The Way to the Proof of Fermat's Last Theorem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Curriculum Vitae
CURRICULUM VITAE JANNIS A. ANTONIADIS Department of Mathematics University of Crete 71409 Iraklio,Crete Greece PERSONAL Born on 5 of September 1951 in Dryovouno Kozani, Greece. Married with Sigrid Arnz since 1983, three children : Antonios (26), Katerina (23), Karolos (21). EDUCATION-EMPLOYMENT 1969-1973: B.S. in Mathematics at the University of Thessaloniki, Greece. 1973-1976: Military Service. 1976-1979: Assistant at the University of Thessaloniki, Greece. 1979-1981: Graduate student at the University of Cologne, Germany. 1981 Ph.D. in Mathematics at the University of Cologne. Thesis advisor: Prof. Dr. Curt Meyer. 1982-1984: Lecturer at the University of Thessaloniki, Greece. 1984-1990: Associate Professor at the University of Crete, Greece. 1990-now: Professor at the University of Crete, Greece. 2003-2007 Chairman of the Department VISITING POSITIONS - University of Cologne Germany, during the period from December 1981 until Ferbruary 1983 as researcher of the German Research Council (DFG). - MPI-for Mathematics Bonn Germany, during the periods: from May until September of the year 1985, from May until September of the year 1986, from July until January of the year 1988 and from July until September of the year 1988. - University of Heidelberg Germany, during the period: from September 1993 until January 1994, as visiting Professor. University of Cyprus, during the period from January 2008 until May 2008, as visiting Professor. Again for the Summer Semester of 2009 and of the Winter Semester 2009-2010. LONG TERM VISITS: - University -
Sir Andrew J. Wiles
ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society March 2017 Volume 64, Number 3 Women's History Month Ad Honorem Sir Andrew J. Wiles page 197 2018 Leroy P. Steele Prize: Call for Nominations page 195 Interview with New AMS President Kenneth A. Ribet page 229 New York Meeting page 291 Sir Andrew J. Wiles, 2016 Abel Laureate. “The definition of a good mathematical problem is the mathematics it generates rather Notices than the problem itself.” of the American Mathematical Society March 2017 FEATURES 197 239229 26239 Ad Honorem Sir Andrew J. Interview with New The Graduate Student Wiles AMS President Kenneth Section Interview with Abel Laureate Sir A. Ribet Interview with Ryan Haskett Andrew J. Wiles by Martin Raussen and by Alexander Diaz-Lopez Allyn Jackson Christian Skau WHAT IS...an Elliptic Curve? Andrew Wiles's Marvelous Proof by by Harris B. Daniels and Álvaro Henri Darmon Lozano-Robledo The Mathematical Works of Andrew Wiles by Christopher Skinner In this issue we honor Sir Andrew J. Wiles, prover of Fermat's Last Theorem, recipient of the 2016 Abel Prize, and star of the NOVA video The Proof. We've got the official interview, reprinted from the newsletter of our friends in the European Mathematical Society; "Andrew Wiles's Marvelous Proof" by Henri Darmon; and a collection of articles on "The Mathematical Works of Andrew Wiles" assembled by guest editor Christopher Skinner. We welcome the new AMS president, Ken Ribet (another star of The Proof). Marcelo Viana, Director of IMPA in Rio, describes "Math in Brazil" on the eve of the upcoming IMO and ICM. -
A Glimpse of the Laureate's Work
A glimpse of the Laureate’s work Alex Bellos Fermat’s Last Theorem – the problem that captured planets moved along their elliptical paths. By the beginning Andrew Wiles’ imagination as a boy, and that he proved of the nineteenth century, however, they were of interest three decades later – states that: for their own properties, and the subject of work by Niels Henrik Abel among others. There are no whole number solutions to the Modular forms are a much more abstract kind of equation xn + yn = zn when n is greater than 2. mathematical object. They are a certain type of mapping on a certain type of graph that exhibit an extremely high The theorem got its name because the French amateur number of symmetries. mathematician Pierre de Fermat wrote these words in Elliptic curves and modular forms had no