Elliptic Modular Curves)

Total Page:16

File Type:pdf, Size:1020Kb

Elliptic Modular Curves) Modular Functions and Modular Forms (Elliptic Modular Curves) J.S. Milne Version 1.31 March 22, 2017 This is an introduction to the arithmetic theory of modular functions and modular forms, with a greater emphasis on the geometry than most accounts. BibTeX information: @misc{milneMF, author={Milne, James S.}, title={Modular Functions and Modular Forms (v1.31)}, year={2017}, note={Available at www.jmilne.org/math/}, pages={134} } v1.10 May 22, 1997; first version on the web; 128 pages. v1.20 November 23, 2009; new style; minor fixes and improvements; added list of symbols; 129 pages. v1.30 April 26, 2010. Corrected; many minor revisions. 138 pages. v1.31 March 22, 2017. Corrected; minor revisions. 133 pages. Please send comments and corrections to me at the address on my website http://www.jmilne.org/math/. The picture shows a fundamental domain for 1.10/, as drawn by the fundamental domain drawer of H. Verrill. Copyright c 1997, 2009, 2012, 2017 J.S. Milne. Single paper copies for noncommercial personal use may be made without explicit permission from the copyright holder. Contents Contents3 Introduction..................................... 5 I The Analytic Theory 13 1 Preliminaries ................................. 13 2 Elliptic Modular Curves as Riemann Surfaces................ 25 3 Elliptic Functions............................... 41 4 Modular Functions and Modular Forms ................... 48 5 Hecke Operators ............................... 67 II The Algebro-Geometric Theory 87 6 The Modular Equation for 0.N / ...................... 87 7 The Canonical Model of X0.N / over Q ................... 91 8 Modular Curves as Moduli Varieties..................... 97 9 Modular Forms, Dirichlet Series, and Functional Equations . 101 10 Correspondences on Curves; the Theorem of Eichler-Shimura . 105 11 Curves and their Zeta Functions .......................109 12 Complex Multiplication for Elliptic Curves Q . 121 Index 131 List of Symbols 133 3 PREREQUISITES The algebra and complex analysis usually covered in advanced undergraduate or first-year graduate courses. REFERENCES A reference monnnnn is to question nnnnn on mathoverflow.net. In addition to the references listed on p. 12 and in the footnotes, I shall refer to the following of my course notes (available at www.jmilne.org/math/). FT Fields and Galois Theory, v4.52, 2017. AG Algebraic Geometry, v6.02, 2017. ANT Algebraic Number Theory, v3.07, 2017. CFT Class Field Theory, v4.02, 2013. ACKNOWLEDGEMENTS I thank the following for providing corrections and comments for earlier versions of these notes: Carlos Barros, Saikat Biswas, Keith Conrad, Tony Feng, Ulrich Goertz, Enis Kaya, Keenan Kidwell, John Miller, Thomas Preu and colleague, Nousin Sabet, Francesc Gispert Sanchez,´ Bhupendra Nath Tiwari, Hendrik Verhoek. Introduction It is easy to define modular functions and forms, but less easy to say why they are important, especially to number theorists. Thus I shall begin with a rather long overview of the subject. Riemann surfaces Let X be a connected Hausdorff topological space. A coordinate neighbourhood for X is a pair .U;z/ with U an open subset of X and z a homeomorphism from U onto an open subset of the complex plane. A compatible family of coordinate neighbourhoods covering X defines a complex structure on X.A Riemann surface is a connected Hausdorff topological space together with a complex structure. For example, every connected open subset X of C is a Riemann surface, and the unit sphere can be given a complex structure with two coordinate neighbourhoods, namely the complements of the north and south poles mapped onto the complex plane in the standard way. With this complex structure it is called the Riemann sphere. We shall see that a torus 2 2 R =Z can be given infinitely many different complex structures. Let X be a Riemann surface and V an open subset of X. A function f V C is said W ! to be holomorphic if, for all coordinate neighbourhoods .U;z/ of X, 1 f z z.V U/ C ı W \ ! is a holomorphic function on z.V U/. Similarly, one can define the notion of a meromor- \ phic function on a Riemann surface. The general problem We can now state the grandiose problem: study all holomorphic functions on all Riemann surfaces. In order to do this, we would first have