University of Cape Town

Total Page:16

File Type:pdf, Size:1020Kb

University of Cape Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Macroinvertebrates associated with macrophytes in Sodwana Bay, with further consideration of amphipod taxonomy Rebecca Milne Town Cape of Dissertation presented for the degree of Master of Science in the Department of Zoology UniversityUniversity of Cape Town February 2012 Supervisor: Prof. Charles L. Griffiths Declaration Sample collection in the field was conducted with the ACEP II biodiversity team. For certain groups, taxonomic experts were consulted. Jennifer Olbers provided identifications of Ophiuroidea, and Aiden Biccard of Cirripedia. Algal turf species were identified in the field by Rob Anderson and John Bolton. Data on seagrass weights, proportions and epiphyte identification and sorting was provided by Catherine Browne. The remaining data collection, analysis, and writing of this dissertation are my own work, with the assistance of Professor Charles Griffiths. Town I know the meaning of plagarism, and declare that all of the work in the dissertation, save for that which is properly acknowledged, is my own. Cape of __________________ Rebecca Milne __________________ Date University 2 Table of Contents Acknowledgements .................................................................................................................... 4 Abstract ...................................................................................................................................... 5 Chapter 1: General Introduction ................................................................................................ 7 1.1 Literature Review ............................................................................................................. 7 1.2 Motivation and objectives .............................................................................................. 15 Chapter 2: Seagrass Beds ......................................................................................................... 19 2.1 Introduction .................................................................................................................... 19 2.2 Methods .......................................................................................................................... 23 2.3 Results ............................................................................................................................ 25 2.4 Discussion ...................................................................................................................... 32 Chapter 3: Algal Turf Community Ecology ............................................................................ 37 3.1 Introduction ....................................................................................................................Town 37 3.2 Methods .......................................................................................................................... 43 3.3 Results ............................................................................................................................ 47 3.4 Discussion ......................................................................................................................Cape 57 Chapter 4: Amphipod Taxonomy ............................................................................................of 63 4.1 Introduction .................................................................................................................... 63 4.2 Methods .......................................................................................................................... 66 4.3 Taxonomic section ......................................................................................................... 67 4.4 Literature Cited ............................................................................................................ 121 Chapter 5: Conclusion................................................................University ............................................ 129 5.1 Summary ...................................................................................................................... 129 5.2 Synthesis....................................................................................................................... 131 5.3 Conclusions .................................................................................................................. 136 Literature Cited ...................................................................................................................... 139 Appendix 1: Sodwana Bay Species List ................................................................................ 147 Appendix 2: Amphipod Taxonomy ....................................................................................... 