apparent the margin of a book around 1637, together with the connection with each other. They were different fields, words: “I have a truly marvelous demonstration of this arising from different questions, studied by different people proposition which this margin is too narrow to contain.” who used different terminology and techniques. Yet in the The tantalizing suggestion of a proof was fantastic bait to 1950s two Japanese mathematicians, Yutaka Taniyama the many generations of mathematicians who tried and and Goro Shimura, had an idea that seemed to come out failed to find one. By the time Wiles was a boy Fermat’s of the blue: that on a deep level the fields were equivalent. Last Theorem had become the most famous unsolved The Japanese suggested that every elliptic curve could be problem in mathematics, and proving it was considered, associated with its own modular form, a claim known as by consensus, well beyond the reaches of available the Taniyama-Shimura conjecture, a surprising and radical conceptual tools. -
Arxiv:Math/9807081V1 [Math.AG] 16 Jul 1998 Hthsbffldtewrdsbs Id O 5 Er Otl Bed-Time Tell to Years Olivia
Oration for Andrew Wiles Fanfare We honour Andrew Wiles for his supreme contribution to number theory, a contribution that has made him the world’s most famous mathematician and a beacon of inspiration for students of math; while solving Fermat’s Last Theorem, for 350 years the most celebrated open problem in mathematics, Wiles’s work has also dramatically opened up whole new areas of research in number theory. A love of mathematics The bulk of this eulogy is mathematical, for which I make no apology. I want to stress here that, in addition to calculations in which each line is correctly deduced from the preceding lines, mathematics is above all passion and drama, obsession with solving the unsolvable. In a modest way, many of us at Warwick share Andrew Wiles’ overriding passion for mathematics and its unsolved problems. Three short obligatory pieces Biography Oxford, Cambridge, Royal Society Professor at Oxford from arXiv:math/9807081v1 [math.AG] 16 Jul 1998 1988, Professor at Princeton since 1982 (lamentably for maths in Britain). Very many honours in the last 5 years, including the Wolf prize, Royal Society gold medal, the King Faisal prize, many, many others. Human interest story The joy and pain of Wiles’s work on Fermat are beautifully documented in John Lynch’s BBC Horizon documentary; I par- ticularly like the bit where Andrew takes time off from unravelling the riddle that has baffled the world’s best minds for 350 years to tell bed-time stories to little Clare, Kate and Olivia. 1 Predictable barbed comment on Research Assessment It goes with- out saying that an individual with a total of only 14 publications to his credit who spends 7 years sulking in his attic would be a strong candidate for early retirement at an aggressive British research department. -
Fermat's Last Theorem, a Theorem at Last
August 1993 MAA FOCUS Fermat’s Last Theorem, that one could understand the elliptic curve given by the equation a Theorem at Last 2 n n y = x(x − a )( x + b ) Keith Devlin, Fernando Gouvêa, and Andrew Granville in the way proposed by Taniyama. After defying all attempts at a solution for Wiles’ approach comes from a somewhat Following an appropriate re-formulation 350 years, Fermat’s Last Theorem finally different direction, and rests on an amazing by Jean-Pierre Serre in Paris, Kenneth took its place among the known theorems of connection, established during the last Ribet in Berkeley strengthened Frey’s mathematics in June of this year. decade, between the Last Theorem and the original concept to the point where it was theory of elliptic curves, that is, curves possible to prove that the existence of a On June 23, during the third of a series of determined by equations of the form counter example to the Last Theorem 2 3 lectures at a conference held at the Newton y = x + ax + b, would lead to the existence of an elliptic Institute in Cambridge, British curve which could not be modular, and mathematician Dr. Andrew Wiles, of where a and b are integers. hence would contradict the Shimura- Princeton University, sketched a proof of the Taniyama-Weil conjecture. Shimura-Taniyama-Weil conjecture for The path that led to the June 23 semi-stable elliptic curves. As Kenneth announcement began in 1955 when the This is the point where Wiles entered the Ribet, of the University of California at Japanese mathematician Yutaka Taniyama picture. -
Fermat's Last Theorem and Andrew Wiles
Fermat's last theorem and Andrew Wiles © 1997−2009, Millennium Mathematics Project, University of Cambridge. Permission is granted to print and copy this page on paper for non−commercial use. For other uses, including electronic redistribution, please contact us. June 2008 Features Fermat's last theorem and Andrew Wiles by Neil Pieprzak This article is the winner of the schools category of the Plus new writers award 2008. Students were asked to write about the life and work of a mathematician of their choice. "But the best problem I ever found, I found in my local public library." Andrew Wiles. Image © C. J. Mozzochi, Princeton N.J. There is a problem that not even the collective mathematical genius of almost 400 years could solve. When the ten−year−old Andrew Wiles read about it in his local Cambridge library, he dreamt of solving the problem that had haunted so many great mathematicians. Little did he or the rest of the world know that he would succeed... Fermat's last theorem and Andrew Wiles 1 Fermat's last theorem and Andrew Wiles "Here was a problem, that I, a ten−year−old, could understand and I knew from that moment that I would never let it go. I had to solve it." Pierre de Fermat The story of the problem that would seal Wiles' place in history begins in 1637 when Pierre de Fermat made a deceptively simple conjecture. He stated that if is any whole number greater than 2, then there are no three whole numbers , and other than zero that satisfy the equation (Note that if , then whole number solutions do exist, for example , and .) Fermat claimed to have proved this statement but that the "margin [was] too narrow to contain" it. -
On Galois Representations in Theory and Praxis Gerhard Frey, University of Duisburg-Essen
On Galois Representations in Theory and Praxis Gerhard Frey, University of Duisburg-Essen One of the most astonishing success stories in recent mathematics is arithmetic geo- metry, which unifies methods from classical number theory with algebraic geometry (\schemes"). In this context an extremely important role is played by the Galois groups of base schemes like rings of integers of number fields or rings of holomor- phic functions of curves over finite fields. These groups are the algebraic analogues of topological fundamental groups, and their representations induced by the action on divisor class groups of varieties over these domains yield spectacular results like Serre's Conjecture for two-dimensional representations of the Galois group of Q, which implies for example the modularity of elliptic curves over Q and so Fermat's Last Theorem (and much more). At the same time the algorithmic aspect of arithmetical objects like lattices and ideal class groups of global fields becomes more and more important and accessible, stimulated by and stimulating the advances in theory. An outstanding result is the theorem of F. Heß and C.Diem yielding that the addition in divisor class groups of curves of genus g over finite fields Fq is (probabilistically) of polynomial complexity in g ( fixed) and log(q)(g fixed). So one could hope to use such groups for public key cryptography, e.g. for key exchange, as established by Diffie-Hellman for the multiplicative group of finite fields. But the obtained insights play not only a constructive role but also a destructive role for the security of such systems. -
(Elliptic Modular Curves) JS Milne
