Star-forming through cosmic time The impacts and signatures of cosmic rays

Ellis Owen CICA Fellow

Institute of Astronomy National Tsing Hua University [email protected]

Collaborators Kinwah Wu (UCL); Alvina Y L On (NTHU/UCL-MSSL); Shih-Ping Lai (NTHU); Y X Jane Yap (NTHU); HST and ALMA image of MACS1149-JD1 (z=9.11) – NASA/ESA, Hashimoto+ 2018 KG Lee (IPMU); Albert Kong (NTHU/Oxford)

ICRR Seminar – February 2020 Outline

• Star-forming galaxies in the Universe • Cosmic rays in star-forming galaxies • Particle propagation • Cosmic ray feedback & star-formation histories • A closer look: star-formation & sub-grid physics • Signatures (gamma-rays)

2 Star-forming Galaxies in the Universe

Image of simulated Lyman-alpha emission around a high group of – credit: Geach et al. Local Starbursts

NGC 253 Arp 220 M 82

NASA/ESA 2008 ESO 2010 NASA/ESA 2006

1 1 1 SF 10 M yr 220 M yr 10 M yr R ⇠ ⇠ ⇠ 1 1 1 0.1yr 4yr 0.1yr RSN 4 See e.g. SN Rates: Fenech+2010, Lenc & Tingay 2006, Lonsdale+2006; SF Rate: Varenius+2016, Schreiber+2003, Bolatto+2013 High-redshift starbursts (z~6+)

• Low mass, high SF rates – 10 M⨀ – 10s − 100s M⨀ yr – SF efficiencies ~ tens of %

MACS1149-JD1 EGSY8p7 • Simulation work suggests possibility of filamentary inflows of gas (cf. works by Keres, Dekel, Birnboim…)

• High supernova event rates GN-z11 EGS-zs8-1

MACS1149-JD1 (HST/ALMA) – NASA/ESA, Hashimoto+ 2018 EGSY8p7 (Hubble/Spitzer) – NASA, Labbe+ 2015 GN-z11 (HST) – NASA, Oesch+ 2015 EGSY-zs8-1(Hubble/Spitzer) – NASA/ESA, Oesch & Momcheva 2015 5 The high-redshift CGM environment

Outflows

ISM

Cold inflows (operate mainly at high-redshift)

Birnboim + Dekel 2003; Keres+2005; Dekel 2009

Figure based on Tumlinson+2017 6 Cosmic rays in star-forming galaxies

Image credit: Crab Nebula, NASA, ESA 2005 Cosmic rays in the Milky Way

Knee

Knee

Ankle

Adapted from Gaisser 2007 8 Starbursts as cosmic ray factories

1015 Neutron stars

• Hillas criterion 1010 GRBs Emax qBR 5 AGN  /G 10 ! AGN jets • Cosmic rays sources White 100 dwarfs – Galactic (internal) in orange ISM hot spots

IGM shocks 10-5 Supernova remnants

10-10 105 1010 1015 1020 1025

rsys/cm

Fig. adapted from Owen 2019 (PhD thesis) See also Kotera & Olinto 2011; Hillas 1984 9 Cosmic ray interactions with radiation fields (p�)

Interaction by particles scattering off ambient photons (starlight, CMB…)

Photopion Interaction

0 + p + ⇡ p +2 + pion multiplicities at p + ! higher energies ! ! n + ⇡+ n + µ+ + ⌫ ( ! µ + n + e + ⌫e +¯⌫µ + ⌫µ Photopair Interaction

+ p + p + e + e . !

