IP Multicasting Over DVB-T/H and Embms‛ Retrieved 2013-02-14;

Total Page:16

File Type:pdf, Size:1020Kb

IP Multicasting Over DVB-T/H and Embms‛ Retrieved 2013-02-14; Master’s thesis Two years The Department of Information Technology and Media (ITM) Computer Engineering MA, Final project, 30 credit points IP Multicasting over DVB-T/T2/H and eMBMS using PARPS Effect of the number of transmitters Author: Ranjith Reddy Voladri Email: [email protected] Examiner: Professor Tingting Zhang, [email protected] Supervisor: Magnus Eriksson, [email protected] Scope: 15910 words inclusive of appendices Date: 2013-10-11 Abstract With the advancement in the current wireless technology standards such as terrestrial digital video broadcasting systems (DVB-T, DVB-T2, and DVB-H) and the massive usage of the Internet over mobile devices, streaming of television channels in smart phones has become a neces- sary advancement for mobile users. As, UMTS dominating the entire mobile market globally and with the evolution of LTE, several mobile operators are working on an MBMS framework which will help to launch mobile TV services on respective operators. This paper deals with terrestrial and mobile TV with IP multicasting and broadcasting and is aimed to improve system spectral efficiency. With the help of IP multicasting, the base station can be able to provide with significantly less spectrum by saving it from the channels which the user is not view- ing currently. This case is analysed from several sets, called schemes of resource plan sets. The transmitter scheduling is dealt with by means of a Packet and Resource Plan Scheduling (PARPS) algorithm, and the simulated results are plotted in Matlab which assists in analysing the efficiency in the spectrum management and the coverage probability for the number of transmitters used for each scheme. The schemes are simulated in Matlab for different number of transmitters (2-7) in both the static and random model. The SFN schemes are offering greater coverage probability than MFN schemes, in all cases. Multicasting over Continuous Transmission Dynamic Single Frequency Network (CT- DSFN) offers a 1342% and 582% gain in Multi-user System Spectral Efficiency (MSSE) for 7 transmitters, from Broadcasting over MFN and Broadcasting over SFN respectively. For 7 transmitters, Multicasting over CT-DSFN offers a 1213% and 428% gain in System Spectral Effi- ciency (SSE) from Broadcasting over MFN and Broadcasting over SFN respectively. Keywords: Unicasting, Broadcasting, Multicasting, DVB-T/T2, DVB-H, eMBMS, SFN, MFN, DSFN, PARPS, SSE, MSSE, PARPS, LTE, Coverage probability, Zip-f law, Radio resource management. ii Acknowledgement I owe my deepest gratitude to my thesis supervisor Mr Magnus Eriks- son. I have learned a great deal since I became Mr Magnus’s student. I feel encouraged and motivated every time I attend his meeting. I would like to take this opportunity to express my sincere gratitude to Prof. Tingting Zhang for her support during the period of my degree programme. Also I like to thank all the Professors, Lecturers, my classmates and friends for their help and support during my degree programme. Last but not least, I would like to thank my beloved family: my parents and my younger brother for their encouragement and financial support throughout my life. Without their support, it would have been impossi- ble for me to finish my degree. iii IP multicasting over DVB-T/T2/H & eMBMS with PARPS Ranjith Reddy Voladri 2013-10-11 Table of Contents Abstract ......................................................................................................... ii Acknowledgement ...................................................................................... iii List of Figures .............................................................................................. vi Terminology / Notation ...........................................................................viii Acronyms …………………………………………………………………viii 1 Introduction ........................................................................................ 1 1.1 Back ground and problem motivation .................................. 1 1.2 Overall aim ............................................................................... 2 1.3 Scope.......................................................................................... 2 1.4 Concrete and verifiable goals ................................................. 2 1.5 Outline ...................................................................................... 3 1.6 Contributions ........................................................................... 3 2 Theory .................................................................................................. 4 2.1 Radio Resource Management ................................................. 4 2.1.1 Static RRM ..................................................................... 5 2.1.1.1 Fixed Channel Allocation .............................................. 5 2.1.1.2 Static Handover .............................................................. 5 2.1.2 Dynamic RRM ............................................................... 5 2.1.2.1 Soft Handover ................................................................ 6 2.1.2.2 Dynamic Channel Allocation ........................................ 7 2.1.2.3 Link Adaptation ............................................................. 7 2.1.2.4 Transmitter macro-diversity ......................................... 8 2.2 MFN ........................................................................................... 8 2.3 SFN ............................................................................................ 