LISP to Scheme.Key

Total Page:16

File Type:pdf, Size:1020Kb

LISP to Scheme.Key Section 10: LISP to Scheme Evolution of Software Languages Theo D'Hondt Bachelor of Computer Science Faculty of Sciences and Bio-Engineering Sciences Vrije Universiteit Brussel Academic Year 2015-2016 Evolution of Software Languages 1 10: LISP to Scheme John McCarthy • Father of LISP • Credited with term "AI" • Built on the IBM 604/9 • Originated at MIT and at http://www.independent.co.uk/news/obituaries/ Stanford john-mccarthy-computer-scientist-known-as-the- father-of-ai-6255307.html • Survives in Common Lisp • Gave rise to Scheme • First "functional" language Evolution of Software Languages 2 10: LISP to Scheme John McCarthy Lispers say these are LISP... Arc, AutoLISP,• Father Clojure, of LISP Common Lisp, Emacs• Credited Lisp, EuLisp, with termFranz "AI" Lisp, Hy, Interlisp,• Built on ISLISP, the IBM LeLisp, 604/9 LFE, Maclisp,• Originated MDL, Newlisp, at MIT NIL, and at http://www.independent.co.uk/news/obituaries/ Stanford john-mccarthy-computer-scientist-known-as-the- father-of-ai-6255307.htmlPicolisp, Portable Standard Lisp, Racket, RPL,• Survives Scheme, in Common SKILL, Lisp Spice• Lisp,Gave T, rise Zetalisp to Scheme • First "functional" language Evolution of Software Languages 3 10: LISP to Scheme LISP I Programmer's Manual (March 1960) Define a function collapse: given some implementation for a function append: Evolution of Software Languages 4 10: LISP to Scheme LISP I Programmer's Manual (March 1960) Define a function collapse: resulting in the input card deck given some implementation for a function append: Evolution of Software Languages 5 10: LISP to Scheme (pre-) Common Lisp • S-expressions • Functions as values • Meta-circularity • Quoting and eval • Automatic garbage collection • Full syntactic macros • (later) CLOS and MOP • Encourages imperative style • Ambivalent view on functions/function values • Ambivalent view on scoping • No tail call optimisation • No full continuations Evolution of Software Languages 6 10: LISP to Scheme (pre-) Common Lisp • S-expressions • Functions as values • Meta-circularity • Quoting and eval • Automatic garbage collection • Full syntactic macros • (later) CLOS and MOP • Encourages imperative style • Ambivalent view on functions/function values • Ambivalent view on scoping • No tail call optimisation • No full continuations https://en.wikipedia.org/wiki/Symbolics Evolution of Software Languages 7 10: LISP to Scheme (pre-) Common Lisp • S-expressions • Functions as values • Meta-circularity • Quoting and eval • Automatic garbage collection • Full syntactic macros • (later) CLOS and MOP • Encourages imperative style • Ambivalent view on functions/function values • Ambivalent view on scoping http://www.computerhistory.org/ revolution/artificial- • No tail call optimisation intelligence-robotics/13/290/1254 • No full continuations https://en.wikipedia.org/wiki/Symbolics Evolution of Software Languages 8 10: LISP to Scheme LISP example1 (defparameter *width* 100) (defparameter *height* 30) (defparameter *jungle* '(45 10 10 10)) (defparameter *plant-energy* 80) (defparameter *plants* (make-hash-table :test #'equal)) (defun random-plant (left top width height) (let ((pos (cons (+ left (random width)) (+ top (random height))))) (setf (gethash pos *plants*) t))) (defun add-plants () (apply #'random-plant *jungle*) (random-plant 0 0 *width* *height*)) (defstruct animal x y energy dir genes) (defparameter *animals* (list (make-animal :x (ash *width* -1) :y (ash *height* -1) :energy 1000 :dir 0 :genes (loop repeat 8 collecting (1+ (random 10)))))) http://landoflisp.com/source.html Evolution of Software Languages 9 10: LISP to Scheme LISP example2 (defun move (animal) (let ((dir (animal-dir animal)) (x (animal-x animal)) (y (animal-y animal))) (setf (animal-x animal) (mod (+ x (cond ((and (>= dir 2) (< dir 5)) 1) ((or (= dir 1) (= dir 5)) 0) (t -1)) *width*) *width*)) (setf (animal-y animal) (mod (+ y (cond ((and (>= dir 0) (< dir 3)) -1) ((and (>= dir 4) (< dir 7)) 1) (t 0)) *height*) *height*)) (decf (animal-energy animal)))) (defun turn (animal) (let ((x (random (apply #'+ (animal-genes animal))))) (labels ((angle (genes x) (let ((xnu (- x (car genes)))) (if (< xnu 0) 0 (1+ (angle (cdr genes) xnu)))))) (setf (animal-dir animal) (mod (+ (animal-dir animal) (angle (animal-genes animal) x)) 8))))) Evolution of Software Languages 10 10: LISP to Scheme LISP example3 (defun eat (animal) (let ((pos (cons (animal-x animal) (animal-y animal)))) (when (gethash pos *plants*) (incf (animal-energy animal) *plant-energy*) (remhash pos *plants*)))) (defparameter *reproduction-energy* 200) (defun reproduce (animal) (let ((e (animal-energy animal))) (when (>= e *reproduction-energy*) (setf (animal-energy animal) (ash e -1)) (let ((animal-nu (copy-structure animal)) (genes (copy-list (animal-genes animal))) (mutation (random 8))) (setf (nth mutation genes) (max 1 (+ (nth mutation genes) (random 3) -1))) (setf (animal-genes animal-nu) genes) (push animal-nu *animals*))))) Evolution of Software Languages 11 10: LISP to Scheme LISP example4 (defun update-world () (setf *animals* (remove-if (lambda (animal) (<= (animal-energy animal) 0)) *animals*)) (mapc (lambda (animal) (turn animal) (move animal) (eat animal) (reproduce animal)) *animals*) (add-plants)) (defun draw-world () (loop for y below *height* do (progn (fresh-line) (princ "|") (loop for x below *width* do (princ (cond ((some (lambda (animal) (and (= (animal-x animal) x) (= (animal-y animal) y))) *animals*) #\M) ((gethash (cons x y) *plants*) #\*) (t #\space)))) (princ "|")))) Evolution of Software Languages 12 10: LISP to Scheme LISP example5 (defun evolution () (draw-world) (fresh-line) (let ((str (read-line))) (cond ((equal str "quit") ()) (t (let ((x (parse-integer str :junk-allowed t))) (if x (loop for i below x do (update-world) if (zerop (mod i 1000)) do (princ #\.)) (update-world)) (evolution)))))) Evolution of Software Languages 13 10: LISP to Scheme Carl Hewitt • Researcher at MIT • Built "Planner" • Defined "Actors" http://www.erlang-factory.com/sfbay2015/carl-hewitt • Hard to read papers • Fathered ACT-1, ... (Henry Lieberman) • (PhD with Seymour Papert) Evolution of Software Languages 14 10: LISP to Scheme The Actor Model1 Evolution of Software Languages 15 10: LISP to Scheme The Actor Model2 (define p (act->scheme '((define counter (BEHAVIOR (value) (METHOD (up n) (BECOME counter (+ value n))) (METHOD (down n) (BECOME counter (- value n))) (METHOD (display) (display "value=") (display value) (newline)))) (define c1 (NEW counter 0)) (define c2 (NEW counter 5)) (SEND c2 down 2) (SEND c1 up 1) (SEND c2 up 5) (SEND c1 display) (SEND c2 display)))) (define act-p (eval p (interaction-environment))) (act-p)) Evolution of Software Languages 16 10: LISP to Scheme The Actor Model2 (define p (act->scheme '((define counter (BEHAVIOR (value) (METHOD (up n) (BECOME counter (+ value n))) (METHOD (down n) (BECOME counter (- value n))) (METHOD (display) (display "value=") (display value) (newline)))) (define c1 (NEW counter 0)) (define c2 (NEW counter 5)) (SEND c2 down 2) (SEND c1 up 1) (SEND c2 up 5) (SEND c1 display) (SEND c2 display)))) (define act-p (eval p (interaction-environment))) (act-p)) Evolution of Software Languages 17 10: LISP to Scheme The Actor Model2 (define p (act->scheme '((define counter (BEHAVIOR (value) (METHOD (up n) (BECOME counter (+ value n))) (METHOD (down n) (BECOME counter (- value n))) (METHOD (display) (display "value=") (display value) (newline)))) (define c1 (NEW counter 0)) (define c2 (NEW counter 5)) (SEND c2 down 2) (SEND c1 up 1) (SEND c2 up 5) (SEND c1 display) (SEND c2 display)))) (define act-p (eval p (interaction-environment))) (act-p)) Evolution of Software Languages 18 10: LISP to Scheme The Actor Model2 (define p (act->scheme '((define counter (BEHAVIOR (value) (METHOD (up n) (list 'lambda empty (list '$new$ '$scheduler$ (list 'lambda (list 'ignore) (list 'define 'counter (list (list 'lambda empty (list 'define 'methods (BECOME (list counter'$make-dictionary$)) (+ value (list n))) '$put$ 'methods (list 'quote 'up) (list 'lambda ((listMETHOD 'self (down 'become! n) 'value 'n) (list 'become! 'counter (list '+ 'value 'n)))) (list '$put$ 'methods (list 'quote 'down) (list 'lambda (list 'self 'become! 'value 'n) (list 'become! 'counter (list '- 'value ( 'n))))BECOME (list counter '$put$ 'methods (- value (list n)))'quote 'display) (list 'lambda (list 'self 'become! (METHOD 'value) (display)(list 'display "value=") (list 'display 'value) (list 'newline))) (list 'lambda (list 'args) (list 'define 'tail (list 'last 'args)) (list 'define (list 'dispatcher 'msg 'arg-list) (list 'set-cdr! (display 'tail 'arg-list) "value=") (list 'apply (list '$get$ 'methods 'msg) 'args)) 'dispatcher)))) (list 'define (display 'c1 (list '$make-actor$ value) 'counter 0)) (list 'define 'c2 (list '$make-actor$ 'counter 5)) (list '$new$ '$scheduler$ (list 'lambda (list 'ignore) (list '$switch$ '$scheduler$) (list 'c2 (list 'quote (newline)))) 'down) 2) (list '$exit$ '$scheduler$))) (list '$new$ '$scheduler$ (list 'lambda (list 'ignore) (list '$switch$ '$scheduler$) (list 'c1 (list 'quote 'up) 1) (list '$exit$ (define '$scheduler$))) c1 (NEW (list counter '$new$ '$scheduler$ 0)) (list 'lambda (list 'ignore) (list '$switch$ '$scheduler$) (list 'c2 (list 'quote 'up) 5) (list '$exit$ '$scheduler$))) (list '$new$ '$scheduler$ (list(define 'lambda c2 (list (NEW 'ignore) counter (list '$switch$5)) '$scheduler$) (list 'c1 (list 'quote 'display)) (list '$exit$ '$scheduler$))) (list '$new$ '$scheduler$ (list 'lambda (list 'ignore) (list
Recommended publications
  • Introduction to Programming in Lisp
    Introduction to Programming in Lisp Supplementary handout for 4th Year AI lectures · D W Murray · Hilary 1991 1 Background There are two widely used languages for AI, viz. Lisp and Prolog. The latter is the language for Logic Programming, but much of the remainder of the work is programmed in Lisp. Lisp is the general language for AI because it allows us to manipulate symbols and ideas in a commonsense manner. Lisp is an acronym for List Processing, a reference to the basic syntax of the language and aim of the language. The earliest list processing language was in fact IPL developed in the mid 1950’s by Simon, Newell and Shaw. Lisp itself was conceived by John McCarthy and students in the late 1950’s for use in the newly-named field of artificial intelligence. It caught on quickly in MIT’s AI Project, was implemented on the IBM 704 and by 1962 to spread through other AI groups. AI is still the largest application area for the language, but the removal of many of the flaws of early versions of the language have resulted in its gaining somewhat wider acceptance. One snag with Lisp is that although it started out as a very pure language based on mathematic logic, practical pressures mean that it has grown. There were many dialects which threaten the unity of the language, but recently there was a concerted effort to develop a more standard Lisp, viz. Common Lisp. Other Lisps you may hear of are FranzLisp, MacLisp, InterLisp, Cambridge Lisp, Le Lisp, ... Some good things about Lisp are: • Lisp is an early example of an interpreted language (though it can be compiled).
    [Show full text]
  • High-Level Language Features Not Found in Ordinary LISP. the GLISP
    DOCUMENT RESUME ED 232 860 SE 042 634 AUTHOR Novak, Gordon S., Jr. TITLE GLISP User's Manual. Revised. INSTITUTION Stanford Univ., Calif. Dept. of Computer Science. SPONS AGENCY Advanced Research Projects Agency (DOD), Washington, D.C.; National Science Foundation, Washington, D.C. PUB DATE 23 Nov 82 CONTRACT MDA-903-80-c-007 GRANT SED-7912803 NOTE 43p.; For related documents, see SE 042 630-635. PUB TYPE Guides General (050) Reference Materials General (130) EDRS PRICE MF01/PCO2 Plus Postage. DESCRIPTORS *Computer Programs; *Computer Science; Guides; *Programing; *Programing Languages; *Resource Materials IDENTIFIERS *GLISP Programing Language; National Science Foundation ABSTRACT GLISP is a LISP-based language which provides high-level language features not found in ordinary LISP. The GLISP language is implemented by means of a compiler which accepts GLISP as input and produces ordinary LISP as output. This output can be further compiled to machine code by the LISP compiler. GLISP is available for several ISP dialects, including Interlisp, Maclisp, UCI Lisp, ELISP, Franz Lisp, and Portable Standard Lisp. The goal of GLISP is to allow structured objects to be referenced in a convenient, succinct language and to allow the structures of objects to be changed without changing the code which references the objects. GLISP provides both PASCAL-like and English-like syntaxes; much of the power and brevity of GLISP derive from the compiler features necessary to support the relatively informal, English-like language constructs. Provided in this manual is the documentation necessary for using GLISP. The documentation is presented in the following sections: introduction; object descriptions; reference to objects; GLISP program syntax; messages; context rules and reference; GLISP and knowledge representation languages; obtaining and using GLISP; GLISP hacks (some ways of doing things in GLISP which might not be entirely obvious at first glance); and examples of GLISP object declarations and programs.
    [Show full text]
  • Implementation Notes
    IMPLEMENTATION NOTES XEROX 3102464 lyric Release June 1987 XEROX COMMON LISP IMPLEMENTATION NOTES 3102464 Lyric Release June 1987 The information in this document is subject to change without notice and should not be construed as a commitment by Xerox Corporation. While every effort has been made to ensure the accuracy of this document, Xerox Corporation assumes no responsibility for any errors that may appear. Copyright @ 1987 by Xerox Corporation. Xerox Common Lisp is a trademark. All rights reserved. "Copyright protection claimed includes all forms and matters of copyrightable material and information now allowed by statutory or judicial law or hereinafter granted, including, without limitation, material generated from the software programs which are displayed on the screen, such as icons, screen display looks, etc. " This manual is set in Modern typeface with text written and formatted on Xerox Artificial Intelligence workstations. Xerox laser printers were used to produce text masters. PREFACE The Xerox Common Lisp Implementation Notes cover several aspects of the Lyric release. In these notes you will find: • An explanation of how Xerox Common Lisp extends the Common Lisp standard. For example, in Xerox Common Lisp the Common Lisp array-constructing function make-array has additional keyword arguments that enhance its functionality. • An explanation of how several ambiguities in Steele's Common Lisp: the Language were resolved. • A description of additional features that provide far more than extensions to Common Lisp. How the Implementation Notes are Organized . These notes are intended to accompany the Guy L. Steele book, Common Lisp: the Language which represents the current standard for Co~mon Lisp.
    [Show full text]
  • Hy Documentation Release 0.12.1+64.G5eb9283
    hy Documentation Release 0.12.1+64.g5eb9283 Paul Tagliamonte Apr 14, 2017 Contents 1 Documentation Index 3 1.1 Quickstart................................................4 1.2 Tutorial..................................................5 1.2.1 Basic intro to Lisp for Pythonistas...............................5 1.2.2 Hy is a Lisp-flavored Python..................................7 1.2.3 Macros............................................. 12 1.2.4 Hy <-> Python interop..................................... 13 1.2.5 Protips!............................................. 14 1.3 Hy Style Guide.............................................. 14 1.3.1 Prelude............................................. 15 1.3.2 Layout & Indentation...................................... 15 1.3.3 Coding Style.......................................... 16 1.3.4 Conclusion........................................... 17 1.3.5 Thanks............................................. 17 1.4 Documentation Index.......................................... 18 1.4.1 Command Line Interface.................................... 18 1.4.2 Hy <-> Python interop..................................... 19 1.4.3 Hy (the language)........................................ 21 1.4.4 Hy Core............................................. 47 1.4.5 Reader Macros......................................... 65 1.4.6 Internal Hy Documentation................................... 66 1.5 Extra Modules Index........................................... 72 1.5.1 Anaphoric Macros....................................... 72 1.5.2
    [Show full text]
  • PUB DAM Oct 67 CONTRACT N00014-83-6-0148; N00014-83-K-0655 NOTE 63P
    DOCUMENT RESUME ED 290 438 IR 012 986 AUTHOR Cunningham, Robert E.; And Others TITLE Chips: A Tool for Developing Software Interfaces Interactively. INSTITUTION Pittsburgh Univ., Pa. Learning Research and Development Center. SPANS AGENCY Office of Naval Research, Arlington, Va. REPORT NO TR-LEP-4 PUB DAM Oct 67 CONTRACT N00014-83-6-0148; N00014-83-K-0655 NOTE 63p. PUB TYPE Reports - Research/Technical (143) EDRS PRICE MF01/PC03 Plus Postage. DESCRIPTORS *Computer Graphics; *Man Machine Systems; Menu Driven Software; Programing; *Programing Languages IDENTIF7ERS Direct Manipulation Interface' Interface Design Theory; *Learning Research and Development Center; LISP Programing Language; Object Oriented Programing ABSTRACT This report provides a detailed description of Chips, an interactive tool for developing software employing graphical/computer interfaces on Xerox Lisp machines. It is noted that Chips, which is implemented as a collection of customizable classes, provides the programmer with a rich graphical interface for the creation of rich graphical interfaces, and the end-user with classes for modeling the graphical relationships of objects on the screen and maintaining constraints between them. This description of the system is divided into five main sections: () the introduction, which provides background material and a general description of the system; (2) a brief overview of the report; (3) detailed explanations of the major features of Chips;(4) an in-depth discussion of the interactive aspects of the Chips development environment; and (5) an example session using Chips to develop and modify a small portion of an interface. Appended materials include descriptions of four programming techniques that have been sound useful in the development of Chips; descriptions of several systems developed at the Learning Research and Development Centel tsing Chips; and a glossary of key terms used in the report.
    [Show full text]
  • The Evolution of Lisp
    1 The Evolution of Lisp Guy L. Steele Jr. Richard P. Gabriel Thinking Machines Corporation Lucid, Inc. 245 First Street 707 Laurel Street Cambridge, Massachusetts 02142 Menlo Park, California 94025 Phone: (617) 234-2860 Phone: (415) 329-8400 FAX: (617) 243-4444 FAX: (415) 329-8480 E-mail: [email protected] E-mail: [email protected] Abstract Lisp is the world’s greatest programming language—or so its proponents think. The structure of Lisp makes it easy to extend the language or even to implement entirely new dialects without starting from scratch. Overall, the evolution of Lisp has been guided more by institutional rivalry, one-upsmanship, and the glee born of technical cleverness that is characteristic of the “hacker culture” than by sober assessments of technical requirements. Nevertheless this process has eventually produced both an industrial- strength programming language, messy but powerful, and a technically pure dialect, small but powerful, that is suitable for use by programming-language theoreticians. We pick up where McCarthy’s paper in the first HOPL conference left off. We trace the development chronologically from the era of the PDP-6, through the heyday of Interlisp and MacLisp, past the ascension and decline of special purpose Lisp machines, to the present era of standardization activities. We then examine the technical evolution of a few representative language features, including both some notable successes and some notable failures, that illuminate design issues that distinguish Lisp from other programming languages. We also discuss the use of Lisp as a laboratory for designing other programming languages. We conclude with some reflections on the forces that have driven the evolution of Lisp.
    [Show full text]
  • Balancing the Eulisp Metaobject Protocol
    Balancing the EuLisp Metaob ject Proto col x y x z Harry Bretthauer and Harley Davis and Jurgen Kopp and Keith Playford x German National Research Center for Computer Science GMD PO Box W Sankt Augustin FRG y ILOG SA avenue Gallieni Gentilly France z Department of Mathematical Sciences University of Bath Bath BA AY UK techniques which can b e used to solve them Op en questions Abstract and unsolved problems are presented to direct future work The challenge for the metaob ject proto col designer is to bal One of the main problems is to nd a b etter balance ance the conicting demands of eciency simplicity and b etween expressiveness and ease of use on the one hand extensibili ty It is imp ossible to know all desired extensions and eciency on the other in advance some of them will require greater functionality Since the authors of this pap er and other memb ers while others require greater eciency In addition the pro of the EuLisp committee have b een engaged in the design to col itself must b e suciently simple that it can b e fully and implementation of an ob ject system with a metaob ject do cumented and understo o d by those who need to use it proto col for EuLisp Padget and Nuyens intended This pap er presents a metaob ject proto col for EuLisp to correct some of the p erceived aws in CLOS to sim which provides expressiveness by a multileveled proto col plify it without losing any of its p ower and to provide the and achieves eciency by static semantics for predened means to more easily implement it eciently The current metaob
    [Show full text]
  • Allegro CL User Guide
    Allegro CL User Guide Volume 1 (of 2) version 4.3 March, 1996 Copyright and other notices: This is revision 6 of this manual. This manual has Franz Inc. document number D-U-00-000-01-60320-1-6. Copyright 1985-1996 by Franz Inc. All rights reserved. No part of this pub- lication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means electronic, mechanical, by photocopying or recording, or otherwise, without the prior and explicit written permission of Franz incorpo- rated. Restricted rights legend: Use, duplication, and disclosure by the United States Government are subject to Restricted Rights for Commercial Software devel- oped at private expense as specified in DOD FAR 52.227-7013 (c) (1) (ii). Allegro CL and Allegro Composer are registered trademarks of Franz Inc. Allegro Common Windows, Allegro Presto, Allegro Runtime, and Allegro Matrix are trademarks of Franz inc. Unix is a trademark of AT&T. The Allegro CL software as provided may contain material copyright Xerox Corp. and the Open Systems Foundation. All such material is used and distrib- uted with permission. Other, uncopyrighted material originally developed at MIT and at CMU is also included. Appendix B is a reproduction of chapters 5 and 6 of The Art of the Metaobject Protocol by G. Kiczales, J. des Rivieres, and D. Bobrow. All this material is used with permission and we thank the authors and their publishers for letting us reproduce their material. Contents Volume 1 Preface 1 Introduction 1.1 The language 1-1 1.2 History 1-1 1.3 Format
    [Show full text]
  • An Industrial Strength Theorem Prover for a Logic Based on Common Lisp
    An Industrial Strength Theorem Prover for a Logic Based on Common Lisp y z Matt Kaufmannand J Strother Moore Personal use of this material is permitted. particular style of formal veri®cation that has shown consid- However, permission to reprint/republish this erable promise in recent years is the use of general-purpose material for advertising or promotional pur- automated reasoning systems to model systems and prove poses or for creating new collective works for properties of them. Every such reasoning system requires resale or redistribution to servers or lists, or considerable assistance from the user, which makes it im- to reuse any copyrighted component of this portant that the system provide convenient ways for the user work in other works must be obtained from the to interact with it. IEEE.1 One state-of-the-art general-purpose automated reason- ing system is ACL2: ªA Computational Logic for Applica- AbstractÐACL2 is a re-implemented extended version tive Common Lisp.º A number of automated reasoning of Boyer and Moore's Nqthm and Kaufmann's Pc-Nqthm, systems now exist, as we discuss below (Subsection 1.1). In intended for large scale veri®cation projects. This paper this paper we describe ACL2's offerings to the user for con- deals primarily with how we scaled up Nqthm's logic to an venientªindustrial-strengthºuse. WebegininSection2with ªindustrial strengthº programming language Ð namely, a a history of theACL2 project. Next, Section 3 describes the large applicative subset of Common Lisp Ð while preserv- logic supportedby ACL2, which has been designed for con- ing the use of total functions within the logic.
    [Show full text]
  • Lisp Exercises
    Language-Oriented Programming Assignment Author: Prof. Dr. Bernhard Humm, