Radial Keratotomy: 500 Consecutive Cases

Total Page:16

File Type:pdf, Size:1020Kb

Radial Keratotomy: 500 Consecutive Cases Eye (1989) 3, 663--671 Radial Keratotomy: 500 Consecutive Cases W. J. JORY London Summary A report on 500 consecutive eyes having radial keratotomy for myopia and myopic astigmatism is presented. Surgery was on an out-patient basis under local ana­ esthetic, with a foUow-up of 99.2 % of cases, 91.8% of the 294 patients elected to have radial keratotomy on the fellow eye. The surgical protocol was designed to minimise side effects and complications rather than maximise the reduction in myopia. 6/12 unaided vision or better was achieved by 99% of cases in the low myopia group, 91 % in the middle and 41 % in the high myopia group. Persistent hypermetropia of +1.oon or greater occurred in only 0.4% of cases and secondary astigmatism of 1.oon or greater in 1 % of cases. Corneal perforations were minimised by single-pass incisions, but this was at the cost of lesser myopic corrections in the higher myopic group. Centering on the visual axis rather than the centre of the pupil minimised glare sensitivity. No patient developed potentially blinding complications. Selection of Patients likely visual and dioptric results of the Patients were selected on the following surgery. criteria: (10) Although many patients were seen (1) Lower age limit was 18 years, there was no direct, they were encouraged to visit their upper limit for the surgery. general practitioner before attending the (2) The refractionwas stable. centre. Consultation reports were sent to (3) There was no active external ocular general practitioners before treatment disease. together with an account of radial kerato­ (4) Physiological myopia was present without tomy, and an operation report on the day of the ophthalmoscopic signs of progressive surgery. A finalreport was sent on completion pathological myopia. of treatment. (5) Candidates were either intolerant of con­ Technique of radial keratotomy tact lenses or required reduction or abolition (1) All surgeries were done on an out-patient of their refractive error for occupational basis in a sterile operating theatre and using reasons or because of sporting activities. sterile surgical techniques. (6) Amblyopic eyes were accepted. (2) Surgery was done using an operating (7) Patients were informed of the advantages microscope. and disadvantages of radial keratotomy. (3) Pre-medication of 10 mg valium was given (8) Patients were counselled on the possible orally. side effects and complications of radial (4) Surgery was done on the non-dominant keratotomy. eye first followed by the fellow eye approxi­ (9) Patients were given an estimate of the mately six weeks later. Correspondence to: London Centre for Refractive Surgery, 21 Devonshire Place, London WIN IPD. 664 W. J. JORY (5) The amount of surgery was planned by radial and transverse keratotomy. Secondary nomogram based on patient's age and refrac­ surgery was performed on 54 eyes or 10.8% of tive error. the total (PERK 9%). The total number of (6) Ultrasonic pachymetry to determine cor­ patients treated was 294, of which: 194 (66%) neal thickness was performed immediately were males (PERK 52%) and 100 (34%) preoperatively. females (PERK 48%). Follow up was possible (7) The eye was anaesthetised with Guttae in 496 out of the 500 cases (99.2%). Maximum Amethocaine 1% . follow-up was two years. Out of 294 patients, (8) The eye was kept minimally moist with 270 (91.8%) elected to have radial kerato­ sterile normal saline during the surgical tomy on the fellow eye. (Some of these cases procedure. are not included in the 500 consecutive ker­ (9) Great care was taken to mark the intersec­ atotomies described here). Seven patients tion of the visual axis on the cornea. had planned uniocular surgery. At baseline (10) Oull marking trephines with cross hairs the spherical equivalent refraction was (i) and 3.00, 3.25, 3.50, 3.75, 4.00, 4.50, 5.00 and -1.000 to -3.000 in 127 eyes (plus two not 6.00 mm diameters were used. followed up and therefore excluded). Eighty (11) Radial incisions were done with a single­ nine of these had radial keratotomy and 38 edged 45° angle diamond blade set at 115% of had radial and transverse keratotomy. (ii) the average para-central corneal depth -3.250 to -6.00D in 211 eyes with 153 measured by ultra-sonic pachmetry, aiming to patients having radial keratotomy and 58 achieve between 90% and 95% depth at the having radial and transverse keratotomy. (iii) commencement of the radial inCisions. Inci­ -6.250 to -9.000 in 117 eyes (plus two eyes sions were centrifugal, i. e. from optical zone not followed up and therefore excluded). One to periphery. The ultrasonic probe was placed hundred and one cases had radial keratotomy exactly on the optical (clear) zone mark in the and 16 had radial and tranverse