9 2.4 DSFN ....................................................................................... 11 2.5 DVB-T and DVB-T2 .............................................................. 12 2.5.1 DVB-T2 ......................................................................... 14 2.6 DVB-H ..................................................................................... 15 2.7 LTE ........................................................................................... 18 2.8 eMBMS ................................................................................... 20 2.9 PARPS ..................................................................................... 22 3 Methodology ..................................................................................... 24 3.1 Coverage Probability ............................................................. 24 3.2 Spectrum Efficiency .............................................................. 24 iv IP multicasting over DVB-T/T2/H & eMBMS with PARPS Ranjith Reddy Voladri 2013-10-11 3.2.1 Channel utilization ..................................................... 24 3.2.2 Multiuser channel utilization .................................... 25 3.3 Computational Complexity .................................................. 25 3.3.1 Bell Number Series ..................................................... 25 3.4 Simple Use-case ..................................................................... 31 3.4.1 Static Model ................................................................. 31 3.4.2 Scheme Resolution with PARPS algorithm ............. 35 4 Simulation Model ............................................................................ 43 4.1 Static Model ............................................................................ 43 4.2 Random Model ....................................................................... 45 5 Results ................................................................................................ 48 5.1 Coverage probability ............................................................. 48 5.2 Channel utilization ................................................................ 52 5.3 Multiuser channel utilization .............................................. 54 5.4 System Spectral Efficiency ................................................... 56 5.5 Multiuser System Spectral Efficiency ................................. 57 5.6 Comparison Summary .......................................................... 59 6 Conclusions ....................................................................................... 63 Future work ................................................................................................. 66 References .................................................................................................... 67 Appendix ..................................................................................................... 69 Generating possible resource plans ......................................................... 69 Scheme II: Broadcasting over MFN .......................................................... 71 v IP multicasting over DVB-T/T2/H & eMBMS with PARPS Ranjith Reddy Voladri 2013-10-11 List of Figures Fig 2.1 Soft Handover[15] 6 Fig 2.2 Link adaptation [10] 7 Fig 2.3 Multi Frequency Network [9] 9 Fig 2.4 Single Frequency Network [9] 9 Fig 2.5 Dynamic Singe Frequency Network[8] 11 Fig 2.6 Block diagram of a DVB-T encoder [6] 13 Fig 2.7 Scheme of DVB-T transmission System[6] 14 Fig 2.8 Conceptual structure of a DVB-H receiver [7] 15 Fig 2.9 A conceptual description of using a DVB-H system (sharing a MUX with MPEG-2 services) [7] 17 Fig 2.10 Protocol stack for DVB-H [7] 18 Fig 2.11 Network evolution from GSM to LTE [1] 19 Fig 2.12 eMBMS Logical Architecture [2] 20 Fig 2.13 eMBMS Service Area [2] 21 Fig 2.14 Simple PARPS example [4] 22 Fig 3.1 Possible resource plans for CT-DSFN with N_tx=2 26 Fig 3.2 Possible resource plans for
Recommended publications
  • OFDM System for High Data Rate and High Mobility Umesha G B Dr
    Special Issue - 2018 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 NCESC - 2018 Conference Proceedings OFDM System for High Data Rate and High Mobility Umesha G B Dr. M N Shanmukha Swamy Research Scholar Professor & HOD Department of ECE, SJCE Department of ECE, SJCE Mysore, Karnataka Mysore, Karnataka. Abstract---In recent years, there has been considerable second reason to study the downlink. Generally, the growth in interest in wireless access to wide area data portable or handheld devices envisioned (e.g., PDAs, networks at high data rates. This growth has been fuelled by notebook PCs or handsets), will be battery powered. the simultaneous development of the high-speed wired data Increasing uplink data rates by orders of magnitude networks (e.g., the Internet), wide-spread availability of requires increases in portable transmit power to meet the powerful mobile computing devices, rapidly dropping prices for increasingly sophisticated electronic devices, plus the link budget, a major challenge with foreseeable battery global deployment of wireless voice systems. High-mobility technology [13, 14]. However, readily applicable downlink wireless data access at near-LAN rates is likely to be an techniques can attain the high peak data rates desired. attractive option. The harsh cellular radio environment creates significant challenges when trying to provide access at 2. OFDM BACKGROUND high data rates, especially if high-mobility and wide-area availability are expected even more so when considering the Four major impairments to the operation of wireless constraints placed on the system design by terminal size and communications networks are, delay spread, noise, power constraints.
