guarantee (∗). But the preceding example shows that additional assumptions are needed. In all statements below the underlying set, I; is a closed interval. 0 Lemma 1: If the derivatives fn converge uniformly on I and if fn converge at some point x0 2 I; then fn converge uniformly on all of I: Proof of Lemma 1: Let fn(x0) be convergent for some x0 2 I: For each x 2 I; we have by the triangle inequality and by the mean value theorem applied to fn − fm : jfn(x) − fm(x)j ≤ j(fn − fm)(x) − (fn − fm)(x0)j + jfn(x0) − fm(x0)j ≤ j 0 − 0 jj j j − j 2 fn(ξ) fm(ξ) I + fn(x0) fm(x0) ; for some ξ = ξmn(x) I: j 0 − 0 j " j − j " Given " > 0; choose an index k so that fn fm < 2jIj on I and fn(x0) fm(x0) < 2 ; for 0 all n; m > k: This is possible because fn is uniformly Cauchy and fn(x0) is Cauchy. Then jfn(x) − fm(x)j < " for all n; m > k: This shows that fn is uniformly Cauchy. ! 0 2 Lemma 2: If fn f and if fn converge uniformly on I; then, for any x0 I; fn(x) − fn(x0) f(x) − f(x0) ⇒ ; x =6 x0: x − x0 x − x0 Proof of Lemma 2: Fix any x0 2 I: By the mean value theorem, − − − − − fm(x) fm(x0) − fn(x) fn(x0) (fm fn)(x) (fm fn)(x0) − 0 0 − 0 = = (fm fn) (ξ) = fm(ξ) fn(ξ); x − x0 x − x0 x − x0 − 2 0 fn(x) fn(x0) for some ξ = ξmn(x) I: Thus, since fn is uniformly Cauchy, so is : x − x0 fn(x) − fn(x0) f(x) − f(x0) And since fn ! f; we must have ⇒ on I n fx0g: x − x0 x − x0 We are now ready to give sufficient conditions for (∗): Theorem: Let fn be defined and differentiable on a closed interval I and let the derivatives 0 fn be uniformly convergent on I: Then, if fn converge at some point of I; they converge uniformly on all of I to a differentiable limit, and ( )0 0 lim fn = lim f : n!1 n!1 n ⇒ 0 ⇒ 2 Proof of Theorem: Let fn f (Lemma 1) and fn g: Fix any x0 I: 0 We will show that f (x0) exists and agrees with g(x0): Let " > 0 be given. Write − − − − f(x) f(x0) − ≤ f(x) f(x0) − fn(x) fn(x0) fn(x) fn(x0) − 0 0 − g(x0) + fn(x0) + fn(x0) g(x0) : x − x0 x − x0 x − x0 x − x0 − − j 0 − j " f(x) f(x0) − fn(x) fn(x0) " 6 Select n : fn(x0) g(x0) < and < ; x = x0 (Lemma 2). 3 x − x0 x − x0 3 − fn(x) fn(x0) − 0 " j − j Choose δ > 0 so that fn(x0) < for 0 < x x0 < δ: x − x0 3 Then, for any x with 0 < jx − x j < δ; 0 f(x) − f(x0) " " " − g(x0) < + + = ": x − x0 3 3 3 It follows that f(x) − f(x ) lim 0 = g(x ); x 2 I: ! 0 0 x x0 x − x0 Example: Consider the sequence fn(x) = sin(x=n) + cos(x=n): The sequence converges pointwise to f(x) ≡ 1: Is the convergence uniform? While we may address this question directly, 0 j 0 j ≤ it is clear that the sequence of derivatives fn(x) satisfies fn(x) 2=n and so converges to 0 uniformly on all of R: So fn ⇒ 1 on all of R; by the preceding theorem..
Recommended publications
  • Limits Involving Infinity (Horizontal and Vertical Asymptotes Revisited)
    Limits Involving Infinity (Horizontal and Vertical Asymptotes Revisited) Limits as ‘ x ’ Approaches Infinity At times you’ll need to know the behavior of a function or an expression as the inputs get increasingly larger … larger in the positive and negative directions. We can evaluate this using the limit limf ( x ) and limf ( x ) . x→ ∞ x→ −∞ Obviously, you cannot use direct substitution when it comes to these limits. Infinity is not a number, but a way of denoting how the inputs for a function can grow without any bound. You see limits for x approaching infinity used a lot with fractional functions. 1 Ex) Evaluate lim using a graph. x→ ∞ x A more general version of this limit which will help us out in the long run is this … GENERALIZATION For any expression (or function) in the form CONSTANT , this limit is always true POWER OF X CONSTANT lim = x→ ∞ xn HOW TO EVALUATE A LIMIT AT INFINITY FOR A RATIONAL FUNCTION Step 1: Take the highest power of x in the function’s denominator and divide each term of the fraction by this x power. Step 2: Apply the limit to each term in both numerator and denominator and remember: n limC / x = 0 and lim C= C where ‘C’ is a constant. x→ ∞ x→ ∞ Step 3: Carefully analyze the results to see if the answer is either a finite number or ‘ ∞ ’ or ‘ − ∞ ’ 6x − 3 Ex) Evaluate the limit lim . x→ ∞ 5+ 2 x 3− 2x − 5 x 2 Ex) Evaluate the limit lim . x→ ∞ 2x + 7 5x+ 2 x −2 Ex) Evaluate the limit lim .
    [Show full text]
  • Section 8.8: Improper Integrals
    Section 8.8: Improper Integrals One of the main applications of integrals is to compute the areas under curves, as you know. A geometric question. But there are some geometric questions which we do not yet know how to do by calculus, even though they appear to have the same form. Consider the curve y = 1=x2. We can ask, what is the area of the region under the curve and right of the line x = 1? We have no reason to believe this area is finite, but let's ask. Now no integral will compute this{we have to integrate over a bounded interval. Nonetheless, we don't want to throw up our hands. So note that b 2 b Z (1=x )dx = ( 1=x) 1 = 1 1=b: 1 − j − In other words, as b gets larger and larger, the area under the curve and above [1; b] gets larger and larger; but note that it gets closer and closer to 1. Thus, our intuition tells us that the area of the region we're interested in is exactly 1. More formally: lim 1 1=b = 1: b − !1 We can rewrite that as b 2 lim Z (1=x )dx: b !1 1 Indeed, in general, if we want to compute the area under y = f(x) and right of the line x = a, we are computing b lim Z f(x)dx: b !1 a ASK: Does this limit always exist? Give some situations where it does not exist. They'll give something that blows up.
    [Show full text]
  • Ch. 15 Power Series, Taylor Series
    Ch. 15 Power Series, Taylor Series 서울대학교 조선해양공학과 서유택 2017.12 ※ 본 강의 자료는 이규열, 장범선, 노명일 교수님께서 만드신 자료를 바탕으로 일부 편집한 것입니다. Seoul National 1 Univ. 15.1 Sequences (수열), Series (급수), Convergence Tests (수렴판정) Sequences: Obtained by assigning to each positive integer n a number zn z . Term: zn z1, z 2, or z 1, z 2 , or briefly zn N . Real sequence (실수열): Sequence whose terms are real Convergence . Convergent sequence (수렴수열): Sequence that has a limit c limznn c or simply z c n . For every ε > 0, we can find N such that Convergent complex sequence |zn c | for all n N → all terms zn with n > N lie in the open disk of radius ε and center c. Divergent sequence (발산수열): Sequence that does not converge. Seoul National 2 Univ. 15.1 Sequences, Series, Convergence Tests Convergence . Convergent sequence: Sequence that has a limit c Ex. 1 Convergent and Divergent Sequences iin 11 Sequence i , , , , is convergent with limit 0. n 2 3 4 limznn c or simply z c n Sequence i n i , 1, i, 1, is divergent. n Sequence {zn} with zn = (1 + i ) is divergent. Seoul National 3 Univ. 15.1 Sequences, Series, Convergence Tests Theorem 1 Sequences of the Real and the Imaginary Parts . A sequence z1, z2, z3, … of complex numbers zn = xn + iyn converges to c = a + ib . if and only if the sequence of the real parts x1, x2, … converges to a . and the sequence of the imaginary parts y1, y2, … converges to b. Ex.
    [Show full text]
  • Formal Power Series - Wikipedia, the Free Encyclopedia
    Formal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series
    [Show full text]
  • 13 Limits and the Foundations of Calculus
    13 Limits and the Foundations of Calculus We have· developed some of the basic theorems in calculus without reference to limits. However limits are very important in mathematics and cannot be ignored. They are crucial for topics such as infmite series, improper integrals, and multi­ variable calculus. In this last section we shall prove that our approach to calculus is equivalent to the usual approach via limits. (The going will be easier if you review the basic properties of limits from your standard calculus text, but we shall neither prove nor use the limit theorems.) Limits and Continuity Let {be a function defined on some open interval containing xo, except possibly at Xo itself, and let 1 be a real number. There are two defmitions of the· state­ ment lim{(x) = 1 x-+xo Condition 1 1. Given any number CI < l, there is an interval (al> b l ) containing Xo such that CI <{(x) ifal <x < b i and x ;6xo. 2. Given any number Cz > I, there is an interval (a2, b2) containing Xo such that Cz > [(x) ifa2 <x< b 2 and x :;Cxo. Condition 2 Given any positive number €, there is a positive number 0 such that If(x) -11 < € whenever Ix - x 0 I< 5 and x ;6 x o. Depending upon circumstances, one or the other of these conditions may be easier to use. The following theorem shows that they are interchangeable, so either one can be used as the defmition oflim {(x) = l. X--->Xo 180 LIMITS AND CONTINUITY 181 Theorem 1 For any given f.
    [Show full text]
  • 7. Properties of Uniformly Convergent Sequences
    46 1. THE THEORY OF CONVERGENCE 7. Properties of uniformly convergent sequences Here a relation between continuity, differentiability, and Riemann integrability of the sum of a functional series or the limit of a functional sequence and uniform convergence is studied. 7.1. Uniform convergence and continuity. Theorem 7.1. (Continuity of the sum of a series) N The sum of the series un(x) of terms continuous on D R is continuous if the series converges uniformly on D. ⊂ P Let Sn(x)= u1(x)+u2(x)+ +un(x) be a sequence of partial sum. It converges to some function S···(x) because every uniformly convergent series converges pointwise. Continuity of S at a point x means (by definition) lim S(y)= S(x) y→x Fix a number ε> 0. Then one can find a number δ such that S(x) S(y) <ε whenever 0 < x y <δ | − | | − | In other words, the values S(y) can get arbitrary close to S(x) and stay arbitrary close to it for all points y = x that are sufficiently close to x. Let us show that this condition follows6 from the hypotheses. Owing to the uniform convergence of the series, given ε > 0, one can find an integer m such that ε S(x) Sn(x) sup S Sn , x D, n m | − |≤ D | − |≤ 3 ∀ ∈ ∀ ≥ Note that m is independent of x. By continuity of Sn (as a finite sum of continuous functions), for n m, one can also find a number δ > 0 such that ≥ ε Sn(x) Sn(y) < whenever 0 < x y <δ | − | 3 | − | So, given ε> 0, the integer m is found.
