Behavioural Plasticity and Species Interactions As Key Drivers of Tropical Fish Range-Extensions on Temperate Reefs

Total Page:16

File Type:pdf, Size:1020Kb

Behavioural Plasticity and Species Interactions As Key Drivers of Tropical Fish Range-Extensions on Temperate Reefs BEHAVIOURAL PLASTICITY AND SPECIES INTERACTIONS AS KEY DRIVERS OF TROPICAL FISH RANGE-EXTENSIONS ON TEMPERATE REEFS ERICKA OLIVEIRA CAVALCANTI CONI Presented for the degree of Doctor of Philosophy School of Biological Sciences/Ecology and Environment Science The University of Adelaide August 2020 CONTENTS Abstract........................................................................................................................... 3 Declaration...................................................................................................................... 4 Acknowledgements................................................................................................5 Chapter I..........................................................................................................................6 Climate change and the geographic redistribution of species...............................7 References............................................................................................................ 19 Chapter II...................................................................................................................... 25 Abstract................................................................................................................ 28 Introduction.......................................................................................................... 29 Methodology........................................................................................................ 32 Results.................................................................................................................. 38 Discussion............................................................................................................ 45 Conclusion.....................................................................................................................48 References............................................................................................................ 49 Supplementary Information................................................................................. 55 Chapter III..................................................................................................................... 64 Abstract................................................................................................................ 67 Introduction.......................................................................................................... 68 Methodology........................................................................................................ 71 Results.................................................................................................................. 78 Discussion............................................................................................................ 81 Conclusion.....................................................................................................................84 References............................................................................................................ 85 Supplementary Information................................................................................. 90 Chapter IV...................................................................................................................100 Abstract.............................................................................................................. 103 Introduction........................................................................................................ 104 Methodology...................................................................................................... 107 Results................................................................................................................ 112 Discussion.......................................................................................................... 115 Conclusion...................................................................................................................118 References.......................................................................................................... 119 Supplementary Information............................................................................... 123 Chapter V.................................................................................................................... 131 Abstract.............................................................................................................. 134 Introduction........................................................................................................ 135 Methodology...................................................................................................... 139 Results................................................................................................................ 151 Discussion................................................................................................................... 157 Conclusion..........................................................................................................139 References.......................................................................................................... 158 Supplementary Information............................................................................... 165 Chapter VI...................................................................................................................183 General discussion............................................................................................. 184 Future directions................................................................................................ 190 General conclusion.............................................................................................193 References.......................................................................................................... 