10 Cosmic ray interactions with matter (pp)

p + p + ⇡0 p + + p + p + ⇡+ 8 ! 8 p + p > <>p + n + ⇡+ + pion multiplicities ! > at higher energies > + < ++ >n + p + ⇡ n + : + ! (n + n + 2(⇡ ) > > > : Pions decay to photons, muons, Neutron and photon neutrinos, electrons, positrons, interactions produce pions antineutrinos n + ⇡’s ! ⇡ ,µ,e,⌫ ... ! 11 Cosmic ray interactions Interactions with stellar radiation fields

CMB & cosmological losses

Interactions with typical ISM density fields Adapted from Owen+ 2018 (1808.07837) 12 Particle propagation

Image credit: M25 Motorway, Carillon UK Transport The transport equation (hadrons)

• The transport equation for protons (cooling/momentum diffusion assumed negligible)

@n @ = [D(E,x) n]+ [b(E,r)n] [vn]+Q(E,x) S(E,x) @t r · r @E r·

SN rate

M82 in H⍺ (WIYN) and optical (HST) 14 Smith+ 2005 Secondary electrons

• Injection by the pp attenuation process

0 + pp ⇡ , ⇡ , ⇡ !

⇡ e +¯⌫ + ⌫ +¯⌫ ! e µ µ ⇡+ e+ + ⌫ +¯⌫ + ⌫ ! e µ µ

• Transport equation (electrons)

@n @ e = [D(E,x) n ]+ [b(E,r)n ] [vn ]+Q (E,x) S (E,x) @t r · r e @E e r· e e e

15 The transport equation (hadrons)

@n @ = [D(E,x) n]+ [b(E,r)n] [vn]+Q(E,x) S(E,x) @t r · r @E r·

• Approximate ISM as a sphere • Absorption depends on – density of CRs – density of ISM gas – interaction cross section (dominated by pp process) • CR injection as a BC (for now) – restate problem as individual linearly independent events (t’ since inj. event)

t0 2 n0 r0 n = @n 3/21exp@ 2 cdtˆ@pn⇡ nISM exp [4⇡D(E,r )t =] rD0(E,r) cnˆp⇡ nISM4D(E,r0)t0 @0 t 0 r2 @r ( Z @r ) ⇢  16 Cosmic ray distribution in ‘stationary’ ISM

21 10

1 22

10 eV

3 23 10

cm 24

· 10

erg 25 10 / V N d d

· 26 E 10 E d

27 10 1 0 1 2 10 10 10 10 r/kpc 17 Cosmic ray feedback

Image credit: National Bunsen Burner Day (March 31st), McGill University 2016 Timescales

• Estimate by considering condition for them to no longer be gravitationally bound – upper-limit (a very crude approximation à details later)

⌧ = ⌧ + ⌧

AAACGHicbVDLSgMxFM34rPU16tJNsAiCUGd8oBuh6MZlC/YBnWHIpGkbmnmQ3BHKMJ/hxl9x40IRt935N6btgLX1QODknHNJ7vFjwRVY1rextLyyurZe2Chubm3v7Jp7+w0VJZKyOo1EJFs+UUzwkNWBg2CtWDIS+II1/cH92G8+Mal4FD7CMGZuQHoh73JKQEueeeYASbzUkQGuZfgW/151MMOnM0KfEcg8s2SVrQnwIrFzUkI5qp45cjoRTQIWAhVEqbZtxeCmRAKngmVFJ1EsJnRAeqytaUgCptx0sliGj7XSwd1I6hMCnqizEykJlBoGvk4GBPpq3huL/3ntBLo3bsrDOAEW0ulD3URgiPC4JdzhklEQQ00IlVz/FdM+kYSC7rKoS7DnV14kjfOyfVG+ql2WKnd5HQV0iI7QCbLRNaqgB1RFdUTRM3pF7+jDeDHejE/jaxpdMvKZA/QHxugHx+afoA== Q mag heat

Time for region of gas to exceed T Magnetic containment time; vir due to CR heating required for CR effects to develop 1 ⌧mag SFR / 19 Inferred behavior of MACS1149-JD1

• Spectroscopic z=9.11 (t = 550 Myr) +0.8 1 SF 4.2 1.1 M yr R ⇡ • Two populations of stars – One from observed SF activity – Other from activity ~100 Myr earlier

• Earlier burst of Star-formation at z=15.4; t=260 Myr (Hashimoto+2018)

• Quenched fairly quickly – distinct inferred age of older stellar HST and ALMA image of MACS1149-JD1 (z=9.11) – NASA/ESA, Hashimoto+ 2018 population – SED, size of Balmer break

