Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-111 Manuscript under review for journal Atmos. Meas. Tech. Discussion started: 23 April 2018 c Author(s) 2018. CC BY 4.0 License. Field evaluation of low-cost particulate matter sensors in high and low concentration environments Tongshu Zheng1, Michael H. Bergin1, Karoline K. Johnson1, Sachchida N. Tripathi2, Shilpa Shirodkar2, Matthew S. Landis3, Ronak Sutaria4, David E. Carlson1,5 5 1Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA 2Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India 3US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC 27711, USA 4Center for Urban Science and Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India 5Department of Biostatistics and Bioinformatics, Duke University, Durham, NC 27708, USA 10 Correspondence to: Tongshu Zheng (
[email protected]) Abstract. Low-cost particulate matter (PM) sensors are promising tools for supplementing existing air quality monitoring networks. However, the performance of the new generation of low-cost PM sensors under field conditions is not well understood. In this study, we characterized the performance capabilities of a new low-cost PM sensor model (Plantower model PMS3003) for measuring PM2.5 at 1 min, 1 h, 6 h, 12 h and 24 h integration times. We tested the PMS3003s in both 15 low concentration suburban regions (Durham and Research Triangle Park (RTP), NC, US) with 1 h PM2.5 (mean ± Std.Dev) -3 -3 of 9 ± 9 µg m and 10 ± 3 µg m respectively, and a high concentration urban location (Kanpur, India) with 1 h PM2.5 of 36 ± 17 µg m-3 and 116 ± 57 µg m-3 during monsoon and post-monsoon seasons, respectively.