Modular Functions and Modular Forms (Elliptic Modular Curves) J.S. Milne Version 1.30 April 26, 2012 This is an introduction to the arithmetic theory of modular functions and modular forms, with a greater emphasis on the geometry than most accounts. BibTeX information: @misc{milneMF, author={Milne, James S.}, title={Modular Functions and Modular Forms (v1.30)}, year={2012}, note={Available at www.jmilne.org/math/}, pages={138} } v1.10 May 22, 1997; first version on the web; 128 pages. v1.20 November 23, 2009; new style; minor fixes and improvements; added list of symbols; 129 pages. v1.30 April 26, 2010. Corrected; many minor revisions. 138 pages. Please send comments and corrections to me at the address on my website http://www.jmilne.org/math/. The photograph is of Lake Manapouri, Fiordland, New Zealand. Copyright c 1997, 2009, 2012 J.S. Milne. Single paper copies for noncommercial personal use may be made without explicit permission from the copyright holder. Contents Contents 3 Introduction ..................................... 5 I The Analytic Theory 13 1 Preliminaries ................................. 13 2 Elliptic Modular Curves as Riemann Surfaces . 25 3 Elliptic Functions ............................... 41 4 Modular Functions and Modular Forms ................... 48 5 Hecke Operators ............................... 68 II The Algebro-Geometric Theory 89 6 The Modular Equation for 0.N / ...................... 89 7 The Canonical Model of X0.N / over Q ................... 93 8 Modular Curves as Moduli Varieties ..................... 99 9 Modular Forms, Dirichlet Series, and Functional Equations . 104 10 Correspondences on Curves; the Theorem of Eichler-Shimura . 108 11 Curves and their Zeta Functions . 112 12 Complex Multiplication for Elliptic Curves Q . -
Elliptic Curves, Modularity, and Fermat's Last Theorem
Elliptic curves, modularity, and Fermat's Last Theorem For background and (most) proofs, we refer to [1]. 1 Weierstrass models Let K be any field. For any a1; a2; a3; a4; a6 2 K consider the plane projective curve C given by the equation 2 2 3 2 2 3 y z + a1xyz + a3yz = x + a2x z + a4xz + a6z : (1) An equation as above is called a Weierstrass equation. We also say that (1) is a Weierstrass model for C. L-Rational points For any field extension L=K we can consider the L-rational points on C, i.e. the points on C with coordinates in L: 2 C(L) := f(x : y : z) 2 PL : equation (1) is satisfied g: The point at infinity The point O := (0 : 1 : 0) 2 C(K) is the only K-rational point on C with z = 0. It is always smooth. Most of the time we shall instead of a homogeneous Weierstrass equation write an affine Weierstrass equation: 2 3 2 C : y + a1xy + a3y = x + a2x + a4x + a6 (2) which is understood to define a plane projective curve. The discriminant Define 2 b2 := a1 + 4a2; b4 := 2a4 + a1a3; 2 b6 := a3 + 4a6; 2 2 2 b8 := a1a6 + 4a2a6 − a1a3a4 + a2a3 − a4: For any Weierstrass equation we define its discriminant 2 3 2 ∆ := −b2b8 − 8b4 − 27b6 + 9b2b4b6: 1 Note that if char(K) 6= 2, then we can perform the coordinate transformation 2 3 2 y 7! (y − a1x − a3)=2 to arrive at an equation y = 4x + b2x + 2b4x + b6. -
The Klein Quartic in Number Theory
The Eightfold Way MSRI Publications Volume 35, 1998 The Klein Quartic in Number Theory NOAM D. ELKIES Abstract. We describe the Klein quartic X and highlight some of its re- markable properties that are of particular interest in number theory. These include extremal properties in characteristics 2, 3, and 7, the primes divid- ing the order of the automorphism group of X; an explicit identification of X with the modular curve X(7); and applications to the class number 1 problem and the case n = 7 of Fermat. Introduction Overview. In this expository paper we describe some of the remarkable prop- erties of the Klein quartic that are of particular interest in number theory. The Klein quartic X is the unique curve of genus 3 over C with an automorphism group G of size 168, the maximum for its genus. Since G is central to the story, we begin with a detailed description of G and its representation on the 2 three-dimensional space V in whose projectivization P(V )=P the Klein quar- tic lives. The first section is devoted to this representation and its invariants, starting over C and then considering arithmetical questions of fields of definition and integral structures. There we also encounter a G-lattice that later occurs as both the period lattice and a Mordell–Weil lattice for X. In the second section we introduce X and investigate it as a Riemann surface with automorphisms by G. In the third section we consider the arithmetic of X: rational points, relations with the Fermat curve and Fermat’s “Last Theorem” for exponent 7, and some extremal properties of the reduction of X modulo the primes 2, 3, 7 dividing #G. -
