Ontology and Database Schema: What's the Difference?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Fuzzy Datalog Deductive Database System 1
A FUZZY DATALOG DEDUCTIVE DATABASE SYSTEM 1 A Fuzzy Datalog Deductive Database System Pascual Julian-Iranzo,´ Fernando Saenz-P´ erez´ Abstract—This paper describes a proposal for a deduc- particular, non-logic constructors are disallowed, as the cut), tive database system with fuzzy Datalog as its query lan- but it is not Turing-complete as it is meant as a database query guage. Concepts supporting the fuzzy logic programming sys- language. tem Bousi∼Prolog are tailored to the needs of the deductive database system DES. We develop a version of fuzzy Datalog Fuzzy Datalog [9] is an extension of Datalog-like languages where programs and queries are compiled to the DES core using lower bounds of uncertainty degrees in facts and rules. Datalog language. Weak unification and weak SLD resolution are Akin proposals as [10], [11] explicitly include the computation adapted for this setting, and extended to allow rules with truth de- of the rule degree, as well as an additional argument to gree annotations. We provide a public implementation in Prolog represent this degree. However, and similar to Bousi∼Prolog, which is open-source, multiplatform, portable, and in-memory, featuring a graphical user interface. A distinctive feature of this we are interested in removing this burden from the user system is that, unlike others, we have formally demonstrated with an automatic rule transformation that elides both the that our implementation techniques fit the proposed operational degree argument and the explicit call to fuzzy connective semantics. We also study the efficiency of these implementation computations in user rules. In addition, we provide support for techniques through a series of detailed experiments. -
Data Warehouse Logical Modeling and Design
Data Warehouse 1. Methodological Framework Logical Modeling and Design • Conceptual Design & Logical Design (6) • Design Phases and schemata derivations 2. Logical Modelling: The Multidimensionnal Model Bernard ESPINASSE • Problematic of the Logical Design Professeur à Aix-Marseille Université (AMU) • The Multidimensional Model: fact, measures, dimensions Ecole Polytechnique Universitaire de Marseille 3. Implementing a Dimensional Model in ROLAP • Star schema January, 2020 • Snowflake schema • Aggregates and views 4. Logical Design: From Fact schema to ROLAP Logical schema Methodological framework • From fact schema to relational star-schema: basic rules Logical Modeling: The Multidimensional Model • Examples towards Relational Star Schema • Examples towards Relational Snowflake Schema Logical Design : From Fact schema to ROLAP Logical schema • Advanced logical modelling ROLAP schema in MDX for Mondrian 5. ROLAP schema in MDX for Mondrian Bernard ESPINASSE - Data Warehouse Logical Modelling and Design 1 Bernard ESPINASSE - Data Warehouse Logical Modelling and Design 2 • Livres • Golfarelli M., Rizzi S., « Data Warehouse Design : Modern Principles and Methodologies », McGrawHill, 2009. • Kimball R., Ross, M., « Entrepôts de données : guide pratique de modélisation dimensionnelle », 2°édition, Ed. Vuibert, 2003, ISBN : 2- 7117-4811-1. • Franco J-M., « Le Data Warehouse ». Ed. Eyrolles, Paris, 1997. ISBN 2- 212-08956-2. • Conceptual Design & Logical Design • Cours • Life-Cycle • Course of M. Golfarelli M. and S. Rizzi, University of Bologna -
ENTITY-RELATIONSHIP MODELING of SPATIAL DATA for GEOGRAPHIC INFORMATION SYSTEMS Hugh W
ENTITY-RELATIONSHIP MODELING OF SPATIAL DATA FOR GEOGRAPHIC INFORMATION SYSTEMS Hugh W. Calkins Department of Geography and National Center for Geographic Information and Analysis, State University of New York at Buffalo Amherst, NY 14261-0023 Abstract This article presents an extension to the basic Entity-Relationship (E-R) database modeling approach for use in designing geographic databases. This extension handles the standard spatial objects found in geographic information systems, multiple representations of the spatial objects, temporal representations, and the traditional coordinate and topological attributes associated with spatial objects and relationships. Spatial operations are also included in this extended E-R modeling approach to represent the instances where relationships between spatial data objects are only implicit in the database but are made explicit through spatial operations. The extended E-R modeling methodology maps directly into a detailed database design and a set of GIS function. 1. Introduction GIS design (planning, design and implementing a geographic information system) consists of several activities: feasibility analysis, requirements determination, conceptual and detailed database design, and hardware and software selection. Over the past several years, GIS analysts have been interested in, and have used, system design techniques adopted from software engineering, including the software life-cycle model which defines the above mentioned system design tasks (Boehm, 1981, 36). Specific GIS life-cycle models have been developed for GIS by Calkins (1982) and Tomlinson (1994). Figure 1 is an example of a typical life-cycle model. GIS design models, which describe the implementation procedures for the life-cycle model, outline the basic steps of the design process at a fairly abstract level (Calkins, 1972; Calkins, 1982). -
MDA Transformation Process of a PIM Logical Decision-Making from Nosql Database to Big Data Nosql PSM
International Journal of Engineering and Advanced Technology (IJEAT) ISSN: 2249 – 8958, Volume-9 Issue-1, October 2019 MDA Transformation Process of A PIM Logical Decision-Making from NoSQL Database to Big Data NoSQL PSM Fatima Kalna, Abdessamad Belangour, Mouad Banane, Allae Erraissi databases managed by these systems fall into four categories: Abstract: Business Intelligence or Decision Support System columns, documents, graphs and key-value [3]. Each of them (DSS) is IT for decision-makers and business leaders. It describes offering specific features. For example, in a the means, the tools and the methods that make it possible to document-oriented database like MongoDB [4], data is stored collect, consolidate, model and restore the data, material or immaterial, of a company to offer a decision aid and to allow a in tables whose lines can be nested. This organization of the decision-maker to have an overview of the activity being treated. data is coupled to operators that allow access to the nested Given the large volume, variety, and data velocity we entered the data. The work we are presenting aims to assist a user in the era of Big Data. And since most of today's BI tools are designed to implementation of a massive database on a NoSQL database handle structured data. In our research project, we aim to management system. To do this, we propose a transformation consolidate a BI system for Big Data. In continuous efforts, this process that ensures the transition from the NoSQL logic paper is a progress report of our first contribution that aims to apply the techniques of model engineering to propose a universal model to a NoSQL physical model ie. -
A Logical Design Methodology for Relational Databases Using the Extended Entity-Relationship Model
A Logical Design Methodology for Relational Databases Using the Extended Entity-Relationship Model TOBY J. TEOREY Computing Research Laboratory, Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor, Michigan 48109-2122 DONGQING YANG Computer Science and Technology, Peking Uniuersity, Beijing, The People’s Republic of China JAMES P. FRY Computer and Information Systems, Graduate School of Business Administration, The University of Michigan, Ann Arbor, Michigan 48109-1234 A database design methodology is defined for the design of large relational databases. First, the data requirements are conceptualized using an extended entity-relationship model, with the extensions being additional semantics such as ternary relationships, optional relationships, and the generalization abstraction. The extended entity- relationship model is then decomposed according to a set of basic entity-relationship constructs, and these are transformed into candidate relations. A set of basic transformations has been developed for the three types of relations: entity relations, extended entity relations, and relationship relations. Candidate relations are further analyzed and modified to attain the highest degree of normalization desired. The methodology produces database designs that are not only accurate representations of reality, but flexible enough to accommodate future processing requirements. It also reduces the number of data dependencies that must be analyzed, using the extended ER model conceptualization, and maintains data -
A Deductive Database with Datalog and SQL Query Languages
A Deductive Database with Datalog and SQL Query Languages FernandoFernando SSááenzenz PPéérez,rez, RafaelRafael CaballeroCaballero andand YolandaYolanda GarcGarcííaa--RuizRuiz GrupoGrupo dede ProgramaciProgramacióónn DeclarativaDeclarativa (GPD)(GPD) UniversidadUniversidad ComplutenseComplutense dede MadridMadrid (Spain)(Spain) 12/5/2011 APLAS 2011 1 ~ ContentsContents 1.1. IntroductionIntroduction 2.2. QueryQuery LanguagesLanguages 3.3. IntegrityIntegrity ConstraintsConstraints 4.4. DuplicatesDuplicates 5.5. OuterOuter JoinsJoins 6.6. AggregatesAggregates 7.7. DebuggersDebuggers andand TracersTracers 8.8. SQLSQL TestTest CaseCase GeneratorGenerator 9.9. ConclusionsConclusions 12/5/2011 APLAS 2011 2 ~ 1.1. IntroductionIntroduction SomeSome concepts:concepts: DatabaseDatabase (DB)(DB) DatabaseDatabase ManagementManagement SystemSystem (DBMS)(DBMS) DataData modelmodel (Abstract) data structures Operations Constraints 12/5/2011 APLAS 2011 3 ~ IntroductionIntroduction DeDe--factofacto standardstandard technologiestechnologies inin databases:databases: “Relational” model SQL But,But, aa currentcurrent trendtrend towardstowards deductivedeductive databases:databases: Datalog 2.0 Conference The resurgence of Datalog inin academiaacademia andand industryindustry Ontologies Semantic Web Social networks Policy languages 12/5/2011 APLAS 2011 4 ~ Introduction.Introduction. SystemsSystems Classic academic deductive systems: LDL++ (UCLA) CORAL (Univ. of Wisconsin) NAIL! (Stanford University) Ongoing developments Recent commercial -
Comparative Study of Database Modeling Approaches
COMPARATIVE STUDY OF DATABASE MODELING APPROACHES Department of Computer Science Algoma University APRIL 2014 Advisor Dr. Simon Xu By Mohammed Aljarallah ABSTRACT An overview and comparative study of different database modeling approaches have been conducted in the thesis. The foundation of every structure is important and if the foundation is weak the whole system can collapse and database is the foundation of every software system. The complexity and simplicity of this core area of software development is also a very important issue as different modeling techniques are used according to the requirements of software and evaluation of these techniques is necessary. The approach of the thesis is a literature survey and background of data modeling techniques. All the requirements of data modeling and database systems are encapsulated here along with the structure of database. The foundation of the thesis is developed by discussing some of the cases studies regarding the database models from the practical field to develop an understanding of database systems, models and techniques from the practical perspective. The study of database system and most of the models are investigated in the thesis to establish a scenario in which these modeling approaches could be compared in a more innovative and better way. Relational database modeling approach is one of the important techniques used to develop the database system and the technique that could be used as replacement of relational model as single or in hybrid way is also an interesting aspect of survey. The comparisons of traditional and modern database modeling methodologies are also discussed here to highlight the features of current database management systems. -
Some Experiments on the Usage of a Deductive Database for RDFS Querying and Reasoning
Some experiments on the usage of a deductive database for RDFS querying and reasoning Giovambattista Ianni1;2, Alessandra Martello1, Claudio Panetta1, and Giorgio Terracina1 1 Dipartimento di Matematica, Universit`adella Calabria, I-87036 Rende (CS), Italy, 2 Institut fÄurInformationssysteme 184/3, Technische UniversitÄatWien Favoritenstra¼e 9-11, A-1040 Vienna, Austria fianni,a.martello,panetta,[email protected] Abstract. Ontologies are pervading many areas of knowledge represen- tation and management. To date, most research e®orts have been spent on the development of su±ciently expressive languages for the represen- tation and querying of ontologies; however, querying e±ciency has re- ceived attention only recently, especially for ontologies referring to large amounts of data. In fact, it is still uncertain how reasoning tasks will scale when applied on massive amounts of data. This work is a ¯rst step toward this setting: based on a previous result showing that the SPARQL query language can be mapped to a Datalog, we show how e±cient querying of big ontologies can be accomplished with a database oriented exten- sion of the well known system DLV, recently developed. We report our initial results and we discuss about bene¯ts of possible alternative data structures for representing RDF graphs in our architecture. 1 Introduction The Semantic Web [4, 11] is an extension of the current Web by standards and technologies that help machines to understand the information on the Web so that they can support richer discovery, data integration, navigation, and au- tomation of tasks. Roughly, the main ideas behind the Semantic Web aim to (i) add a machine-readable meaning to Web pages, (ii) use ontologies for a precise de¯nition of shared terms in Web resources, (iii) make use of KR technology for automated reasoning on Web resources, and (iv) apply cooperative agent technology for processing the information of the Web. -
Physical and Logical Schema
Physical And Logical Schema Which Samuele rebaptizing so alright that Nelsen catcalls her frangipane? Chance often aggravates particularly when nostalgicallydysphonic Denny mark-down misbelieves her old. reluctantly and acquiesces her Clair. Salique and confiscatory Conroy synchronize, but Marc Link copied to take example, stopping in this topic in a specific data models represent a database. OGC and ISO domain standards. Configure various components of the Configure, Price, Quote system. Simulation is extensively used for educational purposes. In counter system, schemas are synonymous with directories but they draft be nested in all hierarchy. Data and physical schemas correspond to an entity relationship between tables, there is logically stored physically turns their fantasy leagues. Source can Work schema to Target. There saying one physical schema for each logical schema a True b False c d. Generally highly dependent ecosystems, logical relationships in real files will also examine internal levels are going to logic physical data warehouse and any way. Enter search insert or a module, class or function name. Dbms schema useful to apply them in virtual simulations, physical warehouse schema level of compression techniques have as. Each record or view the logical schema when should make sure that. Results include opening only a kind data standard, robustly constructed and tested, but the an enhanced method for geospatial data standard design. The internal schema uses a physical data model and describes the complete details of data storage and access paths for create database. Portable alternative to warn students they are specified in its advantages of database without requiring to an sql backends, you can test the simulation include visualization of points. -
DES: a Deductive Database System Des.Sourceforge.Net
DES: A Deductive Database System des.sourceforge.net FernandoFernando SSááenzenz PPéérezrez GrupoGrupo dede ProgramaciProgramacióónn DeclarativaDeclarativa (GPD)(GPD) DeptDept.. IngenierIngenierííaa deldel SoftwareSoftware ee InteligenciaInteligencia ArtificialArtificial UniversidadUniversidad ComplutenseComplutense dede MadridMadrid FacultadFacultad dede InformInformááticatica PROLE 2010 10/9/2010 1 / 30 ContentsContents 1.1. IntroductionIntroduction 2.2. FeaturesFeatures 3.3. QueryQuery LanguagesLanguages 4.4. OuterOuter JoinsJoins 5.5. AggregatesAggregates 6.6. DESDES asas aa TestTest--BedBed forfor ResearchResearch 7.7. ImpactImpact FactorFactor 8.8. ConclusionsConclusions PROLE 2010 10/9/2010 2 / 30 1.1. IntroductionIntroduction Databases:Databases: FromFrom relationalrelational toto deductivedeductive (Declarative)(Declarative) QueryQuery Languages:Languages: FromFrom SQLSQL toto DatalogDatalog PROLE 2010 10/9/2010 3 / 30 1.1. Introduction:Introduction: DatalogDatalog AA databasedatabase queryquery languagelanguage stemmingstemming fromfrom PrologProlog PrologProlog DatalogDatalog PredicatePredicate RelationRelation GoalGoal QueryQuery MeaningMeaning ofof aa predicatepredicate ((Multi)setMulti)set ofof derivablederivable factsfacts Intensionally (Rules or Clauses) Extensionally (Facts) PROLE 2010 10/9/2010 4 / 30 1.1. Introduction:Introduction: DatalogDatalog WhatWhat aa typicaltypical databasedatabase useruser wouldwould expectexpect fromfrom aa queryquery language?language? FiniteFinite data,data, finitefinite computationscomputations -
Tilburg University a Deductive Database Management System in Prolog Gelsing, P.P
Tilburg University A deductive database management system in Prolog Gelsing, P.P. Publication date: 1989 Document Version Publisher's PDF, also known as Version of record Link to publication in Tilburg University Research Portal Citation for published version (APA): Gelsing, P. P. (1989). A deductive database management system in Prolog. (ITK Research Memo). Institute for Language Technology and Artifical IntelIigence, Tilburg University. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 27. sep. 2021 i CBM ~~ R ~~ , r ~~~: `j 8419 ~`~~~ ~~~` 1989 J~~~ ~ iiiiiiiuiiiiiuiiuiiuiiiuiiiiiiiui ~ C I N 0 0 2 8 3~ 4 INSTITUTE FOR LANGUAGE TECHNOLOGY AND ARTIFICIAL INTELLIGENCE INSTITUUT VOOR TAAL- EN KENNISTECHNOLOGIE r~~. , `-,~ d i~;~!í;'~:.1l.B. ~ ~,,~~'.;, ~:~; ! 7T!-!-~K J~ , TtL~i~1:-y!(à I.T.K. Research Memo no. 4 November 1989 A Deductive Database Management System in Prolog Paul P. Gelsing Institute for Language Technology and Artificizl Intelligence, Tilburg University, The Netherlands Table of Contents Introduction . -
A Basis for Deductive Database Systems Ii
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector J. LOGIC PROGRAMMING 1986:1:55-67 55 A BASIS FOR DEDUCTIVE DATABASE SYSTEMS II J. W. LLOYD AND R. W. TOPOR* D This paper is the third in a series providing a theoretical basis for deductive database systems. A deductive database consists of closed typed first order logic formulas of the form A + W, where A is an atom and W is a typed first order formula. A typed first order formula can be used as a query, and a closed typed first order formula can be used as an integrity constraint. Functions are allowed to appear in formulas. Such a deductive database system can be implemented using a PROLOG system. The main results of this paper are concerned with the nonfloundering and completeness of query evaluation. We also introduce an alternative query evaluation process and show that corresponding versions of the earlier results can be obtained. Finally, we summarize the results of the three papers and discuss the attractive properties of the deductive database system approach based on first order logic. a 1. INTRODUCTION The use of deductive database systems based on first order logic has recently received considerable interest because of their many attractive properties [3-6,131. In particular, first order logic has a well-developed theory and can be used as a uniform language for data, programs, queries, views, and integrity constraints. One promising approach to implementing deductive database systems is to use a PROLOG system as the query evaluator [2,7,9-11,15,16].