Can CRs account for the rapid 100 Myr quenching after initial burst? 20 Can CRs do the job? – half an answer… • Hashimoto+ 2018 star-formation burst models (intense, medium, slow). • Schober+ 2013 magnetic field growth, traces cosmic ray containment. • Consistent with CR mechanisms (or mechanical mechanisms) – Radiative heating timescales not consistent with rapid ‘quenching’ (need a delay, then fast action)

300 100

2 100 10 ⌧dyn 1 4 yr 30 10 /G i B /M

6 h 10 10 SF R

8 3 10

10 1 10 200 300 400 500 600 Owen+ 2019a (1901.01411) t/Myr 21 Why not other mechanisms? Owen+ 2019b (1905.00338)

500

400

Myr 300 / qui

t 200

But 100what about the detail…?

100 200 300 400 500 ⌧Q / Myr • Clear trend, not predominantly sudden/stochastic (i.e. not mechanical hypernovae, etc) – Progressive heating (e.g. by CRs) consistent here too • Dependence on only intrinsic (internal) parameters – Internal feedback not external trigger 22 A closer look…

Image credit: HST image of N90 Star forming region in SMC, NASA/ESA 2007 IC 5146 star-forming region in Cygnus

Herschel 250 micro-m (Arzoumanian+ 2011)

Adapted from Wang+2019

Dust polarization (of background Lines show orientation of magnetic field vector starlight)

Dense star-forming filaments

24 Evolution of magnetic fields in clouds

Initial collapse from ISM (drags hourglass field)

Collapses along field (pancake/filament)

Collapse injects turbulence, some fragmentation & magnetic support (messy small- scale magnetic field)

Diffusion until further fragmentation & collapse into clumps/cores/stars

Harvard-Smithsonian Center for Astrophysics (2006) 25 Multi-scale structure

ZONE 1 ZONE 3 ZONE 1 Dense clumps/cores

Incoming Incoming CRs from CRs from ISM ISM

Diffuse inter-clump region

ZONE 2

Owen+2020 (submitted)

26 ZONE 1 ZONE 3 ZONE 1 Dense clumps/cores

Incoming Incoming CRs from CRs from Cosmic ray propagation ISM ISM

Revisit the transport equation: Diffuse inter-clump region

ZONE 2 @n @ [D(E) n]+ [vn]+ [b(E,s)n]=Q(E,s) S(E,s)

AAADA3icbVJdaxQxFM2Mrbbr11afxJdbF8tW7TJTFQURSu2Cjy26bWEzLJlsZjc0kxmSTGEZAr70r/jigyK++id889+YmU5r2+2FwOHce25O7k2cC65NEPz1/BsLizdvLS23bt+5e+9+e+XBvs4KRdmAZiJThzHRTHDJBoYbwQ5zxUgaC3YQH32o8gfHTGmeyc9mlrMoJRPJE06JcdRoxXsEOFGEljgnynAiQNr/2FgAwABrsNGCOrAksSCA6TgzgAVLzHCn219vaAlY8cnURNCUP79OUOKUmGmclMfWgjxTnElq0SVLFwz1bdMD8Du8CnG3/wLO22lr1ysLVea8K57qnFD2rAx6mzS18B5gb161AZ/myFG7E/SCOmAehA3ooCZ2R+0/eJzRImXSUEG0HoZBbqKysk4Fsy1caOa8HJEJGzooScp0VNY7tPDUMWNIMuWONFCzFxUlSbWepbGrrDzqq7mKvC43LEzyNiq5zAvDJD29KCncbjOoPgSMuWLUiJkDhCruvAKdEjd/475Nyw0hvPrkebC/2Qtf9l7vvepsbTfjWEKP0RPURSF6g7bQR7SLBoh6X7yv3nfvh3/if/N/+r9OS32v0TxEl8L//Q/FKuke @t r· r r · @E

Depends on local-scale structure and strength of the magnetic field • Strength: • Direct (Zeeman splitting) • Indirect (DFC method via structure function AKA dispersion function) • Structure: • Via power spectrum (fluctuation analysis); quantifies CR ‘tangling’