keratotomy. position of the radial incisions. (iv) over -9.000 in 45 eyes. (12) Transverse incisions were done with a Some of the reasons given for wanting ker­ double-edged diamond blade. atotomy surgery included: (i) intolerance of (13) �iamond blades were set in micrometer contact lenses. handles and calibrated with a blade guage. (ii) Fear of losing glasses or contact lenses in (14) Both eyes of the same patient were done an emergency. with the same blade. (iii) Thickness and weight of glasses. (15) Incisions were thoroughly irrigated with (iv) Inability to participate in outdoor activi­ normal saline at the conclusion of the surgery. ties particularly swimming but also other (16) Guttae Gentamycin and Guttae Cyclogyl sports i.e. mountaineering and skiing. 1% were instilled in the operated eyes. (v) Improvement of unaided visual acuity to (17) The eye was lightly patched for three meet occupational requirements. hours only. (vi) No surgery was done for cosmetic reasons (18) Post-operative pain was controlled with only. tablets OF118 for 12 to 18 hours only. (19) Guttae Maxitrol was instilled post-oper­ Visual results atively twice a day for two weeks. The visual results are expressed as a percent­ (20) Follow-up was at two weeks and again at age of 6/12 uncorrected visual acuity since it is the two weeks after the second operation and considered that this is the most meaningful requested at six months and one year. No statistic to present to the patient considering patients have been discharged from care. radial keratotomy surgery. Average predicted The standard interval between eyes having result or average dioptric result gives a less surgery was six weeks, and between primary meaningful forecast to the patient. The per­ and secondary surgery on the same eye was centage of patients achieving emmetropia is between three and six months. not used, since for reasons described later, it is Study Population not always desirable to aim for this. Success of Five hundred consecutive eyes had radial or the surgery as defined by the International RADIAL KERATOTOMY: 500 CONSECUTIVE CASES 665 Society of Refractive Keratoplasty is 6/12 (20/ (2) Persistent signs and symptoms that did not 40) unaided vision.: reduce best corrected visual acuity. In the low myopia group of -1.000 to (3) Complications that actually or potentially -3.000, 125 eyes out of 127 achieved 6/12 reduced visual acuity. unaided vision or better. Of the remaining two cases, one had 4 cylinder pre-operatively (1) Transient Signs and Symptoms and one case was amblyopic. Ocular pain often described as similar to In the group of moderate myopia of toothache in the eye was common but was -3.250 to -6.000, 211 eyes had surgery. usually controlled by oral analgesics such as One hundred and eighty-six out of the 211 OF118. Pain was nearly always better by the eyes achieved 6/12 vision unaided or better. following day and was eased on the day of sur­ In the high myopia group of -6.250 to gery by removal of the eye patch. Many -9.000, 117 eyes had surgery, forty-five of patients described a slightly scratched feeling these achieved 6/12 vision or better unaided in the eye for two weeks post surgery after following surgery. which it gradually subsided. Pain was usually In the very high myopia group of greater more severe when an increased number of than -9.000 45 eyes had surgery. Every eye incisions had been made or where the corneal achieved a significant and major reduction in epithelium had tended to strip off during the the myopic spherical equivalent. incision. Very little conjunctival injection was Most refractions were stable at between caused by this surgery. one and two months and 5% of cases con­ Fluctuation of vision more properly tinued to decay up to the sixth month gate and described as variation of refraction, was three eyes to the one year gate. reported by many patients especially during The surgical plan was slightly conservative the first month but this decreased steadily. in the surgery on the first eye and used the (Table III) The eye became more myopic experience of the response of that eye in plan­ during the day but only one patient has ning the operation on the second eye. Thus required two pairs of glasses (for day and most of the secondary surgery was done on evening wear). Variation of refraction prob­ the firsteye. It was found that the response of ably occurs in all cases but is often not appar­ the second eye could be predicted accurately ent to the patient. It is caused by the increased from the response of the first eye. flexibility of the cornea during the healing Table I lists the results of post-operative period and is therefore more marked in the unaided visual acuity and where there has older patient with slower healing, particularly been decay of effect up to 12 months the in the higher myopic group.
