Western Oregon University Digital Commons@WOU

Academic Excellence Showcase Proceedings Student Scholarship

2018-06-01 : the Invisible World of Crime Scenes Jessica Alexander Western Oregon University, [email protected]

Follow this and additional works at: https://digitalcommons.wou.edu/aes Part of the and Technology Commons

Recommended Citation Alexander, Jessica, "Luminescence: Lighting the Invisible World of Crime Scenes" (2018). Academic Excellence Showcase Proceedings. 96. https://digitalcommons.wou.edu/aes/96

This Presentation is brought to you for free and open access by the Student Scholarship at Digital Commons@WOU. It has been accepted for inclusion in Academic Excellence Showcase Proceedings by an authorized administrator of Digital Commons@WOU. For more information, please contact [email protected], [email protected], [email protected]. LUMINESCENCE: LIGHTING THE INVISIBLE WORLD OF CRIME SCENES

By Jessica Alexander

[1] Overview

• What is luminescence?

• Luminescence in forensics

• The different types of luminescence

• Evidence found using luminescence What is Luminescence?

• Electromagnetic Spectrum

• Emission of electromagnetic

• Absorbing energy and re-emitting the energy

• Energy Sources

[2] Luminescence in Forensics

• Types of evidence at crime scenes

• Emission used to show hidden evidence

• Find and identify biological fluids

• Allow for further testing, DNA analysis

[3] The Different Types of Luminescence

• Alternative Sources

[14]

[15]

[16] Photoluminescence

and

• Absorption of

• Energy Well Diagram-Jablonski Diagram Jablonski Diagram

[4] Fluorescence vs. Phosphorescence

• Fluorescence

• Short-lived (<10-5 s)

• Emission from singlet state

• Instantaneous emission

• Phosphorescence

• Longer lifetime (seconds-minutes)

• Emission from triplet state

• Delayed emission Alternative Light Sources

• Simple and non-destructive

• First to be used

Barrier Filters

• Effects on DNA

[5] Chemiluminescence

Amide

[4] Types of Latent Evidence

• Fingerprints

• Semen

• Saliva

• Urine Fingerprints

• Fluorescent powders

Fingerprints – Fluorescent Powders

• Natural or Synthetic Organic Derivatives

• Normal or Magnetic

• UV Light and Colored Filters

• Orange Powder + Orange Filter = Orange Print

• Advantages

• Disadvantages

[6]

[7] Fingerprints - Lasers

• High Sensitivity

• Argon

• Lens used lens • Filters

• Photographs

• Advantages

• Disadvantages

[8] Fingerprints - Lasers

[9] [9] [9] 230 nm wavelength 280 nm wavelength 300 nm wavelength Blood

• Alternative Light Sources

and BlueStar Blood – Alternative Light Sources

• Dry Blood = No Fluorescent Effect

• High absorption in broad region of light

• 300 nm to 900nm

• Strongest absorption band (395-435 nm) [11]

• Appears as a dark spot

• Advantages

• Disadvantages

[10][10] Blood - Luminol

• Complex multi-step process

• Dependent on many things Blood - Luminol Blood - Luminol

• Advantages

• Disadvantages

[1] Blood - BlueStar

• Same reaction as luminol

• Luminol vs. BlueStar

• Advantages

• Disadvantages

[12]

[13] Bodily Fluids

• Semen, Urine and Saliva

• Alternative Light Sources Semen – Alternative Light Sources

• Dry Semen = Strong Photoluminescence Substance

• Emission Spectrum: 400-700 nm

• Excitation Spectrum: 300-480 nm

• Violet Light + Yellow Filter = Yellow Stain

• Advantages [11]

• Disadvantages

[10] Saliva – Alternative Light Sources

• Colorless, difficult to detect

• Optimal Contrast on white cotton

• Violet Light + Orange Filter = White Thin Edged Stain

• Advantages

[11] • Disadvantages

[10] Urine – Alternative Light Sources

• Hard to see due to nature of urine

• Diluted on fabric

• Fluorescent color varies

• Violet Light + Orange Filter = White Stain [11]