1 1 D P (k)= [ 2(`)]

P (k) AAACJ3icbVDLSgNBEJz1GeMr6tHLYBDiJexGRS9KUBCPEY0K2SXMTnqTIbMPZnqFsOzfePFXvAgqokf/xEkM4qugoajqprvLT6TQaNtv1sTk1PTMbGGuOL+wuLRcWlm91HGqODR5LGN17TMNUkTQRIESrhMFLPQlXPn946F/dQNKizi6wEECXsi6kQgEZ2ikdumwUelv0QPqBorxzMmzWu6GDHucyewkdyUE2PoSzvN2reKClFuuEt0eerRdKttVewT6lzhjUiZjNNqlR7cT8zSECLlkWrccO0EvYwoFl5AX3VRDwnifdaFlaMRC0F42+jOnm0bp0CBWpiKkI/X7RMZCrQehbzqHJ+vf3lD8z2ulGOx7mYiSFCHin4uCVFKM6TA02hEKOMqBIYwrYW6lvMdMYmiiLZoQnN8v/yWXtaqzXd092ynXj8ZxFMg62SAV4pA9UienpEGahJNbck+eyLN1Zz1YL9brZ+uENZ5ZIz9gvX8AcmGluw== AAACAXicbVDLSgMxFM34rPU16kZwEyxC3ZQZH+iyqAuXFewDOqVk0kwbmklCkhHKMG78FTcuFHHrX7jzb0zbWWjrgcDhnHu5OSeUjGrjed/OwuLS8spqYa24vrG5te3u7Da0SBQmdSyYUK0QacIoJ3VDDSMtqQiKQ0aa4fB67DcfiNJU8HszkqQToz6nEcXIWKnr7t/AQCohjYBBpBBO/SytlYfHWdcteRVvAjhP/JyUQI5a1/0KegInMeEGM6R12/ek6aRIGYoZyYpBoolEeIj6pG0pRzHRnXSSIINHVunBSCj7uIET9fdGimKtR3FoJ2NkBnrWG4v/ee3ERJedlHKZGMLx9FCUMGjzjuuAPaoINmxkCcKK2r9CPEC2CGNLK9oS/NnI86RxUvFPK+d3Z6XqVV5HARyAQ1AGPrgAVXALaqAOMHgEz+AVvDlPzovz7nxMRxecfGcP/IHz+QOCOZZL / 2F S Wiener-Khinchin theorem 27 Dispersion function

`/arcsec 0 1000 2000 3000 4000 5000 6000 7000 50 • Quantify polarization angle (B field) Rc band i band fluctuations 40 H- band K- band • Dispersion function of all possible 30 )

pairs of PAs ` ( 2 • Indicates structure over length- S 20 scales (separations) 10

Npair 0 1 n 0 5 10 15 20 25 n(`)= ['i(x + `) 'i(x)] S Npair `/pc

AAACZnicbVHNSxwxHM2MrR/bqqtSeugluBRWxGXGD/QiSHvpqVh0VdgZh99kM24wyQxJRlxC/klvnr30z2h2dg9d9UHg8d5LfslLXnGmTRQ9B+HCh4+LS8srrU+fV9fW2xubV7qsFaF9UvJS3eSgKWeS9g0znN5UioLIOb3O739O/OsHqjQr5aUZVzQVcCdZwQgYL2VtlwgwIwLcXrhM4m5COd/Bpy3skRQKiI2d/Z3ZRAlcAVPO4amna5FZhk9x7G7nA40/SB5AVSPmM677uNscuzen7aS3fn4n6kUN8FsSz0gHzXCetZ+SYUlqQaUhHLQexFFlUgvKMMKpayW1phWQe7ijA08lCKpT29Tk8HevDHFRKr+kwY36/w4LQuuxyH1yUop+7U3E97xBbYqT1DJZ1YZKMh1U1BybEk86x0OmKDF87AkQxfxdMRmBL9f4n2n5EuLXT35LrvZ78UHv6M9h5+zHrI5l9A1toy6K0TE6Q7/QOeojgl6ClWAz2Ar+hmvhl/DrNBoGsz1baA4h/ge8oLVH i=1 X n=2 Owen+2020 (submitted)