to find all Riemann surfaces. This problem is easier than it looks. Let X be a Riemann surface. From topology, we know that there is a simply connected topological space X (the universal covering space of X/ and a map p X X which is a z W z ! local homeomorphism. There is a unique complex structure on X for which p X X is a z W z ! local isomorphism of Riemann surfaces. If is the group of covering transformations of p X X, then X X: W z ! D n z THEOREM 0.1 Every simply connected Riemann surface is isomorphic to exactly one of the following three: (a) the Riemann sphere; (b) C I def (c) the open unit disk D z C z < 1 . D f 2 j j j g PROOF. Of these, only the Riemann sphere is compact. In particular, it is not homeomorphic to C or D. There is no isomorphism f C D because any such f would be a bounded W ! holomorphic function on C, and hence constant. Thus, the three are distinct. A special case of the theorem says that every simply connected open subset of C different from C is isomorphic to D. This is proved in Cartan 1963, VI, 3. The general statement is the famous Uniformization Theorem, which was proved independently by Koebe and Poincare´ in 1907. See mo10516 for a discussion of the various proofs. 2 5 The main focus of this course will be on Riemann surfaces with D as their universal covering space, but we shall also need to look at those with C as their universal covering space. Riemann surfaces that are quotients of D In fact, rather than working with D, it will be more convenient to work with the complex upper half plane: H z C .z/ > 0 : D f 2 j = g z i The map z is an isomorphism of H onto D (in the language of complex analysis, H 7! z i and D are conformallyC equivalent). We want to study Riemann surfaces of the form H, n where is a discrete group acting on H. How do we find such ? There is an obvious big a b group acting on H, namely, SL2.R/. For ˛ SL2.R/ and z H, let D c d 2 2 az b ˛.z/ C : D cz d C Then  az b à Â.az b/.cz d/à .adz bcz/ .˛.z// C C xC = C x : = D = cz d D = cz d 2 D cz d 2 C j C j j C j But .adz bcz/ .ad bc/ .z/, which equals .z/ because det.˛/ 1. Hence = C x D = = D .˛.z// .z/= cz d 2 = D = j C j for ˛ SL2.R/. In particular, 2 z H ˛.z/ H: 2 H) 2 The matrix I acts trivially on H, and later we shall see that SL2.R/= I is the full f˙ g group Aut.H/ of bi-holomorphic automorphisms of H (see 2.1). The most obvious discrete subgroup of SL2.R/ is SL2.Z/. This is called the full modular group. For an integer D N > 0, we define  à ˇ a b ˇ .N / ˇ a 1; b 0; c 0; d 1mod N : D c d ˇ Á Á Á Á It is the principal congruence subgroup of level N . There are lots of other discrete sub- groups of SL2.R/, but the main ones of interest to number theorists are the subgroups of SL2.Z/ containing a principal congruence subgroup. Let Y.N / .N / H and endow it with the quotient topology. Let p H Y.N / denote D n W ! the quotient map. There is a unique complex structure on Y.N / such that a function f on an open subset U of Y.N / is holomorphic if and only if f p is holomorphic on p 1.U /. ı Thus f f p defines a one-to-one correspondence between holomorphic functions on 7! ı U Y.N / and holomorphic functions on p 1.U / invariant under .N /, i.e., such that g. z/ g.z/ for all .N /: D 2 The Riemann surface Y.N / is not compact, but there is a natural way of compactifying it by adding a finite number of points. For example, Y.1/ is compactified by adding a single point. The compact Riemann surface obtained is denoted by X.N /. 6 Modular functions. A modular function f .z/ of level N is a meromorphic function on H invariant under .N / and “meromorphic at the cusps”. Because it is invariant under .N /, it can be regarded as a meromorphic function on Y.N /, and the second condition means that it is meromorphic when considered as a function on X.N /, i.e., it has at worst a pole at each point of X.N / Y.N /: X For the full modular group, it is easy to make explicit the condition “meromorphic at the cusps” (in this case, cusp). To be invariant under the full modular group means that  az b à Âa bà f C f .z/ for all SL2.Z/: cz d D c d 2 C 1 1 Since 0 1 SL2.Z/, we have that f .z 1/ f .z/, i.e., f is invariant under the action 2 C D 2iz .z;n/ z n of Z on C. The function z e is an isomorphism C=Z C 0 , 7! C 7! ! X f g and so every f satisfying f .z 1/ f .z/ can be written in the form f .z/ f .q/, 2iz C D D q e .