Recommended publications
  • History of Refractive Surgery
    History of Refractive Surgery Refractive surgery corrects common vision problems by reshaping the cornea, the eye’s outermost layer, to bend light rays to focus on the retina, reducing an individual’s dependence on eye glasses or contact lenses.1 LASIK, or laser-assisted in situ keratomileusis, is the most commonly performed refractive surgery to treat myopia, hyperopia and astigmatism.1 The first refractive surgeries were said to be the removal of cataracts – the clouding of the lens in the eye – in ancient Greece.2 1850s The first lensectomy is performed to remove the lens 1996 Clinical trials for LASIK begin and are approved by the of the eye to correct myopia.2 Food & Drug Administration (FDA).3 Late 19th 2 Abott Medical Optics receives FDA approval for the first Century The first surgery to correct astigmatism takes place. 2001 femtosecond laser, the IntraLase® FS Laser.3 The laser is used to create a circular, hinged flap in the cornea, which allows the surgeon access to the tissue affecting the eye’s 1978 Radial Keratotomy is introduced by Svyatoslov Fyodorov shape.1 in the U.S. The procedure involves making a number of incisions in the cornea to change its shape and 2002 The STAR S4 IR® Laser is introduced. The X generation is correct refractive errors, such as myopia, hyperopia used in LASIK procedures today.4 and astigmatism.2,3 1970s Samuel Blum, Rangaswamy Srinivasan and James J. Wynne 2003 The FDA approves the use of wavefront technology,3 invent the excimer laser at the IBM Thomas J. Watson which creates a 3-D map of the eye to measure 1980s Research Center in Yorktown, New York.
    [Show full text]
  • Perioperative Assessment for Refractive Cataract Surgery
    642 REVIEW/UPDATE Perioperative assessment for refractive cataract surgery Kendall Donaldson, MD, MS, Luis Fernandez-Vega-Cueto, MD, PhD, Richard Davidson, MD, Deepinder Dhaliwal, MD, Rex Hamilton, MD, Mitchell Jackson, MD, Larry Patterson, MD, Karl Stonecipher, MD, for the ASCRS Refractive–Cataract Surgery Subcommittee As cataract surgery has evolved into lens-based refractive surgery, decisions regarding the power of the IOL to be implanted during cata- expectations for refractive outcomes continue to increase. During ract surgery. However, with all the available technology, it can be diffi- the past decade, advancements in technology have provided new cult to decipher which of the many technologies is necessary or best ways to measure the cornea in preparation for cataract surgery. for patients and for practices. This article reviews currently available The increasing ability to accurately estimate corneal power allows options for topography, tomography, keratometry, and biometry in determination of the most precise intraocular lens (IOL) for each pa- preparation for cataract surgery. In addition, intraoperative aberrom- tient. New equipment measures the anterior and posterior corneal etry and integrated cataract suites are reviewed. surfaces to most accurately estimate corneal power and corneal ab- errations. These measurements help surgeons make the best J Cataract Refract Surg 2018; 44:642–653 Q 2018 ASCRS and ESCRS ver the past 2 decades, we have experienced an only the anterior corneal surface with the use of topo- evolution in cataract surgery from simply the graphic devices; however with discovery of the impact of O removal of the cloudy lens to a refractive proced- posterior corneal astigmatism, we can now achieve higher ure that provides patients with increasingly higher levels degrees of accuracy by taking into account the effect of the of spectacle independence.