28 Heating and ionization

25 10 Total 14 10 LECRs Alfv´enicCR heating 1 CR ionisation heating

15

10 s 26 10 3 1 16 s 10 / H

⇣ 17 10

erg cm 27 10 /

18 H 10 HECRs 19 10 28 10 0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 s/pc s/pc

Owen+2020 (submitted) Outside Cloud center

29 Temperature

• Milky Way à no substantial heating in the inner parts of the cloud

102

UCR,MW 30 UCR,MW ⇥ 3 10 U 50 U 10 ⇥ CR,MW ⇥ CR,MW Only CR heating operates /K CENTRE /K 102 eq eq T 1 T

10 LOUD C NGC 253 M82 101 Arp 220

0.5 1.0 1.5 2.0 2.5 0.5 1.0 1.5 2.0 2.5 s/pc s/pc • Starburst galaxies: CRs much more important • Increase Jeans mass of cloud by ~1 order of magnitude (Arp 220) • Implications: – larger ISM clumps – more bursty star-formation – quenching (longer to accumulate sufficient mass) 30 Signatures

Image credit: Gamma-ray Sky with Fermi - NASA/DOE/Fermi-LAT Collaboration Gamma-ray emission from starburst galaxies

0 Cosmic ray interactions

AAACAnicbVBNS8NAEN34WetX1JN4WSyCp5JURY9FLx4r2A9oYplsN+nS3STsbpRSihf/ihcPinj1V3jz37htc9DWBwOP92aYmReknCntON/WwuLS8spqYa24vrG5tW3v7DZUkklC6yThiWwFoChnMa1rpjltpZKCCDhtBv2rsd+8p1KxJL7Vg5T6AqKYhYyANlLH3vdSdudgT7Kop0HK5AFXvAiEgI5dcsrOBHieuDkpoRy1jv3ldROSCRprwkGptuuk2h+C1IxwOip6maIpkD5EtG1oDIIqfzh5YYSPjNLFYSJNxRpP1N8TQxBKDURgOgXonpr1xuJ/XjvT4YU/ZHGaaRqT6aIw41gneJwH7jJJieYDQ4BIZm7FpAcSiDapFU0I7uzL86RRKbsn5bOb01L1Mo+jgA7QITpGLjpHVXSNaqiOCHpEz+gVvVlP1ov1bn1MWxesfGYP/YH1+QOLqJbl 2 with matter (pp) ! p + p + ⇡0 p + + p + p + ⇡+ 8 ! 8 p + p > <>p + n + ⇡+ + pion multiplicities ! > at higher energies > + < ++ >n + p + ⇡ n + : + ! (n + n + 2(⇡ ) > > > : Pions decay to photons, muons, Neutron and photon neutrinos, electrons, positrons, interactions produce pions antineutrinos n + ⇡’s ! ⇡ ,µ,e,⌫ ... ! 11

32 Signatures: spatial anisotropies Imprints signature at preferred (peak) scale

Planck 2018

Redshift (cosmology) dependent 33 Signatures: spatial anisotropies

Different populations peak at different

à Leaves signatures on different scales

Madau & Dickinson 2014 Silverman 2008; Jacobsen 2015 34 Future work and considerations

• Modelling intrinsic emission from populations – SB intrinsic emission can be parametrized (density, SFR, dust fraction, clumpiness…) • Probable limitations from EBL attenuation/reprocessing – How far in z will populations be detectable with CTA? – Could IGM B fields smear-out signal?

• Data: Fermi-LAT; CTA KSP 8 ~25% of the EG sky over 3 years

35 Summary

• Cosmic rays are presumably abundant in high redshift starbursts (high supernova event rates)

• Can deposit energy into ISM with implications for star-formation and quenching

• May be able to account for the “bursty” star-formation histories in high- z starburst/post-starbursts

• Gamma-ray emission is associated with cosmic ray interactions in starburst galaxies

– May leave signatures in extragalactic diffuse gamma-ray background (anisotropies)

36