195 ABSTRACT Species invasions have historically driven many natural communities around the world into collapse. As climate changes, species are shifting their distribution to regions with more tolerable conditions, intensifying species invasion rates. By feeling the heat, many marine tropical species are moving towards cooler environments. When extending their ranges they are forced to interact and share habitats and resources with native species, potentially triggering modifications in the structure and functionality of temperate communities. For at least two decades, hundreds of tropical fish species have been recruiting to Australian temperate reefs, but successful colonisation depends on how they respond to and cope with unfamiliar environmental conditions. Temperate ecosystems represent a potential hostile environment for tropical species, due to novel prey, predators, competitors, habitats, and suboptimal temperatures. This thesis provides empirical evidence that behavioural traits and biological interactions are underpinning mechanisms controlling the success of tropical fish establishment in temperate waters, and demonstrates some degree of resistance by temperate fish communities to tropical invasions. By assessing a wide range of behavioural responses of temperate and tropical fishes across a temperature gradient from low to high latitudes along the eastern Australian coast, I reveal that behavioural plasticity, generalism and segregation of tropical and temperate species at their leading and trailing edges, respectively, might facilitate coexistence in temperature mixing zones (Chapter 2). In contrast, tropical fish are more risk- averse at leading edges and such behaviour was associated with reduced foraging, possibly compromising their permanent establishment on temperate reefs under current warming (Chapter 3). I further reveal that physical (low temperature and/or unfamiliarity with temperate environmental conditions) and biological (behaviour and abundance of temperate competitors) effects reduce the efficiency of tropical fishes in their food acquisition, which may compromise their fitness delaying their establishment in temperate environments nowadays (Chapter 4). Whilst warming has led to the expansion of sea-urchin barrens in temperate regions, which creates suitable habitats for tropical fish colonisation, future ocean acidification may inhibit the formation of such habitats, reducing the probability of successful recruitment of tropical fishes and the emergence of novel fish community structures (Chapter 5). Although some biological and physical processes may slow the pace of tropicalisation, under future ocean warming tropical fishes may no longer struggle for survival in cooler- temperate water, which has historically been acting as the main barrier against the tropicalisation of temperate ecosystems. Yet, ocean acidification can slow down the process of tropicalisation at the leading edges of species ranges. 3 DECLARATION I certify that this work contains no material which has been accepted for the award of any other degree or diploma in my name, in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. In addition, I certify that no part of this work will, in the future, be used in a submission in my name, for any other degree or diploma in any university or other tertiary institution without the prior approval of the University
Recommended publications
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Redalyc.Isopods (Isopoda: Aegidae, Cymothoidae, Gnathiidae)
    Revista de Biología Tropical ISSN: 0034-7744 [email protected] Universidad de Costa Rica Costa Rica Bunkley-Williams, Lucy; Williams, Jr., Ernest H.; Bashirullah, Abul K.M. Isopods (Isopoda: Aegidae, Cymothoidae, Gnathiidae) associated with Venezuelan marine fishes (Elasmobranchii, Actinopterygii) Revista de Biología Tropical, vol. 54, núm. 3, diciembre, 2006, pp. 175-188 Universidad de Costa Rica San Pedro de Montes de Oca, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44920193024 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Isopods (Isopoda: Aegidae, Cymothoidae, Gnathiidae) associated with Venezuelan marine fishes (Elasmobranchii, Actinopterygii) Lucy Bunkley-Williams,1 Ernest H. Williams, Jr.2 & Abul K.M. Bashirullah3 1 Caribbean Aquatic Animal Health Project, Department of Biology, University of Puerto Rico, P.O. Box 9012, Mayagüez, PR 00861, USA; [email protected] 2 Department of Marine Sciences, University of Puerto Rico, P.O. Box 908, Lajas, Puerto Rico 00667, USA; ewil- [email protected] 3 Instituto Oceanografico de Venezuela, Universidad de Oriente, Cumaná, Venezuela. Author for Correspondence: LBW, address as above. Telephone: 1 (787) 832-4040 x 3900 or 265-3837 (Administrative Office), x 3936, 3937 (Research Labs), x 3929 (Office); Fax: 1-787-834-3673; [email protected] Received 01-VI-2006. Corrected 02-X-2006. Accepted 13-X-2006. Abstract: The parasitic isopod fauna of fishes in the southern Caribbean is poorly known. In examinations of 12 639 specimens of 187 species of Venezuelan fishes, the authors found 10 species in three families of isopods (Gnathiids, Gnathia spp.
    [Show full text]
  • Final Report Reef Monitoring of the Artificial Reef Gen. Hoyt S Vandenberg Key West, Florida April 30, 2009 to July 19, 2010
    Final Report Reef Monitoring of the Artificial Reef Gen. Hoyt S Vandenberg Key West, Florida April 30, 2009 to July 19, 2010 Prepared by Lad Akins, REEF Director of Special Projects Dr Christy SeMMens, REEF Director of Science The Reef Environmental Education Foundation (REEF) 98300 Overseas Hwy, Key Largo, FL, 33037, (305) 852-0030 CoMpleted in FulfillMent of FWC Grant # 08266 for The Florida Fish and Wildlife Conservation ComMission Artificial Reef PrograM July 15, 2011 Final Report REEF Monitoring of Gen Hoyt S Vandenberg Prepared for submission by the Reef Environmental Education Foundation July 2011 Background The Gen. Hoyt S. Vandenberg is a 523’ steel hulled missile tracking ship that was intentionally sunk seven miles off Key West, Florida, on May 27, 2009, to serve as a recreational diving and fishing artificial reef. The ship lies in 140’ of water; at its broadest point the deck is 71’ wide, creating habitat from 45’ to the sandy bottom. The Vandenberg is the largest artificial reef in the Florida Keys National Marine Sanctuary and the second largest in the world. The City of Key West, the Artificial Reefs of the Keys (ARK), Florida Fish and Wildlife Conservation Commission (FWC) and the Florida Keys National Marine Sanctuary (FKNMS) worked closely to obtain, clean, scuttle and sink the vessel, as well as raise funds for the effort. Prior to the sinking, the Reef Environmental Education Foundation (REEF) was contracted by the FWC to conduct a study with pre- and post-deployment monitoring of the fish assemblages associated with the Vandenberg and adjacent reef areas for a period of one year.