Recommended publications
  • The Class Number One Problem for Imaginary Quadratic Fields
    MODULAR CURVES AND THE CLASS NUMBER ONE PROBLEM JEREMY BOOHER Gauss found 9 imaginary quadratic fields with class number one, and in the early 19th century conjectured he had found all of them. It turns out he was correct, but it took until the mid 20th century to prove this. Theorem 1. Let K be an imaginary quadratic field whose ring of integers has class number one. Then K is one of p p p p p p p p Q(i); Q( −2); Q( −3); Q( −7); Q( −11); Q( −19); Q( −43); Q( −67); Q( −163): There are several approaches. Heegner [9] gave a proof in 1952 using the theory of modular functions and complex multiplication. It was dismissed since there were gaps in Heegner's paper and the work of Weber [18] on which it was based. In 1967 Stark gave a correct proof [16], and then noticed that Heegner's proof was essentially correct and in fact equiv- alent to his own. Also in 1967, Baker gave a proof using lower bounds for linear forms in logarithms [1]. Later, Serre [14] gave a new approach based on modular curve, reducing the class number + one problem to finding special points on the modular curve Xns(n). For certain values of n, it is feasible to find all of these points. He remarks that when \N = 24 An elliptic curve is obtained. This is the level considered in effect by Heegner." Serre says nothing more, and later writers only repeat this comment. This essay will present Heegner's argument, as modernized in Cox [7], then explain Serre's strategy.
    [Show full text]
  • Dessins D'enfants in N = 2 Generalised Quiver Theories Arxiv
    Dessins d'Enfants in N = 2 Generalised Quiver Theories Yang-Hui He1 and James Read2 1Department of Mathematics, City University, London, Northampton Square, London EC1V 0HB, UK; School of Physics, NanKai University, Tianjin, 300071, P.R. China; Merton College, University of Oxford, OX1 4JD, UK [email protected] 2Merton College, University of Oxford, OX1 4JD, UK [email protected] Abstract We study Grothendieck's dessins d'enfants in the context of the N = 2 super- symmetric gauge theories in (3 + 1) dimensions with product SU (2) gauge groups arXiv:1503.06418v2 [hep-th] 15 Sep 2015 which have recently been considered by Gaiotto et al. We identify the precise con- text in which dessins arise in these theories: they are the so-called ribbon graphs of such theories at certain isolated points in the moduli space. With this point in mind, we highlight connections to other work on trivalent dessins, gauge theories, and the modular group. 1 Contents 1 Introduction3 2 Dramatis Personæ6 2.1 Skeleton Diagrams . .6 2.2 Moduli Spaces . .8 2.3 BPS Quivers . .9 2.4 Quadratic Differentials and Graphs on Gaiotto Curves . 11 2.5 Dessins d'Enfants and Belyi Maps . 12 2.6 The Modular Group and Congruence Subgroups . 14 3 A Web of Correspondences 15 3.1 Quadratic Differentials and Seiberg-Witten Curves . 16 3.2 Trajectories on Riemann Surfaces and Ideal Triangulations . 16 3.3 Constructing BPS Quivers . 20 3.4 Skeleton Diagrams and BPS Quivers . 21 3.5 Strebel Differentials and Ribbon Graphs . 23 3.5.1 Ribbon Graphs from Strebel Differentials .
    [Show full text]
  • Generalization of a Theorem of Hurwitz
    J. Ramanujan Math. Soc. 31, No.3 (2016) 215–226 Generalization of a theorem of Hurwitz Jung-Jo Lee1,∗ ,M.RamMurty2,† and Donghoon Park3,‡ 1Department of Mathematics, Kyungpook National University, Daegu 702-701, South Korea e-mail: [email protected] 2Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario, K7L 3N6, Canada e-mail: [email protected] 3Department of Mathematics, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul 120-749, South Korea e-mail: [email protected] Communicated by: R. Sujatha Received: February 10, 2015 Abstract. This paper is an exposition of several classical results formulated and unified using more modern terminology. We generalize a classical theorem of Hurwitz and prove the following: let 1 G (z) = k (mz + n)k m,n be the Eisenstein series of weight k attached to the full modular group. Let z be a CM point in the upper half-plane. Then there is a transcendental number z such that ( ) = 2k · ( ). G2k z z an algebraic number Moreover, z can be viewed as a fundamental period of a CM elliptic curve defined over the field of algebraic numbers. More generally, given any modular form f of weight k for the full modular group, and with ( )π k /k algebraic Fourier coefficients, we prove that f z z is algebraic for any CM point z lying in the upper half-plane. We also prove that for any σ Q Q ( ( )π k /k)σ = σ ( )π k /k automorphism of Gal( / ), f z z f z z . 2010 Mathematics Subject Classification: 11J81, 11G15, 11R42.
    [Show full text]
  • Examples from Complex Geometry
    Examples from Complex Geometry Sam Auyeung November 22, 2019 1 Complex Analysis Example 1.1. Two Heuristic \Proofs" of the Fundamental Theorem of Algebra: Let p(z) be a polynomial of degree n > 0; we can even assume it is a monomial. We also know that the number of zeros is at most n. We show that there are exactly n. 1. Proof 1: Recall that polynomials are entire functions and that Liouville's Theorem says that a bounded entire function is in fact constant. Suppose that p has no roots. Then 1=p is an entire function and it is bounded. Thus, it is constant which means p is a constant polynomial and has degree 0. This contradicts the fact that p has positive degree. Thus, p must have a root α1. We can then factor out (z − α1) from p(z) = (z − α1)q(z) where q(z) is an (n − 1)-degree polynomial. We may repeat the above process until we have a full factorization of p. 2. Proof 2: On the real line, an algorithm for finding a root of a continuous function is to look for when the function changes signs. How do we generalize this to C? Instead of having two directions, we have a whole S1 worth of directions. If we use colors to depict direction and brightness to depict magnitude, we can plot a graph of a continuous function f : C ! C. Near a zero, we'll see all colors represented. If we travel in a loop around any point, we can keep track of whether it passes through all the colors; around a zero, we'll pass through all the colors, possibly many times.
    [Show full text]
  • A Review on Elliptic Curve Cryptography for Embedded Systems
    International Journal of Computer Science & Information Technology (IJCSIT), Vol 3, No 3, June 2011 A REVIEW ON ELLIPTIC CURVE CRYPTOGRAPHY FOR EMBEDDED SYSTEMS Rahat Afreen 1 and S.C. Mehrotra 2 1Tom Patrick Institute of Computer & I.T, Dr. Rafiq Zakaria Campus, Rauza Bagh, Aurangabad. (Maharashtra) INDIA [email protected] 2Department of C.S. & I.T., Dr. B.A.M. University, Aurangabad. (Maharashtra) INDIA [email protected] ABSTRACT Importance of Elliptic Curves in Cryptography was independently proposed by Neal Koblitz and Victor Miller in 1985.Since then, Elliptic curve cryptography or ECC has evolved as a vast field for public key cryptography (PKC) systems. In PKC system, we use separate keys to encode and decode the data. Since one of the keys is distributed publicly in PKC systems, the strength of security depends on large key size. The mathematical problems of prime factorization and discrete logarithm are previously used in PKC systems. ECC has proved to provide same level of security with relatively small key sizes. The research in the field of ECC is mostly focused on its implementation on application specific systems. Such systems have restricted resources like storage, processing speed and domain specific CPU architecture. KEYWORDS Elliptic curve cryptography Public Key Cryptography, embedded systems, Elliptic Curve Digital Signature Algorithm ( ECDSA), Elliptic Curve Diffie Hellman Key Exchange (ECDH) 1. INTRODUCTION The changing global scenario shows an elegant merging of computing and communication in such a way that computers with wired communication are being rapidly replaced to smaller handheld embedded computers using wireless communication in almost every field. This has increased data privacy and security requirements.