    [Show full text]
  • IP Multicast Routing Technology Overview
    IP Multicast Routing Technology Overview • Information About IP Multicast Technology, on page 1 • Additional References for IP Multicast, on page 15 Information About IP Multicast Technology This section provides information about IP multicast technology. About IP Multicast Controlling the transmission rate to a multicast group is not supported. At one end of the IP communication spectrum is IP unicast, where a source IP host sends packets to a specific destination IP host. In IP unicast, the destination address in the IP packet is the address of a single, unique host in the IP network. These IP packets are forwarded across the network from the source to the destination host by devices. At each point on the path between source and destination, a device uses a unicast routing table to make unicast forwarding decisions, based on the IP destination address in the packet. At the other end of the IP communication spectrum is an IP broadcast, where a source host sends packets to all hosts on a network segment. The destination address of an IP broadcast packet has the host portion of the destination IP address set to all ones and the network portion set to the address of the subnet. IP hosts, including devices, understand that packets, which contain an IP broadcast address as the destination address, are addressed to all IP hosts on the subnet. Unless specifically configured otherwise, devices do not forward IP broadcast packets, so IP broadcast communication is normally limited to a local subnet. IP multicasting falls between IP unicast and IP broadcast communication. IP multicast communication enables a host to send IP packets to a group of hosts anywhere within the IP network.
    [Show full text]
  • WAN-LAN PIM Multicast Routing and LAN IGMP FEATURE OVERVIEW and CONFIGURATION GUIDE
    Technical Guide WAN-LAN PIM Multicast Routing and LAN IGMP FEATURE OVERVIEW AND CONFIGURATION GUIDE Introduction This guide describes WAN-LAN PIM Multicast Routing and IGMP on the LAN and how to configure WAN-LAN PIM multicast routing and LAN IGMP snooping. The AlliedTelesis Next Generation Firewalls (NGFWs) can perform routing of IPv4 and IPv6 multicast, using PIM-SM and PIM-DM. Also, switching interfaces of the NGFWs are IGMP aware, and will only forward multicast steams to these switch ports that have received reports. IGMP snooping allows a device to only forward multicast streams to the links on which they have been requested. PIM Sparse mode requires specific designated routers to receive notification of all streams destined to specific ranges of multicast addresses. When a router needs to get hold of a given group, it sends a request to the designated Rendezvous Point for that group. If there is a source in the network that is transmitting a stream to this group, then the Rendezvous Point will be receiving it, and will forward it to the requesting router. C613-22042-00 REV A alliedtelesis.com x Products and software version that apply to this guide Contents Introduction.............................................................................................................................................................................1 Products and software version that apply to this guide .......................................................................2 Configuring WAN-LAN PIM Multicast Routing and LAN IGMP Snooping........................................3
    [Show full text]
  • Seamless Handover for Unidirectional Broadcast Access Networks in Mobile Ipv6
    46 JOURNAL OF COMMUNICATIONS, VOL. 2, NO. 6, NOVEMBER 2007 Seamless Handover For Unidirectional Broadcast Access Networks In Mobile IPv6 Ilka Miloucheva, Jens Mödeker, Karl Jonas Fraunhofer Institute, Schloss Birlinghoven, Sankt Augustin, Germany Email: {ilka.miloucheva, jens.moedeker, karl.jonas}@fokus.fraunhofer.de Dirk Hetzer T-Systems, Goslarer Ufer, Berlin, Germany Email: [email protected] Abstract-- Mechanisms and protocol interactions for - Intelligent access network selection for mobile nodes seamless handover of mobile multicast/broadcast services in converged heterogeneous infrastructures. using unidirectional access networks in heterogeneous Recent standardization efforts focused on multimedia Mobile IP infrastructures are discussed and proposed. QoS services and applications, such as IPDatacast [2] and based