    [Show full text]
  • First Record of Acanthurus Chirurgus (Bloch, 1787) from the Central Mediterranean, with Notes on Other Acanthuridae Recorded in the Region
    BioInvasions Records (2017) Volume 6, Issue 2: 105–109 Open Access DOI: https://doi.org/10.3391/bir.2017.6.2.03 © 2017 The Author(s). Journal compilation © 2017 REABIC Rapid Communication A bevy of surgeons: first record of Acanthurus chirurgus (Bloch, 1787) from the central Mediterranean, with notes on other Acanthuridae recorded in the region Julian Evans1,*, Reno Tonna2 and Patrick J. Schembri1 1Department of Biology, University of Malta, Msida MSD2080, Malta 2Namaste Flat 5, Triq il-Merzuq, Birzebbuga, Malta Author e-mails: [email protected] (JE), [email protected] (RT), [email protected] (PJS) *Corresponding author Received: 16 November 2016 / Accepted: 13 December 2016 / Published online: 24 January 2017 Handling editor: Ernesto Azzurro Abstract The doctorfish Acanthurus chirurgus (Bloch, 1787) is reported for the first time from the central Mediterranean, based on a specimen caught in Maltese waters during August 2016. Since the only previous Mediterranean record of this species was based on a single individual observed in the Tyrrhenian Sea, the present record likely represents an independent introduction that may have occurred through the aquarium trade or via shipping. Two other surgeonfish species, Acanthurus coeruleus Bloch and Schneider, 1801 and Acanthurus monroviae Steindachner, 1876, were previously recorded from the central Mediterranean. While A. coeruleus may have established a population in the Levantine Sea, like A. chirurgus it has only been reported once from Malta (and from the central Mediterranean in general); both A. coeruleus and A. chirurgus are, therefore, considered to be casual species in Maltese waters. In contrast, A. monroviae was reported from several Mediterranean countries including Tunisia and Malta in the central Mediterranean.
    [Show full text]
  • First Records of the Fish Abudefduf Sexfasciatus (Lacepède, 1801) and Acanthurus Sohal (Forsskål, 1775) in the Mediterranean Sea
    BioInvasions Records (2018) Volume 7, Issue 2: 205–210 Open Access DOI: https://doi.org/10.3391/bir.2018.7.2.14 © 2018 The Author(s). Journal compilation © 2018 REABIC Rapid Communication First records of the fish Abudefduf sexfasciatus (Lacepède, 1801) and Acanthurus sohal (Forsskål, 1775) in the Mediterranean Sea Ioannis Giovos1,*, Giacomo Bernardi2, Georgios Romanidis-Kyriakidis1, Dimitra Marmara1 and Periklis Kleitou1,3 1iSea, Environmental Organization for the Preservation of the Aquatic Ecosystems, Thessaloniki, Greece 2Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, USA 3Marine and Environmental Research (MER) Lab Ltd., Limassol, Cyprus *Corresponding author E-mail: [email protected] Received: 26 October 2017 / Accepted: 16 January 2018 / Published online: 14 March 2018 Handling editor: Ernesto Azzurro Abstract To date, the Mediterranean Sea has been subjected to numerous non-indigenous species’ introductions raising the attention of scientists, managers, and media. Several introduction pathways contribute to these introduction, including Lessepsian migration via the Suez Canal, accounting for approximately 100 fish species, and intentional or non-intentional aquarium releases, accounting for at least 18 species introductions. In the context of the citizen science project of iSea “Is it alien to you?… Share it”, several citizens are engaged and regularly report observations of alien, rare or unknown marine species. The project aims to monitor the establishment and expansion of alien species in Greece. In this study, we present the first records of two popular high-valued aquarium species, the scissortail sergeant, Abudefduf sexfasciatus and the sohal surgeonfish, Acanthurus sohal, in along the Mediterranean coastline of Greece. The aggressive behaviour of the two species when in captivity, and the absence of records from areas close to the Suez Canal suggest that both observations are the result of aquarium intentional releases, rather than a Lessepsian migration.
    [Show full text]
  • Assessing the Effectiveness of Surrogates for Conserving Biodiversity in the Port Stephens-Great Lakes Marine Park
    Assessing the effectiveness of surrogates for conserving biodiversity in the Port Stephens-Great Lakes Marine Park Vanessa Owen B Env Sc, B Sc (Hons) School of the Environment University of Technology Sydney Submitted in fulfilment for the requirements of the degree of Doctor of Philosophy September 2015 Certificate of Original Authorship I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research work and preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used as indicated in the thesis. Signature of Student: Date: Page ii Acknowledgements I thank my supervisor William Gladstone for invaluable support, advice, technical reviews, patience and understanding. I thank my family for their encouragement and support, particularly my mum who is a wonderful role model. I hope that my children too are inspired to dream big and work hard. This study was conducted with the support of the University of Newcastle, the University of Technology Sydney, University of Sydney, NSW Office of the Environment and Heritage (formerly Department of Environment Climate Change and Water), Marine Park Authority NSW, NSW Department of Primary Industries (Fisheries) and the Integrated Marine Observing System (IMOS) program funded through the Department of Industry, Climate Change, Science, Education, Research and Tertiary Education. The sessile benthic assemblage fieldwork was led by Dr Oscar Pizarro and undertaken by the University of Sydney’s Australian Centre for Field Robotics.
    [Show full text]
  • And Long-Term Movement Patterns of Six Temperate Reef Fishes (Families Labridae and Monacanthidae)
    Mar: Freshwater Res., 1995,46, 853-60 Short- and Long-term Movement Patterns of Six Temperate Reef Fishes (Families Labridae and Monacanthidae) Neville S. Barrett Zoology Department, University of Tasmania, GPO Box 252C Hobart, Tas. 7001, Australia. Abstract. Movement patterns were studied on a 1-ha isolated reef surrounding Arch Rock in southern Tasmania. Short-term movements were identified from diver observations, and interpretation of long-term movements involved multiple recaptures of tagged individuals. Visual observations indicated that the sex-changing labrids Notolabrus tetricus, Pictilabrus laticlavius and Pseudolabrus psittaculus were all site-attached, with females having overlapping home ranges and males being territorial. In the non-sex-changing labrid Notolabrus fucicola and in the monacanthids Penicipelta vittiger and Meuschenia australis, there was no evidence of territorial behaviour and I-h movements were in excess of the scale of the study. The long-term results indicated that all species were permanent reef residents, with most individuals of all species except M. australis always being recaptured within a home range of 100 m X 25 m or less. Only 15% of individuals of M. australis were always recaptured within this range category. The natural habitat boundary of open sand between the Arch Rock reef and adjacent reefs appeared to be an effective deterrent to emigration. The use of natural boundaries should be an important consideration in the design of marine reserves where the aim is to minimize the loss of protected species to adjacent fished areas. Introduction associated with using SCUBA in colder waters with low Most tropical reef fishes are now regarded as sedentary, visibility.