159 3 Acknowledgements First thanks go to my supervisor, Charles Griffiths for his continuing support and encouragement. His advice and wisdom has been essential going forward. Funding support was provided by the African Coelacanth Ecosystem Project, the Marine Research Institute at the University of Cape Town, and the O’Brien Foundation. Special thanks goes to the October 2009 and March 2010 ACEP field teams for two successful field trips with a lot of work in a little bit of paradise. I am particularly grateful to Rob Anderson, John Bolton and Catherine Browne for their assistance with planning and execution of field work and data collection from the algal side of things. This project would not have been possible without such collaboration,Town and I appreciate all their hard work. Thanks also to my family in Canada for their support,Cape and my new friends in Cape Town for being so welcoming, and making this MSc the offulfilling experience that it has been. University 4 Abstract Biodiversity knowledge in South Africa is uneven, both taxonomically and geographically. The KwaZulu-Natal coast is under sampled in comparison to the rest of South Africa, which limits the accuracy of biogeographic diversity analyses. The study site for this thesis is Sodwana Bay, focus of the African Coelacanth Ecosystem Programme, a multidisciplinary project centered on understanding the Coelacanth habitat of Sodwana Bay at an ecosystem level. Globally and locally, the biodiversity of small species is under-studied. While historically, research in Sodwana Bay has focused on larger, more conspicuous species, this study records for the first time macroinvertebrate communities in Sodwana Bay. Macroalgal biotopes were selected to focus sampling. Macroinvertebrates, macrophytes and sediment were collected from forty-five 25 x 25 cm quadrats. Chapter 2 examined the community inhabiting Thalassodendron ciliatum beds. From this biotope, 204 macroinvertebrate and 41 algal epiphyte species were identified. Polychaeta, Mollusca and Arthropoda were the most speciose phyla (76%); Hydrozoa and Bryozoa also contributed a considerable portion to the community composition (20%). Red algae were dominant among the epiphytes (76%). There was no strong statistical differentiation between seagrass bed samples from different exposure levels. This is partially due to the low number of replicates, but also the sheltering of the macroinvertebrate communityTown by T. ciliatum. Chapter 3 examined algal turfs biotopes from across six depth groups and recorded 314 species of macroinvertebrates and 72 of macroalgae. Species composition differed quite dramatically with depth. Different species characterised the community composition for each depth, and 67% of macroinvertebrate species were specificCape to one depth. Macroinvertebrate biodiversity was greater on inshore reefs than in the surf zone (r²=0.358). A second stage analysis was attempted to detect whether macroinvertebrateof communities were more closely related to algal community by species composition or functional groupings, but this was inconclusive due to the overwhelming influence of depth on community composition. Chapter 4 examined the amphipod component of the material collected from Sodwana Bay. Two new species were described: Varohios n. sp. and Ceradocus n. sp. In addition to the two species new to science, ten species were recorded for the first time in South Africa from Sodwana Bay material. A literature review increased the listed number of South African Amphipoda from 256University to 485 species. This study recorded 469 macroinvertebrate species in Sodwana Bay. This is not a complete species list, as species accumulation curves do not near an asymptote, and there were many rare species only recorded once. In addition to the Amphipoda new records and species, most other phyla included a number of species that were not in regional identification guides. Isopoda is particularly poorly known, and is estimated globally to have a large proportion of undescribed species. This study has only examined a few of the biotopes in Sodwana Bay, and the biodiversity of macroinvertebrates inhabiting large invertebrates such as coral, sponges and ascidians remain to be studied. 5 Town Cape of University Chapter 1: General Introduction 1.1 Literature Review South African marine biodiversity South Africa has a coastline of more than 3 650 km and a continental
Recommended publications
  • BIOPAPUA Expedition Highlighting Deep-Sea Benthic Biodiversity of Papua New- Guinea
    Biopapua Expedition – Progress report MUSÉUM NATIONAL D'HISTOIRE NATURELLE 57 rue Cuvier 75005 PARIS‐ France BIOPAPUA Expedition Highlighting deep-sea benthic Biodiversity of Papua New- Guinea Submitted by: Muséum National d'Histoire Naturelle (MNHN) Represented by (co‐PI): Dr Sarah Samadi (Researcher, IRD) Dr Philippe Bouchet (Professor, MNHN) Dr Laure Corbari (Research associate, MNHN) 1 Biopapua Expedition – Progress report Contents Foreword 3 1‐ Our understanding of deep‐sea biodiversity of PNG 4 2 ‐ Tropical Deep‐Sea Benthos program 5 3‐ Biopapua Expedition 7 4‐ Collection management 15 5‐ Preliminary results 17 6‐ Outreach and publications 23 7‐ Appendices 26 Appendix 1 27 NRI, note n°. 302/2010 on 26th march, 2010, acceptance of Biopapua reseach programme Appendix 2 28 Biopapua cruise Report, submitted by Ralph MANA (UPNG) A Report Submitted to School of Natural and Physical Sciences, University of Papua New Guinea Appendix 3 39 Chan, T.Y (2012) A new genus of deep‐sea solenocerid shrimp (Crustacea: Decapoda: Penaeoidea) from the Papua New Guinea. Journal of Crustacean Biology, 32(3), 489‐495. Appendix 4 47 Pante E, Corbari L., Thubaut J., Chan TY, Mana R., Boisselier MC, Bouchet P., Samadi S. (In Press). Exploration of the deep‐sea fauna of Papua New Guinea. Oceanography Appendix 5 60 Richer de Forges B. & Corbari L. (2012) A new species of Oxypleurodon Miers, 1886 (Crustacea Brachyura, Majoidea) from the Bismark Sea, Papua New Guinea. Zootaxa. 3320: 56–60 Appendix 6 66 Taxonomic list: Specimens in MNHN and Taiwan collections 2 Biopapua Expedition – Progress report Foreword Biopapua cruise was a MNHN/IRD deep‐sea cruise in partnership with the School of Natural and Physical Sciences, University of Papua New Guinea.