applications, such as content delivery, mobile TV, DIMS [3], are aimed to support convergence of carousel and reliable downloads, requiring interaction channel, are considered, as well as recent standardization unidirectional broadcast and Mobile IP services. efforts for converged broadcast and mobile IP Different architectures have been proposed for cost infrastructures. The proposed mechanisms are aimed to efficient support of content delivery, mobile TV and other support handover of interactive mobile services using interactive mobile multicast applications using broadcast unidirectional broadcast media (DVB-H) combined with media. bidirectional mobile access technologies (UMTS, WLAN, Examples are hybrid broadcast
    [Show full text]
  • A Comparison Between Synchronous CDMA and Orthogonal Frequency Division Multiplexing (OFDM) for Fixed Broadband Wireless Access
    A Comparison Between Synchronous CDMA and Orthogonal Frequency Division Multiplexing (OFDM) for Fixed Broadband Wireless Access Shital Ratilal Chheda Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Master of Science in Electrical Engineering Charles W. Bostian, Chair Ira Jacobs Dennis G. Sweeney April 15, 2002 Blacksburg, Virginia Keywords: CDMA, OFDM, synchronous, broadband, wireless, 3G, Non-Line-of- Sight (NLOS), orthogonal, VOFDM, SCDMA Copyright 2002, Shital Ratilal Chheda A Comparison Between Synchronous CDMA and Orthogonal Frequency Division Multiplexing (OFDM) for Fixed Broadband Wireless Access Shital Ratilal Chheda (ABSTRACT) The growth of broadband Internet access has paved the way for the development of many new technologies. As the cost of implementing broadband access soars, the best alternative will be to use fixed wireless for these services. This thesis addresses the possibility of 3rd Generation (3G) mobile cellular wireless systems as the basis for fixed broadband wireless service. Two of the 3G technologies aimed at providing fixed broadband wireless access are Time Division Synchronous Code Division Multiple Access (TD-SCDMA) and Orthogonal Frequency Division Multiplexing (OFDM). This thesis aims to provide a preliminary study on using TD-SCDMA and OFDM for broadband wireless systems. Currently, there is not enough theory and information to establish the feasibility of using either of these technologies for broadband wireless access. First, the basic features and background on synchronous CDMA and OFDM are presented for the reader to better understand these technologies. Then, an example TD-SCDMA system is described, and some analytical and experimental results are presented.
    [Show full text]
  • Introduction to IP Multicast Routing
    Introduction to IP Multicast Routing by Chuck Semeria and Tom Maufer Abstract The first part of this paper describes the benefits of multicasting, the Multicast Backbone (MBONE), Class D addressing, and the operation of the Internet Group Management Protocol (IGMP). The second section explores a number of different algorithms that may potentially be employed by multicast routing protocols: - Flooding - Spanning Trees - Reverse Path Broadcasting (RPB) - Truncated Reverse Path Broadcasting (TRPB) - Reverse Path Multicasting (RPM) - Core-Based Trees The third part contains the main body of the paper. It describes how the previous algorithms are implemented in multicast routing protocols available today. - Distance Vector Multicast Routing Protocol (DVMRP) - Multicast OSPF (MOSPF) - Protocol-Independent Multicast (PIM) Introduction There are three fundamental types of IPv4 addresses: unicast, broadcast, and multicast. A unicast address is designed to transmit a packet to a single destination. A broadcast address is used to send a datagram to an entire subnetwork. A multicast address is designed to enable the delivery of datagrams to a set of hosts that have been configured as members of a multicast group in various scattered subnetworks. Multicasting is not connection oriented. A multicast datagram is delivered to destination group members with the same “best-effort” reliability as a standard unicast IP datagram. This means that a multicast datagram is not guaranteed to reach all members of the group, or arrive in the same order relative to the transmission of other packets. The only difference between a multicast IP packet and a unicast IP packet is the presence of a “group address” in the Destination Address field of the IP header.
    [Show full text]
  • Effective Radio Resource Management for Multimedia Broadcast/Multicast Services in UMTS Networks
    Hindawi Publishing Corporation EURASIP Journal on Wireless Communications and Networking Volume 2006, Article ID 70903, Pages 1–12 DOI 10.1155/WCN/2006/70903 Effective Radio Resource Management for Multimedia Broadcast/Multicast Services in UMTS Networks Nuno Souto,1, 2 Armando Soares,2 Patricia Eusebio,´ 2 Americo´ Correia,1, 2 and Joao˜ C. Silva1 1 Instituto de Telecomunicac¸oes,˜ Avenue Rovisco Pais 1, 1049-001 Lisboa, Portugal 2 Associac¸ao˜ para o Desenvolvimento das Telecomunicac¸oes˜ e T´ecnicas de Informatica,´ Avenue das Forc¸as Armadas, Edif´ıcio ISCTE, 1600-082 Lisboa, Portugal Received 29 September 2005; Revised 3 February 2006; Accepted 26 May 2006 Broadcast and multicast offer a significant improvement of spectrum utilization, and become particularly important where in- formation channels are shared among several users. Mobile cellular environments are expected to evolve with the technological approaches necessary to facilitate the deployment of multimedia services, such as streaming, file download, and carousel services. The perspective that video streaming in wireless networks services is an attractive service to end-users has spurred the research in this area. To provide for a video delivery platform in UMTS, the third generation partnership project (3GPP) addressed this problem with the introduction of the multimedia broadcast and multicast services (MBMS) in 3GPP Release 6. In this document we analyse several effective radio resource management techniques to provide MBMS, namely, use of nonuniform QAM constel- lations, multicode, and macrodiversity to guarantee the optimal distribution of QoS depending on the location of mobiles. Copyright © 2006 Nuno Souto et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • IP Multicast
    Data Communication & Networks G22.2262-001 Session 10 - Main Theme IP Multicast Dr. Jean-Claude Franchitti New York University Computer Science Department Courant Institute of Mathematical Sciences 1 Agenda Introduction to Multicast Multicast Addresses IP Multicast Reliable Multicast Pragmatic General Multicast (PGM) Reliable Multicast Protocol (RMP) Conclusion 2 Part I Introduction to Multicast 3 Cast Definitions Unicast - send to one destination (198.122.15.20) General Broadcast - send to EVERY local node (255.255.255.255) Directed Broadcast - send to subset of nodes on LAN (198.122.15.255) Multicast - send to every member of a Group of “interested” nodes (Class D address). RFC 1112 (an easy read!) 4 Why Multicast, Why Not Unicast? Unicast: Many applications require same message sent to many nodes (10, 100, 1000, n) Same message transits network n times. n messages requires n*(CPU time) as 1 message Need to deliver “timely” information. Message arrives at node n >> node 1 5 Why Multicast, Why Not Broadcast? Broadcast: Send a copy to every machine on the net Simple, but inefficient All nodes “must” process the packet even if they don’t care Wastes more CPU cycles of slower machines (“broadcast radiation”) General broadcast cannot be routed Directed broadcast is limited in scope (to machines on same sub-net or same domain) 6 Multicast Applications News/sports/stock/weather updates Software distribution Video-conferencing, shared whiteboards Distributed interactive gaming or simulations Email distribution lists Database replication 7 IP Multicast - Concepts Message sent to multicast “group” of receivers Senders need not be group members Each group has a “group address” Groups can have any size End-stations (receivers) can join/leave at will Data Packets are UDP (uh oh!) 8 IP Multicast Benefits Distribution tree for delivery/distribution of packets (i.e., scope extends beyond LAN) Tree is built by multicast routing protocols.
    [Show full text]
  • Diversity Diversity Macrodiversity Microdiversity
    Ch13. Diversity Instructor: • Mohammed Taha O. El Astal LOGO 13.1 Introduction AWGN channels Rayleigh Fading In AWGN, it may that a 10-dB SNR leads to BERs on the order of 10−4. but in fading channels, we need an SNR on the order of 40 dB in order to achieve a 10−4 BER, which is clearly unpractical. CONT. deep fading (very low SNR) The reason ??? is the fading of the channel; since the fading cause to have an attenuation being large, and thus of the instantaneous SNR being low, so the BER be high. CONT. The Solution!!!! Make sure that the SNR at Rx. has a smaller probability of being low. =make sure that the signal has a smaller probability to have a large attenuation 13.1.1 Principle of Diversity The principle of diversity is to ensure that the same information reaches the receiver (RX) on statistically independent channels. Example: SNR BER-DFSK If Pnoise is 50 pW. Consider the following two cases : 0dB 0.5 An AWGN channel with Psig,avg is 1 nW. A fading channel where during 90% of the time the ....... …... received power is 1.11 nW, while for the remainder, it is …… …… zero. 13dB 10−9 1. Compute BER for the case of AWGN channel. 13.5dB 10−10 2. Compute avg. BER with assuming it is selection diversity in the following cases: a. one received antenna. b. two received antenna. c. three received antenna 13.1.2 Definition of the Correlation Coefficient Any correlation between the fading of the channels decreases the effectiveness of diversity, why?? The most important one is the correlation coefficient of signal envelopes x and y: For two statistically independent signals E{xy} = E{x}E{y} ρxy=0 Signals are often said to be “effectively” decorrelated if ρ is below a certain threshold (typically 0.5 or 0.7).