    [Show full text]
  • Reproductive Biology of Acanthurus Coeruleus (Bloch & Schneider, 1801) (Perciformes: Acanthuridae) in the North Coast of the State of Pernambuco, Brazil
    Reproductive biology of Acanthurus coeruleus (Bloch & Schneider, 1801) (Perciformes: Acanthuridae) in the north coast of the State of Pernambuco, Brazil RAILMA MARIA VILANOVA QUEIROZ1, MARIANA GOMEZ DO RÊGO2, FABIO HISSA VIEIRA HAZIN1 & PAULO GUILHERME VASCONCELOS DE OLIVEIRA1 1 Universidade Federal Rural de Pernambuco, Departamento de Pesca e Aqüicultura, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900, Recife, Pernambuco, Brasil. 2 Universidade Federal Rural de Pernambuco, Departamento de Morfologia e Fisiologia Animal, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900, Recife, Pernambuco, Brasil. *Corresponding author: [email protected] Abstract. The objective of this work was to determine aspects of reproductive biology of Blue tang surgeonfish, Acanthurus coeruleus. 496 specimens were sampled, between January 2013 and December 2015, out of which, 235 were male and 261 were female. Sexual ratio did not significanlty differ among genders, and a ratio of 1.11 females per 1 male was found. Total length frequency distribution ranged from 14 to 41.7 cm with predominance of females in the 24-32 cm classes and of males in the 26- 32 cm classes. The estimated allometric coefficient (2.7695), suggests that the species presents negative allometric growth. According to the GSI and the gonads histological analysis, the reproductive period of the species occurs from June to January with periods of greater reproductive activity from August. The oocyte diameter-frequency distribution analysis revealed a multimodal distribution, confirming the evidence of multiple spawning and batch fecundity varied from 20000 to 55000 oocytes. Spawning frequency estimates, based on the hydrated oocytes (HO) method indicated that the species spawns once every 3.8 days, while the estimates based on the post-ovulatory follicle (POF) method indicated a spawning every 3.4 days, during a 6-month spawning season lasting from August to January.
    [Show full text]
  • Monitoring Functional Groups of Herbivorous Reef Fishes As Indicators of Coral Reef Resilience a Practical Guide for Coral Reef Managers in the Asia Pacifi C Region
    Monitoring Functional Groups of Herbivorous Reef Fishes as Indicators of Coral Reef Resilience A practical guide for coral reef managers in the Asia Pacifi c Region Alison L. Green and David R. Bellwood IUCN RESILIENCE SCIENCE GROUP WORKING PAPER SERIES - NO 7 IUCN Global Marine Programme Founded in 1958, IUCN (the International Union for the Conservation of Nature) brings together states, government agencies and a diverse range of non-governmental organizations in a unique world partnership: over 100 members in all, spread across some 140 countries. As a Union, IUCN seeks to influence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable. The IUCN Global Marine Programme provides vital linkages for the Union and its members to all the IUCN activities that deal with marine issues, including projects and initiatives of the Regional offices and the six IUCN Commissions. The IUCN Global Marine Programme works on issues such as integrated coastal and marine management, fisheries, marine protected areas, large marine ecosystems, coral reefs, marine invasives and protection of high and deep seas. The Nature Conservancy The mission of The Nature Conservancy is to preserve the plants, animals and natural communities that represent the diversity of life on Earth by protecting the lands and waters they need to survive. The Conservancy launched the Global Marine Initiative in 2002 to protect and restore the most resilient examples of ocean and coastal ecosystems in ways that benefit marine life, local communities and economies.
    [Show full text]
  • Using Environmental DNA for Marine Monitoring and Planning
    Network of Conservation Educators & Practitioners What’s in the Water? Using environmental DNA for Marine Monitoring and Planning Author(s): Kristin E. Douglas, Patrick Shea, Ana Luz Porzecanski, and Eugenia Naro-Maciel Source: Lessons in Conservation, Vol. 10, Issue 1, pp. 29–48 Published by: Network of Conservation Educators and Practitioners, Center for Biodiversity and Conservation, American Museum of Natural History Stable URL: ncep.amnh.org/linc This article is featured in Lessons in Conservation, the official journal of the Network of Conservation Educators and Practitioners (NCEP). NCEP is a collaborative project of the American Museum of Natural History’s Center for Biodiversity and Conservation (CBC) and a number of institutions and individuals around the world. Lessons in Conservation is designed to introduce NCEP teaching and learning resources (or “modules”) to a broad audience. NCEP modules are designed for undergraduate and professional level education. These modules—and many more on a variety of conservation topics—are available for free download at our website, ncep.amnh.org. To learn more about NCEP, visit our website: ncep.amnh.org. All reproduction or distribution must provide full citation of the original work and provide a copyright notice as follows: “Copyright 2020, by the authors of the material and the Center for Biodiversity and Conservation of the American Museum of Natural History. All rights reserved.” Illustrations obtained from the American Museum of Natural History’s library: images.library.amnh.org/digital/
    [Show full text]
  • Catalogue of Protozoan Parasites Recorded in Australia Peter J. O
    1 CATALOGUE OF PROTOZOAN PARASITES RECORDED IN AUSTRALIA PETER J. O’DONOGHUE & ROBERT D. ADLARD O’Donoghue, P.J. & Adlard, R.D. 2000 02 29: Catalogue of protozoan parasites recorded in Australia. Memoirs of the Queensland Museum 45(1):1-164. Brisbane. ISSN 0079-8835. Published reports of protozoan species from Australian animals have been compiled into a host- parasite checklist, a parasite-host checklist and a cross-referenced bibliography. Protozoa listed include parasites, commensals and symbionts but free-living species have been excluded. Over 590 protozoan species are listed including amoebae, flagellates, ciliates and ‘sporozoa’ (the latter comprising apicomplexans, microsporans, myxozoans, haplosporidians and paramyxeans). Organisms are recorded in association with some 520 hosts including mammals, marsupials, birds, reptiles, amphibians, fish and invertebrates. Information has been abstracted from over 1,270 scientific publications predating 1999 and all records include taxonomic authorities, synonyms, common names, sites of infection within hosts and geographic locations. Protozoa, parasite checklist, host checklist, bibliography, Australia. Peter J. O’Donoghue, Department of Microbiology and Parasitology, The University of Queensland, St Lucia 4072, Australia; Robert D. Adlard, Protozoa Section, Queensland Museum, PO Box 3300, South Brisbane 4101, Australia; 31 January 2000. CONTENTS the literature for reports relevant to contemporary studies. Such problems could be avoided if all previous HOST-PARASITE CHECKLIST 5 records were consolidated into a single database. Most Mammals 5 researchers currently avail themselves of various Reptiles 21 electronic database and abstracting services but none Amphibians 26 include literature published earlier than 1985 and not all Birds 34 journal titles are covered in their databases. Fish 44 Invertebrates 54 Several catalogues of parasites in Australian PARASITE-HOST CHECKLIST 63 hosts have previously been published.
    [Show full text]
  • Authorship, Availability and Validity of Fish Names Described By
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Stuttgarter Beiträge Naturkunde Serie A [Biologie] Jahr/Year: 2008 Band/Volume: NS_1_A Autor(en)/Author(s): Fricke Ronald Artikel/Article: Authorship, availability and validity of fish names described by Peter (Pehr) Simon ForssSSkål and Johann ChrisStian FabricCiusS in the ‘Descriptiones animaliumÂ’ by CarsSten Nniebuhr in 1775 (Pisces) 1-76 Stuttgarter Beiträge zur Naturkunde A, Neue Serie 1: 1–76; Stuttgart, 30.IV.2008. 1 Authorship, availability and validity of fish names described by PETER (PEHR ) SIMON FOR ss KÅL and JOHANN CHRI S TIAN FABRI C IU S in the ‘Descriptiones animalium’ by CAR S TEN NIEBUHR in 1775 (Pisces) RONALD FRI C KE Abstract The work of PETER (PEHR ) SIMON FOR ss KÅL , which has greatly influenced Mediterranean, African and Indo-Pa- cific ichthyology, has been published posthumously by CAR S TEN NIEBUHR in 1775. FOR ss KÅL left small sheets with manuscript descriptions and names of various fish taxa, which were later compiled and edited by JOHANN CHRI S TIAN FABRI C IU S . Authorship, availability and validity of the fish names published by NIEBUHR (1775a) are examined and discussed in the present paper. Several subsequent authors used FOR ss KÅL ’s fish descriptions to interpret, redescribe or rename fish species. These include BROU ss ONET (1782), BONNATERRE (1788), GMELIN (1789), WALBAUM (1792), LA C E P ÈDE (1798–1803), BLO C H & SC HNEIDER (1801), GEO ff ROY SAINT -HILAIRE (1809, 1827), CUVIER (1819), RÜ pp ELL (1828–1830, 1835–1838), CUVIER & VALEN C IENNE S (1835), BLEEKER (1862), and KLUNZIN G ER (1871).
    [Show full text]