    [Show full text]
  • Additions to and Revisions of the Amphipod (Crustacea: Amphipoda) Fauna of South Africa, with a List of Currently Known Species from the Region
    Additions to and revisions of the amphipod (Crustacea: Amphipoda) fauna of South Africa, with a list of currently known species from the region Rebecca Milne Department of Biological Sciences & Marine Research Institute, University of CapeTown, Rondebosch, 7700 South Africa & Charles L. Griffiths* Department of Biological Sciences & Marine Research Institute, University of CapeTown, Rondebosch, 7700 South Africa E-mail: [email protected] (with 13 figures) Received 25 June 2013. Accepted 23 August 2013 Three species of marine Amphipoda, Peramphithoe africana, Varohios serratus and Ceradocus isimangaliso, are described as new to science and an additional 13 species are recorded from South Africa for the first time. Twelve of these new records originate from collecting expeditions to Sodwana Bay in northern KwaZulu-Natal, while one is an introduced species newly recorded from Simon’s Town Harbour. In addition, we collate all additions and revisions to the regional amphipod fauna that have taken place since the last major monographs of each group and produce a comprehensive, updated faunal list for the region. A total of 483 amphipod species are currently recognized from continental South Africa and its Exclusive Economic Zone . Of these, 35 are restricted to freshwater habitats, seven are terrestrial forms, and the remainder either marine or estuarine. The fauna includes 117 members of the suborder Corophiidea, 260 of the suborder Gammaridea, 105 of the suborder Hyperiidea and a single described representative of the suborder Ingolfiellidea.
    [Show full text]
  • Proceedings of the United States National Museum
    Proceedings of the United States National Museum SMITHSONIAN INSTITUTION . WASHINGTON, B.C. Volume 117 Number 3516 MARINE AMPHIPODA OF ATOLLS IN MICRONESIA By J. Laurens Barnard Associate Curator, Division of Crustacea Introduction Two large collections of intertidal and sublittoral Amphipoda were made on several atolls of Micronesia, one containing material coUected by Dr. D. P. Abbott of Stanford University and Dr. F. M. Bayer of the Smithsonian Institution on Ifaluk Atoll, and by Dr. Cadet Hand of the University of California on Kapingamarangi Atoll, and the other by Dr. D. J. Reish of Long Beach State CoUege, California, on Eniwetok, Majm-o, and Bikini atolls. The Abbott-Bayer-Hand collection was made avaUable to me by Dr. Fenner A. Chace, Jr. of the U.S. National Museum, and a small grant was provided' from the National Research Council for initial sorting of the specimens. The coUections of Dr. Reish were made possible by help from the Atomic Energy Commission. All specimens have been deposited m the U.S. National Museum. I am most grateful to the Beaudette Foundation for my support during this investigation. Dr. Abbott very kmdly reviewed the manuscript and made several valuable suggestions. Previous studies.— Tropical Pacific amphipods have not been studied extensively but the fauna would be expected to contam species common to other parts of the tropics, such as the Indian Ocean and Red Sea. Therefore, few of the common species in the coUections proved to be new, especially since Schellenberg (1938a) had already reported on coUections from Fiji, GUbert, EUice, MarshaU and 459 460 PROCEEDINGS OF THE NATIONAL MUSEUM vol.