    [Show full text]
  • Digital Video Broadcasting (DVB); Generic Stream Encapsulation (GSE); Part 2: Logical Link Control (LLC)
    Digital Video Broadcasting (DVB); Generic Stream Encapsulation (GSE); Part 2: Logical Link Control (LLC) DVB Document A116-2 June 2016 3 Contents Contents .............................................................................................................................................................. 3 Intellectual Property Rights ................................................................................................................................ 5 Foreword............................................................................................................................................................. 5 Introduction ........................................................................................................................................................ 6 1 Scope ........................................................................................................................................................ 8 2 References ................................................................................................................................................ 8 2.1 Normative references ......................................................................................................................................... 8 2.2 Informative references ....................................................................................................................................... 9 3 Symbols and abbreviations ....................................................................................................................
    [Show full text]
  • Embms) Muhammad Moiz Anis, Xavier Lagrange, Ramesh Pyndiah
    Overview of evolved Multimedia Broadcast Multicast Services (eMBMS) Muhammad Moiz Anis, Xavier Lagrange, Ramesh Pyndiah To cite this version: Muhammad Moiz Anis, Xavier Lagrange, Ramesh Pyndiah. Overview of evolved Multimedia Broad- cast Multicast Services (eMBMS). [Research Report] RR-2016-01-RSM, Dépt. Réseaux, Sécurité et Multimédia (Institut Mines-Télécom-Télécom Bretagne-UEB); Institut de recherche en informatique et systèmes aléatoires (UMR CNRS 6074 - Université de Rennes 1 - INRIA - INSA de Rennes - ENS de Cachan - Télécom Bretagne - Université de Bretagne Sud); Usman Institute of Technology - Hamdard University (.); Laboratoire en sciences et technologies de l’information, de la communication et de la connaissance (UMR CNRS 6285 - Télécom Bretagne - Université de Bretagne Occidentale - Université de Bretagne Sud); Dépt. Signal et Communications (Institut Mines-Télécom-Télécom Bretagne-UEB); Direction scientifique (Institut Mines-Télécom -Télécom Bretagne). 2016, pp.48. hal-01291201 HAL Id: hal-01291201 https://hal.archives-ouvertes.fr/hal-01291201 Submitted on 21 Mar 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des
    [Show full text]
  • The Multiply-Detected Macrodiversity Scheme for Wireless Cellular Systems
    506 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 47, NO. 2, MAY 1998 The Multiply-Detected Macrodiversity Scheme for Wireless Cellular Systems Zygmunt J. Haas, Senior Member, IEEE, and Chih-Peng Li, Member, IEEE Abstract—In this paper, the multiply-detected macrodiversity 1) the signal1 with the strongest received power—the (S) (MDM) scheme is proposed for wireless cellular systems. As diversity; opposed to the traditional macrodiversity schemes, in which at 2) the signal with the largest signal-to-interference ratio any time a signal from only one base station is selected, in the MDM scheme there is no selection, but all the received signals (SIR)—the signal-to-interference (S/I) diversity; are detected, and a maximum-likelihood decision algorithm is 3) the signal with the largest signal plus interference employed to maximize the probability of correct decision. We power—the (S I) diversity. study the performance of the MDM scheme and compare it with Of course, as the SIR directly determines the bit-error rate the performance of the traditional selection-based macrodiversity schemes. Depending on the propagation parameters, our results (BER), the (S/I) diversity corresponds to the best performing show that through the use of the MDM scheme, significant system. Thus, we adopt the (S/I) diversity as the comparison improvement in the bit-error rate (BER) can be achieved. For basis for the MDM scheme. However, practically, the (S/I) R instance, if the outage probability is defined as BER above 10 , diversity is also the most difficult scheme to implement. the outage is eliminated at least 45% of the time as compared with Various studies have analyzed network architectures em- signal-to-interference (S/I) diversity, for a propagation attenua- tion exponent of 4.0 and shadowing standard deviation of 4.0 ploying selection-based macroscopic diversity.
    [Show full text]