    [Show full text]
  • Contents 5 Elliptic Curves in Cryptography
    Cryptography (part 5): Elliptic Curves in Cryptography (by Evan Dummit, 2016, v. 1.00) Contents 5 Elliptic Curves in Cryptography 1 5.1 Elliptic Curves and the Addition Law . 1 5.1.1 Cubic Curves, Weierstrass Form, Singular and Nonsingular Curves . 1 5.1.2 The Addition Law . 3 5.1.3 Elliptic Curves Modulo p, Orders of Points . 7 5.2 Factorization with Elliptic Curves . 10 5.3 Elliptic Curve Cryptography . 14 5.3.1 Encoding Plaintexts on Elliptic Curves, Quadratic Residues . 14 5.3.2 Public-Key Encryption with Elliptic Curves . 17 5.3.3 Key Exchange and Digital Signatures with Elliptic Curves . 20 5 Elliptic Curves in Cryptography In this chapter, we will introduce elliptic curves and describe how they are used in cryptography. Elliptic curves have a long and interesting history and arise in a wide range of contexts in mathematics. The study of elliptic curves involves elements from most of the major disciplines of mathematics: algebra, geometry, analysis, number theory, topology, and even logic. Elliptic curves appear in the proofs of many deep results in mathematics: for example, they are a central ingredient in the proof of Fermat's Last Theorem, which states that there are no positive integer solutions to the equation xn + yn = zn for any integer n ≥ 3. Our goals are fairly modest in comparison, so we will begin by outlining the basic algebraic and geometric properties of elliptic curves and motivate the addition law. We will then study the behavior of elliptic curves modulo p: ultimately, there is a fairly strong analogy between the structure of the points on an elliptic curve modulo p and the integers modulo n.
    [Show full text]
  • An Efficient Approach to Point-Counting on Elliptic Curves
    mathematics Article An Efficient Approach to Point-Counting on Elliptic Curves from a Prominent Family over the Prime Field Fp Yuri Borissov * and Miroslav Markov Department of Mathematical Foundations of Informatics, Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; [email protected] * Correspondence: [email protected] Abstract: Here, we elaborate an approach for determining the number of points on elliptic curves 2 3 from the family Ep = fEa : y = x + a (mod p), a 6= 0g, where p is a prime number >3. The essence of this approach consists in combining the well-known Hasse bound with an explicit formula for the quantities of interest-reduced modulo p. It allows to advance an efficient technique to compute the 2 six cardinalities associated with the family Ep, for p ≡ 1 (mod 3), whose complexity is O˜ (log p), thus improving the best-known algorithmic solution with almost an order of magnitude. Keywords: elliptic curve over Fp; Hasse bound; high-order residue modulo prime 1. Introduction The elliptic curves over finite fields play an important role in modern cryptography. We refer to [1] for an introduction concerning their cryptographic significance (see, as well, Citation: Borissov, Y.; Markov, M. An the pioneering works of V. Miller and N. Koblitz from 1980’s [2,3]). Briefly speaking, the Efficient Approach to Point-Counting advantage of the so-called elliptic curve cryptography (ECC) over the non-ECC is that it on Elliptic Curves from a Prominent requires smaller keys to provide the same level of security. Family over the Prime Field Fp.
    [Show full text]
  • Arxiv:2009.05223V1 [Math.NT] 11 Sep 2020 Fdegree of Eaeitrse Nfidn Function a finding in Interested Are We Hoe 1.1
    COUNTING ELLIPTIC CURVES WITH A RATIONAL N-ISOGENY FOR SMALL N BRANDON BOGGESS AND SOUMYA SANKAR Abstract. We count the number of rational elliptic curves of bounded naive height that have a rational N-isogeny, for N ∈ {2, 3, 4, 5, 6, 8, 9, 12, 16, 18}. For some N, this is done by generalizing a method of Harron and Snowden. For the remaining cases, we use the framework of Ellenberg, Satriano and Zureick-Brown, in which the naive height of an elliptic curve is the height of the corresponding point on a moduli stack. 1. Introduction ′ Let E be an elliptic curve over Q. An isogeny φ : E E between two elliptic curves is said to be cyclic ¯ → of degree N if Ker(φ)(Q) ∼= Z/NZ. Further, it is said to be rational if Ker(φ) is stable under the action of the absolute Galois group, GQ. A natural question one can ask is, how many elliptic curves over Q have a rational cyclic N-isogeny? Henceforth, we will omit the adjective ‘cyclic’, since these are the only types of isogenies we will consider. It is classically known that for N 10 and N = 12, 13, 16, 18, 25, there are infinitely many such elliptic curves. Thus we order them by naive≤ height. An elliptic curve E over Q has a unique minimal Weierstrass equation y2 = x3 + Ax + B where A, B Z and gcd(A3,B2) is not divisible by any 12th power. Define the naive height of E to be ht(E) = max A∈3, B 2 .
    [Show full text]
  • Remarks on Codes from Modular Curves: MAGMA Applications
    Remarks on codes from modular curves: MAGMA applications∗ David Joyner and Salahoddin Shokranian 3-30-2004 Contents 1 Introduction 2 2 Shimura curves 3 2.1 Arithmeticsubgroups....................... 3 2.2 Riemannsurfacesasalgebraiccurves . 4 2.3 An adelic view of arithmetic quotients . 5 2.4 Hecke operators and arithmetic on X0(N) ........... 8 2.5 Eichler-Selbergtraceformula. 10 2.6 The curves X0(N)ofgenus1 .................. 12 3 Codes 14 3.1 Basicsonlinearcodes....................... 14 3.2 SomebasicsonAGcodes. 16 arXiv:math/0403548v1 [math.NT] 31 Mar 2004 3.3 SomeestimatesonAGcodes. 17 4 Examples 19 4.1 Weight enumerators of some elliptic codes . 20 4.2 Thegeneratormatrix(apr´esdesGoppa) . 22 5 Concluding comments 24 ∗This paper is a modification of the paper [JS]. Here we use [MAGMA], version 2.10, instead of MAPLE. Some examples have been changed and minor corrections made. MSC 2000: 14H37, 94B27,20C20,11T71,14G50,05E20,14Q05 1 1 INTRODUCTION 2 1 Introduction Suppose that V is a smooth projective variety over a finite field k. An important problem in arithmetical algebraic geometry is the calculation of the number of k-rational points of V , V (k) . The work of Goppa [G] and others have shown its importance in geometric| | coding theory as well. We refer to this problem as the counting problem. In most cases it is very hard to find an explicit formula for the number of points of a variety over a finite field. When the variety is a “Shimura variety” defined by certain group theoret- ical conditions (see 2 below), methods from non-abelian harmonic analysis on groups can be used§ to find an explicit solution for the counting problem.
    [Show full text]
  • Congruences Between Modular Forms
    CONGRUENCES BETWEEN MODULAR FORMS FRANK CALEGARI Contents 1. Basics 1 1.1. Introduction 1 1.2. What is a modular form? 4 1.3. The q-expansion priniciple 14 1.4. Hecke operators 14 1.5. The Frobenius morphism 18 1.6. The Hasse invariant 18 1.7. The Cartier operator on curves 19 1.8. Lifting the Hasse invariant 20 2. p-adic modular forms 20 2.1. p-adic modular forms: The Serre approach 20 2.2. The ordinary projection 24 2.3. Why p-adic modular forms are not good enough 25 3. The canonical subgroup 26 3.1. Canonical subgroups for general p 28 3.2. The curves Xrig[r] 29 3.3. The reason everything works 31 3.4. Overconvergent p-adic modular forms 33 3.5. Compact operators and spectral expansions 33 3.6. Classical Forms 35 3.7. The characteristic power series 36 3.8. The Spectral conjecture 36 3.9. The invariant pairing 38 3.10. A special case of the spectral conjecture 39 3.11. Some heuristics 40 4. Examples 41 4.1. An example: N = 1 and p = 2; the Watson approach 41 4.2. An example: N = 1 and p = 2; the Coleman approach 42 4.3. An example: the coefficients of c(n) modulo powers of p 43 4.4. An example: convergence slower than O(pn) 44 4.5. Forms of half integral weight 45 4.6. An example: congruences for p(n) modulo powers of p 45 4.7. An example: congruences for the partition function modulo powers of 5 47 4.8.