• Advantages

• Disadvantages

[10] References

• Akiba, N.; Kuroki, K.; Kurosawa, K.; Tsuchiya, K. Visualization of Aged Fingerprints with an Laser. J. Forensic Sci. 2018, 63 (2), 556–562. • Akiba, N.; Saitoh, N.; Kuroki, K. Fluorescence Spectra and Images of Latent Fingerprints Excited with a Tunable Laser in the Ultraviolet Region. J. Forensic Sci. 2007, 52 (5), 1103–1106. • Barni, F.; Lewis, S.; Berti, A.; Miskelly, G.; Lago, G. Forensic Application of the Luminol Reaction as a Presumptive Test for Latent Blood Detection. Talanta. 2007, 72, 896-913. • Creer, K. Operational Experience in the Detection and Photography of Latent Fingerprints by Argon Ion Laser. Forensic Sci. Int. 1983, 23 (2-3), 149–160. • Creer, K. Some Applications of an Argon Ion Laser in Forensic Science. Forensic Sci. Int. 1982, 20 (2), 179–190. • Lee, W.; Khoo, B. Forensic Light Sources for Detection of Biological Evidences in Crime Scene Investigations: A Review. Malaysian Journal of Forensic Sciences. 2010, Vol 1, 17-26. • Menzel, E. Recent Advances in Photoluminescence Detection of Fingerprints. Sci. World J. 2001, 1, 498-509. • Quickenden, T.; Cooper, P. Increasing the Specificity of the Forensic Luminol Test for Blood. Luminescence 2001, 16, 251-253. • Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis, 6th ed.; Cengage Learning: Australia, 2007. • Su, J. Seminal Stain Fluorescence Using Three Alternative Light Source-Barrier Filter Combinations on Six Different of Cotton Fabrics. M.S. Thesis, Boston University School of Medicine, 2015. • Valeur, B.; Berberan-Santos, M. Molecular Fluorescence; 2nd ed.; Wiley-VCH: Weinheim, 2012. • Virkler, K.; Lednev, I. Analysis of Body Fluids for Forensic Purposes: From Laboratory Testing to Non-Destructive Rapid Confirmatory Identification at a Crime Scene. Forensic Sci. Int. 2009, 188, 1-17. • Wilson, R.; Akhavan-Tafti, H.; DeSilva, R.; Schaap, A. Comparison Between Acridan Ester, Luminol, and Ruthenium Chelate Electrochemiluminescence. Electroanalysis. 2001, 13, 1083-1092. • Webb, J.; Creamer, J.; Quickenden, T. A Comparison of the Presumptive Luminol Test for Blood with Four Non-Chemiluminescent Forensic Techniques. Luminescence. 2006, 21, 214-220. Picture References

1. www.dudeiwantthat.com/gear/novelty/luminol-spray.asp 2. http://chemistry.umeche.maine.edu/CHY251/Ch13-Overhead8.html 3. http://www.cbc.ca/news2/pointofview/2010/05/crime-genre-whats-your-favourite-tv-show-movie-or-book.html 4. Skoog, D. A.; Holler, F. J.; Crouch, S. R. Principles of Instrumental Analysis, 6th ed.; Cengage Learning: Australia, 2007. 5. http://www.sirchie.com/blog/crime-scenes-and-alternate-light-sources/#.WwCA0oplCfA 6. www.forensicsciencesimplified.org/prints/how.html 7. https://www.shopevident.com/category/latent-fingerprints-1/red-fluorescent-magnetic-fingerprint-powder 8. http://bes.deakin.edu.au/bcs_courses/forensic/Chemical%20Detective/index.htm 9. Akiba, N.; Saitoh, N.; Kuroki, K. Journal of Forensic Sciences 2007, 52 (5), 1103–1106. 10. Miranda, G. E.; Prado, F. B.; Delwing, F.; Daruge, E. Analysis of the Fluorescence of Body Fluids on Different Surfaces and Times. Sci. Justice. 2014, 54 (6), 427–431. 11. http://www.fosterfreeman.com/index.php/forensic-light-sources/1-crime-liter-82w 12. www.bluestar-forensic.com/ 13. https://atlasofscience.org/from-crime-scene-to-crime-lab-potential-interactions-between-blood-detection-methods/ 14. https://www.sigmaaldrich.com/technical-documents/articles/materials-science/nanomaterials/quantum-dots.html 15. http://www.sirchie.com/forensics/alternate-light-sources/bluemaxx-systems.html 16. http://www.glowsource.com/aqua-6-inch-glow-sticks-25pk.html THANK YOU!

Questions?

[1]