    [Show full text]
  • Two Fundamental Theorems About the Definite Integral
    Two Fundamental Theorems about the Definite Integral These lecture notes develop the theorem Stewart calls The Fundamental Theorem of Calculus in section 5.3. The approach I use is slightly different than that used by Stewart, but is based on the same fundamental ideas. 1 The definite integral Recall that the expression b f(x) dx ∫a is called the definite integral of f(x) over the interval [a,b] and stands for the area underneath the curve y = f(x) over the interval [a,b] (with the understanding that areas above the x-axis are considered positive and the areas beneath the axis are considered negative). In today's lecture I am going to prove an important connection between the definite integral and the derivative and use that connection to compute the definite integral. The result that I am eventually going to prove sits at the end of a chain of earlier definitions and intermediate results. 2 Some important facts about continuous functions The first intermediate result we are going to have to prove along the way depends on some definitions and theorems concerning continuous functions. Here are those definitions and theorems. The definition of continuity A function f(x) is continuous at a point x = a if the following hold 1. f(a) exists 2. lim f(x) exists xœa 3. lim f(x) = f(a) xœa 1 A function f(x) is continuous in an interval [a,b] if it is continuous at every point in that interval. The extreme value theorem Let f(x) be a continuous function in an interval [a,b].
    [Show full text]
  • Uniform Convergence and Differentiation Theorem 6.3.1
    Math 341 Lecture #29 x6.3: Uniform Convergence and Differentiation We have seen that a pointwise converging sequence of continuous functions need not have a continuous limit function; we needed uniform convergence to get continuity of the limit function. What can we say about the differentiability of the limit function of a pointwise converging sequence of differentiable functions? 1+1=(2n−1) The sequence of differentiable hn(x) = x , x 2 [−1; 1], converges pointwise to the nondifferentiable h(x) = x; we will need to assume more about the pointwise converging sequence of differentiable functions to ensure that the limit function is differentiable. Theorem 6.3.1 (Differentiable Limit Theorem). Let fn ! f pointwise on the 0 closed interval [a; b], and assume that each fn is differentiable. If (fn) converges uniformly on [a; b] to a function g, then f is differentiable and f 0 = g. Proof. Let > 0 and fix c 2 [a; b]. Our goal is to show that f 0(c) exists and equals g(c). To this end, we will show the existence of δ > 0 such that for all 0 < jx − cj < δ, with x 2 [a; b], we have f(x) − f(c) − g(c) < x − c which implies that f(x) − f(c) f 0(c) = lim x!c x − c exists and is equal to g(c). The way forward is to replace (f(x) − f(c))=(x − c) − g(c) with expressions we can hopefully control: f(x) − f(c) f(x) − f(c) fn(x) − fn(c) fn(x) − fn(c) − g(c) = − + x − c x − c x − c x − c 0 0 − f (c) + f (c) − g(c) n n f(x) − f(c) fn(x) − fn(c) ≤ − x − c x − c fn(x) − fn(c) 0 0 + − f (c) + jf (c) − g(c)j: x − c n n The second and third expressions we can control respectively by the differentiability of 0 fn and the uniformly convergence of fn to g.
    [Show full text]
  • G: Uniform Convergence of Fourier Series
    G: Uniform Convergence of Fourier Series From previous work on the prototypical problem (and other problems) 8 < ut = Duxx 0 < x < l ; t > 0 u(0; t) = 0 = u(l; t) t > 0 (1) : u(x; 0) = f(x) 0 < x < l we developed a (formal) series solution 1 1 X X 2 2 2 nπx u(x; t) = u (x; t) = b e−n π Dt=l sin( ) ; (2) n n l n=1 n=1 2 R l nπy with bn = l 0 f(y) sin( l )dy. These are the Fourier sine coefficients for the initial data function f(x) on [0; l]. We have no real way to check that the series representation (2) is a solution to (1) because we do not know we can interchange differentiation and infinite summation. We have only assumed that up to now. In actuality, (2) makes sense as a solution to (1) if the series is uniformly convergent on [0; l] (and its derivatives also converges uniformly1). So we first discuss conditions for an infinite series to be differentiated (and integrated) term-by-term. This can be done if the infinite series and its derivatives converge uniformly. We list some results here that will establish this, but you should consult Appendix B on calculus facts, and review definitions of convergence of a series of numbers, absolute convergence of such a series, and uniform convergence of sequences and series of functions. Proofs of the following results can be found in any reasonable real analysis or advanced calculus textbook. 0.1 Differentiation and integration of infinite series Let I = [a; b] be any real interval.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Notes Chapter 4(Integration) Definition of an Antiderivative
    1 Notes Chapter 4(Integration) Definition of an Antiderivative: A function F is an antiderivative of f on an interval I if for all x in I. Representation of Antiderivatives: If F is an antiderivative of f on an interval I, then G is an antiderivative of f on the interval I if and only if G is of the form G(x) = F(x) + C, for all x in I where C is a constant. Sigma Notation: The sum of n terms a1,a2,a3,…,an is written as where I is the index of summation, ai is the ith term of the sum, and the upper and lower bounds of summation are n and 1. Summation Formulas: 1. 2. 3. 4. Limits of the Lower and Upper Sums: Let f be continuous and nonnegative on the interval [a,b]. The limits as n of both the lower and upper sums exist and are equal to each other. That is, where are the minimum and maximum values of f on the subinterval. Definition of the Area of a Region in the Plane: Let f be continuous and nonnegative on the interval [a,b]. The area if a region bounded by the graph of f, the x-axis and the vertical lines x=a and x=b is Area = where . Definition of a Riemann Sum: Let f be defined on the closed interval [a,b], and let be a partition of [a,b] given by a =x0<x1<x2<…<xn-1<xn=b where xi is the width of the ith subinterval.
    [Show full text]
  • Calculus Formulas and Theorems
    Formulas and Theorems for Reference I. Tbigonometric Formulas l. sin2d+c,cis2d:1 sec2d l*cot20:<:sc:20 +.I sin(-d) : -sitt0 t,rs(-//) = t r1sl/ : -tallH 7. sin(A* B) :sitrAcosB*silBcosA 8. : siri A cos B - siu B <:os,;l 9. cos(A+ B) - cos,4cos B - siuA siriB 10. cos(A- B) : cosA cosB + silrA sirrB 11. 2 sirrd t:osd 12. <'os20- coS2(i - siu20 : 2<'os2o - I - 1 - 2sin20 I 13. tan d : <.rft0 (:ost/ I 14. <:ol0 : sirrd tattH 1 15. (:OS I/ 1 16. cscd - ri" 6i /F tl r(. cos[I ^ -el : sitt d \l 18. -01 : COSA 215 216 Formulas and Theorems II. Differentiation Formulas !(r") - trr:"-1 Q,:I' ]tra-fg'+gf' gJ'-,f g' - * (i) ,l' ,I - (tt(.r))9'(.,') ,i;.[tyt.rt) l'' d, \ (sttt rrJ .* ('oqI' .7, tJ, \ . ./ stll lr dr. l('os J { 1a,,,t,:r) - .,' o.t "11'2 1(<,ot.r') - (,.(,2.r' Q:T rl , (sc'c:.r'J: sPl'.r tall 11 ,7, d, - (<:s<t.r,; - (ls(].]'(rot;.r fr("'),t -.'' ,1 - fr(u") o,'ltrc ,l ,, 1 ' tlll ri - (l.t' .f d,^ --: I -iAl'CSllLl'l t!.r' J1 - rz 1(Arcsi' r) : oT Il12 Formulas and Theorems 2I7 III. Integration Formulas 1. ,f "or:artC 2. [\0,-trrlrl *(' .t "r 3. [,' ,t.,: r^x| (' ,I 4. In' a,,: lL , ,' .l 111Q 5. In., a.r: .rhr.r' .r r (' ,l f 6. sirr.r d.r' - ( os.r'-t C ./ 7. /.,,.r' dr : sitr.i'| (' .t 8. tl:r:hr sec,rl+ C or ln Jccrsrl+ C ,f'r^rr f 9.
    [Show full text]