    [Show full text]
  • 25 Modular Forms and L-Series
    18.783 Elliptic Curves Spring 2015 Lecture #25 05/12/2015 25 Modular forms and L-series As we will show in the next lecture, Fermat's Last Theorem is a direct consequence of the following theorem [11, 12]. Theorem 25.1 (Taylor-Wiles). Every semistable elliptic curve E=Q is modular. In fact, as a result of subsequent work [3], we now have the stronger result, proving what was previously known as the modularity conjecture (or Taniyama-Shimura-Weil conjecture). Theorem 25.2 (Breuil-Conrad-Diamond-Taylor). Every elliptic curve E=Q is modular. Our goal in this lecture is to explain what it means for an elliptic curve over Q to be modular (we will also define the term semistable). This requires us to delve briefly into the theory of modular forms. Our goal in doing so is simply to understand the definitions and the terminology; we will omit all but the most straight-forward proofs. 25.1 Modular forms Definition 25.3. A holomorphic function f : H ! C is a weak modular form of weight k for a congruence subgroup Γ if f(γτ) = (cτ + d)kf(τ) a b for all γ = c d 2 Γ. The j-function j(τ) is a weak modular form of weight 0 for SL2(Z), and j(Nτ) is a weak modular form of weight 0 for Γ0(N). For an example of a weak modular form of positive weight, recall the Eisenstein series X0 1 X0 1 G (τ) := G ([1; τ]) := = ; k k !k (m + nτ)k !2[1,τ] m;n2Z 1 which, for k ≥ 3, is a weak modular form of weight k for SL2(Z).
    [Show full text]
  • Lectures on the Combinatorial Structure of the Moduli Spaces of Riemann Surfaces
    LECTURES ON THE COMBINATORIAL STRUCTURE OF THE MODULI SPACES OF RIEMANN SURFACES MOTOHICO MULASE Contents 1. Riemann Surfaces and Elliptic Functions 1 1.1. Basic Definitions 1 1.2. Elementary Examples 3 1.3. Weierstrass Elliptic Functions 10 1.4. Elliptic Functions and Elliptic Curves 13 1.5. Degeneration of the Weierstrass Elliptic Function 16 1.6. The Elliptic Modular Function 19 1.7. Compactification of the Moduli of Elliptic Curves 26 References 31 1. Riemann Surfaces and Elliptic Functions 1.1. Basic Definitions. Let us begin with defining Riemann surfaces and their moduli spaces. Definition 1.1 (Riemann surfaces). A Riemann surface is a paracompact Haus- S dorff topological space C with an open covering C = λ Uλ such that for each open set Uλ there is an open domain Vλ of the complex plane C and a homeomorphism (1.1) φλ : Vλ −→ Uλ −1 that satisfies that if Uλ ∩ Uµ 6= ∅, then the gluing map φµ ◦ φλ φ−1 (1.2) −1 φλ µ −1 Vλ ⊃ φλ (Uλ ∩ Uµ) −−−−→ Uλ ∩ Uµ −−−−→ φµ (Uλ ∩ Uµ) ⊂ Vµ is a biholomorphic function. Remark. (1) A topological space X is paracompact if for every open covering S S X = λ Uλ, there is a locally finite open cover X = i Vi such that Vi ⊂ Uλ for some λ. Locally finite means that for every x ∈ X, there are only finitely many Vi’s that contain x. X is said to be Hausdorff if for every pair of distinct points x, y of X, there are open neighborhoods Wx 3 x and Wy 3 y such that Wx ∩ Wy = ∅.
    [Show full text]