The Modularity Theorem
R. van Dobben de Bruyn The Modularity Theorem Bachelor's thesis, June 21, 2011 Supervisors: Dr R.M. van Luijk, Dr C. Salgado Mathematisch Instituut, Universiteit Leiden Contents Introduction4 1 Elliptic Curves6 1.1 Definitions and Examples......................6 1.2 Minimal Weierstrass Form...................... 11 1.3 Reduction Modulo Primes...................... 14 1.4 The Frey Curve and Fermat's Last Theorem............ 15 2 Modular Forms 18 2.1 Definitions............................... 18 2.2 Eisenstein Series and the Discriminant............... 21 2.3 The Ring of Modular Forms..................... 25 2.4 Congruence Subgroups........................ 28 3 The Modularity Theorem 36 3.1 Statement of the Theorem...................... 36 3.2 Fermat's Last Theorem....................... 36 References 39 2 Introduction One of the longest standing open problems in mathematics was Fermat's Last Theorem, asserting that the equation an + bn = cn does not have any nontrivial (i.e. with abc 6= 0) integral solutions when n is larger than 2. The proof, which was completed in 1995 by Wiles and Taylor, relied heavily on the Modularity Theorem, relating elliptic curves over Q to modular forms. The Modularity Theorem has many different forms, some of which are stated in an analytic way using Riemann surfaces, while others are stated in a more algebraic way, using for instance L-series or Galois representations. This text will present an elegant, elementary formulation of the theorem, using nothing more than some basic vocabulary of both elliptic curves and modular forms. For elliptic curves E over Q, we will examine the reduction E~ of E modulo any prime p, thus introducing the quantity ~ ap(E) = p + 1 − #E(Fp): We will also give an almost complete description of the conductor NE associated to an elliptic curve E, and compute it for the curve used in the proof of Fermat's Last Theorem. -
Sir Andrew Wiles Awarded Abel Prize
Sir Andrew J. Wiles Awarded Abel Prize Elaine Kehoe with The Norwegian Academy of Science and Letters official Press Release ©Abelprisen/DNVA/Calle Huth. Courtesy of the Abel Prize Photo Archive. ©Alain Goriely, University of Oxford. Courtesy the Abel Prize Photo Archive. Sir Andrew Wiles received the 2016 Abel Prize at the Oslo award ceremony on May 24. The Norwegian Academy of Science and Letters has carries a cash award of 6,000,000 Norwegian krone (ap- awarded the 2016 Abel Prize to Sir Andrew J. Wiles of the proximately US$700,000). University of Oxford “for his stunning proof of Fermat’s Citation Last Theorem by way of the modularity conjecture for Number theory, an old and beautiful branch of mathemat- semistable elliptic curves, opening a new era in number ics, is concerned with the study of arithmetic properties of theory.” The Abel Prize is awarded by the Norwegian Acad- the integers. In its modern form the subject is fundamen- tally connected to complex analysis, algebraic geometry, emy of Science and Letters. It recognizes contributions of and representation theory. Number theoretic results play extraordinary depth and influence to the mathematical an important role in our everyday lives through encryption sciences and has been awarded annually since 2003. It algorithms for communications, financial transactions, For permission to reprint this article, please contact: and digital security. [email protected]. Fermat’s Last Theorem, first formulated by Pierre de DOI: http://dx.doi.org/10.1090/noti1386 Fermat in the seventeenth century, is the assertion that 608 NOTICES OF THE AMS VOLUME 63, NUMBER 6 the equation xn+yn=zn has no solutions in positive integers tophe Breuil, Brian Conrad, Fred Diamond, and Richard for n>2.