    [Show full text]
  • From the Southeast Australian Coast, with Comments on the Distribution and Habitat Preferences of Chondropodinae
    Muvi schmallenbergi gen. nov., sp. nov. (Crustacea, Tanaidacea) from the southeast Australian coast, with comments on the distribution and habitat preferences of Chondropodinae Piotr Jóźwiak and Magdalena Błażewicz Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland ABSTRACT Based on material collected from the shelf off southeast Australia (offshore of Portland), a new genus and new species, Muvi schmallenbergi gen. nov., sp. nov., of the tanaidacean family Metapseudidae, is described. Muvi is distinguishable from other genera within the subfamily Chondropodinae by having equally long antennular flagella. It also differs from other Chondropodinae by a combination of characters such as eyelobes with a group of visual elements, rostrum with smooth lateral edges, pereonites with lateral processes and pleotelson lacking lateral process, antennule article-1 with a single apophysis, maxillule inner lobe well-developed, labial palp bearing three distal setae, cheliped exopod well-developed and setose, pereopod-1 coxa with distinct apophysis, pleopods in five pairs, and uropod basis without apophysis. The genus Deidamiapseudes Sganga & Roccatagliata, 2016 is moved from Chondropodinae (Metapseudidae) to Apseudoidea incertae sedis. An identification key for the genera within Chondropodinae is given, and their distribution is discussed. Submitted 19 February 2020 Subjects Biodiversity, Ecology, Taxonomy, Zoology Accepted 23 May 2021 Published 11 August 2021 Keywords Tanaidacea, Distribution, Shelf, South Australia, Metapseudidae Corresponding author INTRODUCTION Piotr Jóźwiak, [email protected] Tanaidacea, small benthic peracarid crustaceans, represent a poorly recognized Academic editor component of marine ecosystems. Until the end of millennium, the Australian Tanaidacea James Reimer were known only from few taxonomic publications (Haswell, 1882a, 1882b; Haswell, 1885; Additional Information and Whitelegge, 1901; Boesch, 1973; Băcescu, 1981; Sieg, 1993; Edgar, 1997).
    [Show full text]
  • The 17Th International Colloquium on Amphipoda
    Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries.
    [Show full text]
  • Crustacea: Amphipoda: Hyperiidea: Hyperiidae), with the Description of a New Genus to Accommodate H
    Zootaxa 3905 (2): 151–192 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3905.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:A47AE95B-99CA-42F0-979F-1CAAD1C3B191 A review of the hyperiidean amphipod genus Hyperoche Bovallius, 1887 (Crustacea: Amphipoda: Hyperiidea: Hyperiidae), with the description of a new genus to accommodate H. shihi Gasca, 2005 WOLFGANG ZEIDLER South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia. E-mail [email protected] Table of contents Abstract . 151 Introduction . 152 Material and methods . 152 Systematics . 153 Suborder Hyperiidea Milne-Edwards, 1830 . 153 Family Hyperiidae Dana, 1852 . 153 Genus Hyperoche Bovallius, 1887 . 153 Key to the species of Hyperoche Bovallius, 1887 . 154 Hyperoche medusarum (Kröyer, 1838) . 155 Hyperoche martinezii (Müller, 1864) . 161 Hyperoche picta Bovallius, 1889 . 165 Hyperoche luetkenides Walker, 1906 . 168 Hyperoche mediterranea Senna, 1908 . 173 Hyperoche capucinus Barnard, 1930 . 177 Hyperoche macrocephalus sp. nov. 180 Genus Prohyperia gen. nov. 182 Prohyperia shihi (Gasca, 2005) . 183 Acknowledgements . 186 References . 186 Abstract This is the first comprehensive review of the genus Hyperoche since that of Bovallius (1889). This study is based primarily on the extensive collections of the ZMUC but also on more recent collections in other institutions. Seven valid species are recognised in this review, including one described as new to science. Two new characters were discovered; the first two pereonites are partially or wholly fused dorsally and the coxa of pereopod 7 is fused with the pereonite.