    [Show full text]
  • Ocular Surface Changes Associated with Ophthalmic Surgery
    Journal of Clinical Medicine Review Ocular Surface Changes Associated with Ophthalmic Surgery Lina Mikalauskiene 1, Andrzej Grzybowski 2,3 and Reda Zemaitiene 1,* 1 Department of Ophthalmology, Medical Academy, Lithuanian University of Health Sciences, 44037 Kaunas, Lithuania; [email protected] 2 Department of Ophthalmology, University of Warmia and Mazury, 10719 Olsztyn, Poland; [email protected] 3 Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, 61553 Poznan, Poland * Correspondence: [email protected] Abstract: Dry eye disease causes ocular discomfort and visual disturbances. Older adults are at a higher risk of developing dry eye disease as well as needing for ophthalmic surgery. Anterior segment surgery may induce or worsen existing dry eye symptoms usually for a short-term period. Despite good visual outcomes, ocular surface dysfunction can significantly affect quality of life and, therefore, lower a patient’s satisfaction with ophthalmic surgery. Preoperative dry eye disease, factors during surgery and postoperative treatment may all contribute to ocular surface dysfunction and its severity. We reviewed relevant articles from 2010 through to 2021 using keywords “cataract surgery”, ”phacoemulsification”, ”refractive surgery”, ”trabeculectomy”, ”vitrectomy” in combina- tion with ”ocular surface dysfunction”, “dry eye disease”, and analyzed studies on dry eye disease pathophysiology and the impact of anterior segment surgery on the ocular surface. Keywords: dry eye disease; ocular surface dysfunction; cataract surgery; phacoemulsification; refractive surgery; trabeculectomy; vitrectomy Citation: Mikalauskiene, L.; Grzybowski, A.; Zemaitiene, R. Ocular Surface Changes Associated with Ophthalmic Surgery. J. Clin. 1. Introduction Med. 2021, 10, 1642. https://doi.org/ 10.3390/jcm10081642 Dry eye disease (DED) is a common condition, which usually causes discomfort, but it can also be an origin of ocular pain and visual disturbances.
    [Show full text]
  • Effects of Depth of Incision on Final Outcome in Radial Keratotomy N
    Effects of Depth of Incision on final outcome in Radial Keratotomy N. Raja, M. K. Niazi B-35, PAF Complex, Sector E-9, Islamabad. Abstract Objective: To assess the effect of depth of incision on the final outcome of radial keratotomy for correction of myopia. Methods: Sixty-five eyes with preoperative uncorrected myopia between 2.5-6.0D in subjects with a mean age of 29.2 (+7) years underwent radial keratotomy between Sept 1999--July 2002 in department of Ophthalmology, Military Hospital, Rawalpindi. Based on their preoperative depth of incision the eyes were divided into group-A (twenty-five eyes), with an incision depth of 500-530 µm, and Group-B (forty eyes), with an incision depth of 531- 560 µm. The comparison between the postoperative visual acuity of two groups was made at the end of study after one years` follow up. Results: A total of Sixteen eyes in Group-A (64%) that were within one diopter of emmetropia at first follow-up reverted back to their preoperative myopic state after one year of surgery as compared to only two eyes (5%) in Group-B (p<0.05). Hyperopic shift occurred in two eyes (8%) in Group-A, as compared to four eyes (10%) of Group-B (p >0.05). After one year, refraction showed that only 24% cases of Group-A were within 1 diopter of emmetropia as compared to 85% cases in Group-B. Similarly, 40% cases of Group-A were within 2 diopters of emmetropia as compared to 90% cases of Group-B. Glare and variation of vision in the initial four weeks were the most frequently reported complications in both groups.
    [Show full text]
  • Refractive Surgery Faqs. Refractive Surgery the OD's Role in Refractive
    9/18/2013 Refractive Surgery Refractive Surgery FAQs. Help your doctor with refractive surgery patient education Corneal Intraocular Bill Tullo, OD, FAAO, LASIK Phakic IOL Verisys Diplomate Surface Ablation Vice-President of Visian PRK Clinical Services LASEK CLE – Clear Lens Extraction TLC Laser Eye Centers Epi-LASIK Cataract Surgery AK - Femto Toric IOL Multifocal IOL ICRS - Intacs Accommodative IOL Femtosecond Assisted Inlays Kamra The OD’s role in Refractive Surgery Refractive Error Determine the patient’s interest Myopia Make the patient aware of your ability to co-manage surgery Astigmatism Discuss advancements in the field Hyperopia Outline expectations Presbyopia/monovision Presbyopia Enhancements