    [Show full text]
  • Alpheid Shrimps (Crustacea: Decapoda: Alpheidae) of Vietnam
    Alpheid shrimps (Crustacea: Decapoda: Alpheidae) of Vietnam Item Type article Authors Tiwari, Krishna Kant Download date 02/10/2021 11:01:07 Link to Item http://hdl.handle.net/1834/35742 316 KRISHNA KANT TIWARI Fingers fringed with hair along the prehensile edges, tips curved and acute ; a tooth on cutting edge of near base in the males, but absent in the female, this tooth being rather large in the Cua-Be male and slight others and in the latter fingers are ahm less hairy ; in the Cua-Be male fingers gape when closed, in others they shut. Ratio of carpal segments of second pereiopod (Text-fig. 30k) as follows: -- 13 : 10 : 4 : 4 : 6. Chela by the same measure being (palm 5, finger Merus of third pereiopod (Text-fig. 30l) a spine at the distal end of lower border, about four times as long as Carpus slightly more than half as long as merus, its distal extremities not produced. Propodus about two-thirds as long as merus, with 8-9 movable spines on its inferior margin. Dactylus about one-third as long as propodus, apex simple and acute. Telson twice as long as breadth of its anterior border ; posterior mar­ gin slightly arcuate, half as wide as anterior margin. Dorsal spines moder­ ately large, about 0.3 and 0.6 distance away from the distal end. Remarks : These specimens agree well with published descriptions of A. pacificus Banner (1953) has extensively described and figured the ex­ amples of this species from Hawaii. In having a tooth on the cutting edge of dactylus in males, the present material differs from the Hawaiian speci­ mens! Distribtttion : This "'""'~"'~'~"' has a distribution in the Indo-Paci:fic.
    [Show full text]
  • Observations on the Kalliapseudid Tanaidacea (Crustacea: Malacostraca: Peracarida) from the Northwestern Atlantic, with an Illustrated Key to the Species
    Gulf and Caribbean Research Volume 22 Issue 1 2010 Observations on the Kalliapseudid Tanaidacea (Crustacea: Malacostraca: Peracarida) from the Northwestern Atlantic, with an Illustrated Key to the Species David T. Drumm University of Southern Mississippi Richard W. Heard University of Southern Mississippi, [email protected] Follow this and additional works at: https://aquila.usm.edu/gcr Part of the Marine Biology Commons Recommended Citation Drumm, D. T. and R. W. Heard. 2010. Observations on the Kalliapseudid Tanaidacea (Crustacea: Malacostraca: Peracarida) from the Northwestern Atlantic, with an Illustrated Key to the Species. Gulf and Caribbean Research 22 (1): 29-41. Retrieved from https://aquila.usm.edu/gcr/vol22/iss1/4 DOI: https://doi.org/10.18785/gcr.2201.04 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf and Caribbean Research Vol 22, 29-41, 2010 Manuscript received November 12, 2009; accepted January 19, 2010 OBSERVATIONS ON THE KALLIAPSEUDID TANAIDACEA (CRUSTACEA: MALACOSTRACA: PERACARIDA) FROM THE NORTHWESTERN ATLANTIC, WITH AN ILLUSTRATED KEY TO THE SPECIES David T. Drumm and Richard W. Heard Department of Coastal Sciences, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, e-mail: david.drumm@ usm.edu ABSTRACT: New information for the kalliapseudid Tanaidacea occurring in the northwestern Atlantic is presented and discussed, including data on range extensions and new depth ranges for 4 species. The taxa studied came from the shelf and coastal waters of the southeastern United States, Puerto Rico and Trinidad.
    [Show full text]
  • Amphipod Newsletter 23
    −1− NEW AMPHIPOD TAXA IN AMPHIPOD NEWSLETTER 23 Wim Vader, XII-2001 All references are to papers found in the bibliography in AN 23 A. Alphabetic list of new taxa 1. New subfamilies Andaniexinae Berge & Vader 2001 Stegocephalidae AndaniopsinaeBerge & Vader 2001 Stegocephalidae Bathystegocephalinae Berge & Vader 2001 Stegocephalidae Parandaniinae Berge & Vader 2001 Stegocephalidae 2. New genera Alania Berge & Vader 2001 Stegocephalidae Apolochus Hoover & Bousfield 2001 Amphilochidae Austrocephaloides Berge & Vader 2001 Stegocephalidae Austrophippsia Berge & Vader 2001 Stegocephalidae Bouscephalus Berge & Vader 2001 Stegocephalidae Exhyalella (rev.)(Lazo-Wasem & Gable 2001) Hyalellidae Gordania Berge & Vader 2001 Stegocephalidae Hourstonius Hoover & Bousfield 2001 Amphilochidae Marinohyalella Lazo-Wasem & Gable 2001 Hyalellidae Mediterexis Berge & Vader 2001 Stegocephalidae Metandania (rev.) (Berge 2001) Stegocephalidae Miramarassa Ortiz, Lalana & Lio 1999 Aristiidae Othomaera Krapp-Schickel, 2001 Melitidae Parafoxiphalus Alonso de Pina 2001 Phoxocephalidae Pseudo Berge & Vader 2001 Stegocephalidae Schellenbergia Berge & Vader 2001 Stegocephalidae Stegomorphia Berge & Vader 2001 Stegocephalidae Stegonomadia Berge & Vader 2001 Stegocephalidae Zygomaera Krapp-Schickel 2001 Melitidae 3. New species and subspecies abei (Anonyx) Takakawa & Ishimaru 2001 Uristidae abyssorum (rev.) (Andaniotes) (Berge 2001 ) Stegocephalidae −2− africana (Andaniopsis) Berge, Vader & Galan 2001 Stegocephalidae amchitkana (Anisogammarus) Bousfield 2001 Anisogammaridae
    [Show full text]
  • Distribución De Los Anfípodos (Crustacea, Malacostraca, Peracarida) De Los Subórdenes Gammaridea, Caprellidea E Hyperiidea, Presentes En El Archipiélago Cubano
    Distribución de los anfípodos (crustacea, malacostraca, peracarida) de los subórdenes gammaridea, caprellidea e hyperiidea, presentes en el archipiélago cubano Item Type Journal Contribution Authors Ortiz, M.; Lalana, R. Citation Revista de Investigaciones Marinas, 31 (2), p. 75-90 Download date 27/09/2021 06:30:40 Item License http://creativecommons.org/licenses/by-nc/3.0/ Link to Item http://hdl.handle.net/1834/4520 Rev. Invest. Mar. 31(2):75-90, 2010 DISTRIBUCIÓN DE LOS ANFÍPODOS (CRUSTACEA, MALACOSTRACA, PERACARIDA) DE LOS SUBÓRDENES GAMMARIDEA, CAPRELLIDEA E HYPERIIDEA, PRESENTES EN EL ARCHIPIÉLAGO CUBANO Manuel Ortiz y Rogelio Lalana Centro de Investigaciones Marinas, Universidad de La Habana, Calle 16 No. 114, Playa, CP 11300, Ciudad Habana, Cuba Autor correspondiente: Email: [email protected] RESUMEN Se presenta la distribución espacial y vertical de las 152 especies (37 familias y 83 géneros) de los anfípodos gammarídeos; de las 11 especies (5 familias y 10 géneros) de caprélideos, así como las 36 especies (14 familias y 22 géneros) de hiperídeos, que se han registrado en el Archipiélago Cubano, desde 1970. Cada especie ha sido situada en una tabla que se corresponde con las ecorregiones marinas de Cuba, donde además se ofrece el número de veces que dicha especie ha sido colectada en cada localidad, así como el tipo de sustrato. Palabras clave: distribución de especies; Amphipoda; ASW, Cuba. ABSTRACT The spatial and vertical distribution of the 152 species (37 families and 83 genera) of the gammaridean amphipods; the 11 species (five families, 10 genera)of the caprellidean amphipods, as well as of the 36 species (14 families and 22 genera) of Hyperiidean amphipod crustaceans recorded for the Cuban waters, from 1970, are given.
    [Show full text]
  • Col., Scarabaeidae, Melolonthinae, Pachydemini)
    VIERAEA Vol. 32 1-6 Santa Cruz de Tenerife, diciembre 2004 ISSN 0210-945X Pachydema keithi Lacroix, 2000, sinonimia de Pachydema ameliae López-Colón, 1986 (Col., Scarabaeidae, Melolonthinae, Pachydemini) JOSÉ I GNACIO L ÓPEZ-COLÓN Plaza de Madrid, 2, 1º/D. E-28529 Rivas-Vaciamadrid (Madrid). España. LÓPEZ-COLÓN, J. I. (2004). Pachydema keithi Lacroix, 2000 synonimy of Pachydema ameliae López-Colón, 1986 (Col., Scarabaeidae, Melolonthinae, Pachydemini). VIERAEA 32: 1-6. RESUMEN: Se establece la nueva sinonimia: Pachydema keithi Lacroix, 2000 = Pachydema bipartita ameliae López-Colón, 1986, la cual pasa a ser considerada con rango específico: Pachydema ameliae López-Colón, 1986 (n. stat.). Palabras clave: Coleoptera, Scarabaeidae, Melolonthinae, Pachydemini, Islas Canarias, Pachydema keithi, Pachydema bipartita ameliae, nueva sinonimia. ABSTRACT: A new synonimy, Pachydema keithi Lacroix, 2000 = Pachydema bipartita ameliae López-Colón, 1986, is set up. Its specific validity is here considered: Pachydema ameliae López-Colón, 1986 (n. stat.). Key words: Coleoptera, Scarabaeidae, Melolonthinae, Pachydemini, Canary Island, Pachydema keithi, Pachydema bipartita ameliae, new synonimy. INTRODUCCIÓN Marc Lacroix ha descrito recientemente una nueva especie canaria de Pachydema: Pachydema keithi Lacroix, 2000, nominada en honor de su colega Denis Keith, cuyo holotypus está conservado en el Museo de París (Museum national d’Histoire naturelle). El nuevo taxon procede del Pozo de las Nieves, en la isla de Gran Canaria. Sin embargo, en realidad Lacroix ha redescrito, paso por paso, a Pachydema bipartita ameliae López-Colón, 1986, una subespecie de Pachydema bipartita (Brullé, 1838) [cuyo holotypus, que procede de Valleseco, Gran Canaria, está conservado en el Departamento de Biología Animal de la Universidad de La Laguna (Tenerife)] que Galante & Stebnicka (1992) pasaron a sinonimia de esta última (ver pág.
    [Show full text]
  • Effecten Van Fosfaat Addities
    Benthos community composition along pipeline trajectory A6-A – Ravn. An environmental baseline study 1 2 1 S.T. Glorius , S. Wijnhoven and N.H.B.M. Kaag IMARES Report number C116.14 Monitor Taskforce Publication Series 2014-05 1 IMARES Wageningen UR 2 NIOZ Monitor Taskforce IMARES Wageningen UR IMARES - Institute for Marine Resources & Ecosystem Studies Royal Netherlands Institute for Sea Research (NIOZ) Client: Wintershall Noordzee B.V. Mr. M. Snoeij P.O. Box 1011 2280 CA Rijswijk Publication date: October 2014 IMARES vision: ‘To explore the potential of marine nature to improve the quality of life’. IMARES mission: To conduct research with the aim of acquiring knowledge and offering advice on the sustainable management and use of marine and coastal areas. IMARES is: An independent, leading scientific research institute. Monitor Taskforce of the NIOZ is: • A specialized marine biological taskforce with excellent laboratory facilities and sampling equipment. The quality of operational processes is assured by a NEN-EN-ISO 9001:2008 certified management systems. Laboratory analyses are accredited according to ISO IEC 17025: 2005 as well. • A group largely operating in the field of strategic and applied research with the aim to achieve more insight in the natural (long term) development of marine and estuarine systems and the impact of anthropogenic activities. • A professional good skilled group with a large taxonomic expertise and a broad scientific background. P.O. Box 68 P.O. Box 77 P.O. Box 57 P.O. Box 167 1970 AB IJmuiden 4400 AB
    [Show full text]