Risks Make a recommendation Manage post-op care and expectations Myopia Myopic Astigmatism FDA Approval Common Use FDA Approval Common Use LASIK: 1D – 14D LASIK: 1D – 8D LASIK: -0.25D – -6D LASIK: -0.25D – -3.50D PRK: 1D – 13D PRK: 1D – 6D PRK: -0.25D – -6D PRK: -0.25D – -3.50D Intacs: 1D- 3D Intacs: 1D- 3D Intacs NONE Intacs: NONE P-IOL: 3D- 20D P-IOL: 8D- 20D P-IOL: NONE P-IOL: NONE CLE/CAT: any CLE/CAT: any CLE/CAT: -0.75D - -3D CLE/CAT: -0.75D - -3D 1 9/18/2013 Hyperopia Hyperopic Astigmatism FDA Approval Common Use FDA Approval Common Use LASIK: 0.25D – 6D LASIK: 0.25D – 4D LASIK: 0.25D – 6D LASIK: 0.25D – 4D PRK: 0.25D – 6D PRK: 0.25D – 4D PRK: 0.25D – 6D PRK: 0.25D – 4D Intacs: NONE Intacs: NONE Intacs: NONE Intacs: NONE P-IOL: NONE P-IOL: NONE P-IOL: NONE P-IOL:
    [Show full text]
  • Improved Preservation of Human Corneal Basement Membrane
    BritishJournal ofOphthalmology 1994; 78: 863-870 863 Improved preservation ofhuman corneal basement membrane following freezing of donor tissue for Br J Ophthalmol: first published as 10.1136/bjo.78.11.863 on 1 November 1994. Downloaded from epikeratophakia Robert D Young, W John Armitage, Paul Bowerman, Stuart D Cook, David L Easty Abstract States, good results continue to be achieved by Current methods for the production of the small number ofBritish surgeons performing lenticules for epikeratophakia involve rapid the technique.4 However, no comprehensive freezing, cryolathing, and slow warming of the account of its long term outcome has yet been donor cornea. We have found that this pro- published. cedure causes structural damage to the Several complications resulting in the failure epithelial basement membrane in the donor of epikeratophakia have been reported, includ- cornea which may subsequently contribute to ing infection, graft dehiscence, persistent inter- poor postoperative re-epithelialisation of the face haze or opacity, ulceration, and imperfect implant, leading to graft failure. Endeavouring re-epithelialisation. Among these, the failure of to overcome these problems, the effects of host epithelial cells to migrate over and re- cryoprotection of donor cornea were investi- surface the anterior face of the grafted tissue gated, using dimethyl sulphoxide, in conjunc- continues to be the major reason for the removal tion with different cooling and warming rates ofepikeratophakia lenticules.'-'0 as part of the protocol for cryolathing. The Epithelial healing is itselfa complex phenome- structural integrity of the epithelial basement non involving mitosis of host cells at the graft membrane zone (BMZ) was then assessed by periphery, centripetal migration, and attach- electron microscopy and by immunofluores- ment.
    [Show full text]
  • Laser Vision Correction Surgery
    Patient Information Laser Vision Correction 1 Contents What is Laser Vision Correction? 3 What are the benefits? 3 Who is suitable for laser vision correction? 4 What are the alternatives? 5 Vision correction surgery alternatives 5 Alternative laser procedures 5 Continuing in glasses or contact lenses 5 How is Laser Vision Correction performed? 6 LASIK 6 Surface laser treatments 6 SMILE 6 What are the risks? 7 Loss of vision 7 Additional surgery 7 Risks of contact lens wear 7 What are the side effects? 8 Vision 8 Eye comfort 8 Eye Appearance 8 Will laser vision correction affect my future eye health care? 8 How can I reduce the risk of problems? 9 How much does laser vision correction cost? 9 2 What is Laser Vision Correction? Modern surgical lasers are able to alter the curvature and focusing power of the front surface of the eye (the cornea) very accurately to correct short sight (myopia), long sight (hyperopia), and astigmatism. Three types of procedure are commonly used in If you are suitable for laser vision correction, your the UK: LASIK, surface laser treatments (PRK, surgeon will discuss which type of procedure is the LASEK, TransPRK) and SMILE. Risks and benefits are best option for you. similar, and all these procedures normally produce very good results in the right patients. Differences between these laser vision correction procedures are explained below. What are the benefits? For most patients, vision after laser correction is similar to vision in contact lenses before surgery, without the potential discomfort and limitations on activity. Glasses may still be required for some activities after Short sight and astigmatism normally stabilize in treatment, particularly for reading in older patients.
    [Show full text]
  • Photorefractive Keratectomy for Correction of Epikeratophakia
    CASE REPORTS AND SMALL CASE SERIES high myopia resulting from poste- results might be related to the pre- Photorefractive Keratectomy rior lenticonus. Postsurgical refrac- existing corneal stromal abnormali- for Correction of tion was stable for 8 years, then a ties in their patients, which were not Epikeratophakia Regression rapid myopic regression of the epi- observed in our group. Thus, PRK keratophakic lenses was observed can effectively be used to treat epi- Excimer laser photorefractive kera- the following year (Table). In- keratophakic regressed lenses in a se- tectomy (PRK) is widely used for the stead of removing the failed epikera- lected group of patients in whom correction of myopia, astigmatism, tophakic lenses, we performed PRK both the epikeratograft and the sur- and hyperopia.1,2 It has also been on the eyes. rounding cornea are clear. This used for correction of astigmatism method eliminates the need for re- after penetrating keratoplasty.3 Results. Two and a half years after moval of the epikeratograft and ex- Epikeratophakia has been used PRK, the refraction in all 4 eyes is posing the patient to the risks of suc- in the treatment of nontolerant con- stable and the epigrafts are clear. The cessive penetrating keratoplasty. tact lens keratoconous patients.4,5 Table presents the refraction and vi- The epigrafts were made from ma- sual acuity results for the eyes be- Hirsh Ami, MD chined corneal tissue that was found fore PRK and at 3 months, 1 year, Solberg Yoram, MD, PhD unsuitable for penetrating kerato- and 21⁄2 years after PRK. No haze has Cahana Michael, MD plasty.
    [Show full text]
  • Presbyopia Treatment by Monocular Peripheral Presbylasik
    Presbyopia Treatment by Monocular Peripheral PresbyLASIK Robert Leonard Epstein, MD, MSEE; Mark Andrew Gurgos, COA ABSTRACT spheric corneal LASIK laser ablation to produce a relatively more highly curved central cornea and PURPOSE: To investigate monocular peripheral presby- a relatively fl at midperipheral cornea has been A 1 LASIK on the non-dominant eye with distance-directed termed “central presbyLASIK” by Alió et al, who reported monofocal refractive surgery on the dominant eye in their surgical results using a proprietary ablation profi le with treating presbyopia. 6-month follow-up. Another proprietary central presbyLASIK technique was described and patented by Ruiz2 and indepen- METHODS: One hundred three patients underwent dently tested by Jackson3 in Canada. treatment with a VISX S4 system and follow-up from 1.1 to 3.9 years (mean 27.4 months). Average patient Peripheral presbyLASIK with a relatively fl atter central age was 53.3 years. Preoperative refraction ranged cornea and more highly curved corneal midperiphery was from Ϫ9.75 to ϩ2.75 diopters (D). Non-dominant eyes described by Avalos4 (PARM technique), and a proprietary underwent peripheral presbyLASIK—an aspheric, pupil– peripheral presbyLASIK algorithm was described and patent- size dependent LASIK to induce central corneal relative ed by Tamayo.5 Telandro6 reported 3-month follow-up results fl attening and peripheral corneal relative steepening. Dominant eyes underwent monofocal refraction-based on a different peripheral presbyLASIK algorithm. 7 LASIK (75.8%), wavefront-guided LASIK, limbal relaxing McDonnell et al fi rst described improved visual acuity from incisions, or no treatment to optimize distance vision. a multifocal effect after radial keratotomy.
    [Show full text]
  • Managing a Patient with Post-Radial Keratotomy and Sjogren's Syndrome with Scleral Contact Lenses
    Managing a patient with Post-Radial Keratotomy and Sjogren's Syndrome with Scleral Contact Lenses Case Report 1 Candidate #123 Abstract: Surgeons used radial keratotomy (RK) in the past as an attempt to flatten the corneal shape and reduce refractive myopia in a patient. In the present day, many post-RK patients suffer from poor, fluctuating vision due to an irregular corneal shape induced from this procedure. Rigid gas permeable lenses, such as scleral lenses, are an excellent solution to improve and stabilize vision. Scleral lenses help recreate an optimal refractive surface to enhance vision for the patient. Patients with specific dry eye symptoms can receive a therapeutic benefit from scleral lens use as the lens acts as a protective barrier for corneal hydration. This is a case report on a patient suffering from both ocular and systemic conditions resulting in decreased vision and discomfort from severe dry eye. She has been successfully fit with scleral lenses to improve signs and symptoms. Key Words: Radial keratotomy (RK), dry eye, Sjogren's syndrome, scleral lens 2300 East Campbell Avenue, Unit 316 Phoenix, AZ 85016 [email protected] (480) 815-4135 1 Introduction: Patients may present to their eye care provider with multiple conditions impacting 2 both their ocular and systemic health. Ocular comorbidities frequently lead to visual impairment 3 and decreased quality of life. To suitably manage these coinciding ailments, it is essential to 4 obtain an early and proper diagnosis. [1] In some instances, similar approaches can help alleviate 5 patient symptoms in managing these comorbidities. 6 7 The goal of refractive surgery is to eliminate the dependency on glasses and contact lenses.
    [Show full text]
  • Radial Keratotomy: a Review of 300 Cases Br J Ophthalmol: First Published As 10.1136/Bjo.76.10.586 on 1 October 1992
    586 British JournalofOphthalmology 1992; 76: 586-589 Radial keratotomy: a review of 300 cases Br J Ophthalmol: first published as 10.1136/bjo.76.10.586 on 1 October 1992. Downloaded from A K Bates, S J Morgan, A D McG Steele Abstract were utilised depending on degree of myopia. Three hundred consecutive cases of radial Finally the incisions were carefully irrigated with keratotomy performed between 1985 and 1990 sterile saline, topical antibiotics were instilled, were reviewed. There were no sight and the eye was padded. threatening complications of surgery and no Postoperatively all patients received patient lost one or more lines of corrected prednisolone sodium drops 0 3% and chloram- Snelien acuity. Overall 78*7% saw 6/12 or phenicol drops four times daily for 4 weeks. better unaided postoperatively and 51*7% saw Patients were routinely reviewed at 2 and 6 6/6 or better. Refraction showed 61*3% to be weeks after surgery and then at 3, 6, 12, and 18 within 1 dioptre ofemmetropia and 86*7% were months. within 2 dioptres. Further analysis demon- strated that results of unaided acuity and proximity to emmetropia were much better for Results low (<-2.87 D) and moderate (-3.0 to -5*87 Three hundred procedures were performed on D) than for high (>-6-0 D) myopes. 169 patients ofwhom 100 were male. All were 21 (BrJ Ophthalmol 1992; 76: 586-589) years of age or older. The age of the patients at surgery is shown in Figure 1 and it may be seen that the majority fall within the 21-30 years age Currently myopia is being treated by radial group.
    [Show full text]
  • Anterior Segment Surgery and Complications CATARACT EXTRACTION and INTRAOCULAR LENS IMPLANTATION
    10 Anterior Segment Surgery and Complications CATARACT EXTRACTION AND INTRAOCULAR LENS IMPLANTATION Complications PENETRATING KERATOPLASTY Complications Correction of Astigmatism in a Corneal Graft LAMELLAR KERATOPLASTY SUPERFICIAL KERATECTOMY EXCIMER LASER PHOTOTHERAPEUTIC KERATECTOMY CONJUNCTIVAL FLAP LIMBAL STEM CELL TRANSPLANTATION PTERYGIUM EXCISION AND CONJUNCTIVAL AUTOGRAFT CONJUNCTIVAL AND CORNEAL TUMOR EXCISION CORNEAL PERFORATION SURGERY PERMANENT KERATOPROSTHESIS REFRACTIVE SURGERY Radial Keratotomy Excimer Laser Photorefractive Keratectomy Laser In Situ Keratomileusis CONCLUSION Anterior segment surgery ranges from routine cataract extraction and lens implantation, one of the most common surgical operations in the United States, to rarely performed surgery such as permanent keratoprosthesis. It also encompasses surgery first performed centuries ago, such as rudimentary pterygium excision, to the latest in keratorefractive surgery. CATARACT EXTRACTION AND INTRAOCULAR LENS IMPLANTATION The many reasons for the development of cataracts are discussed in detail in Chapter 8. Most cataracts are acquired, but they can also be congenital. This section focuses primarily on the treatment of acquired cataracts in adults. Cataracts in adults are generally age related, but some lens opacities may result from other causes such as trauma, inflammation, systemic illness such as diabetes, or medications such as corticosteroids. Cataracts generally advance slowly over years but can advance rapidly over months, or even faster in some patients. The primary indication for cataract extraction is diminished vision caused by the cataract, significantly affecting the patient's lifestyle. The exact point at which this hardship occurs depends on the patient. Certain patients require little visual function and may delay cataract surgery for years or indefinitely. Other patients with high visual needs seek cataract surgery with much smaller degrees of visual loss.
    [Show full text]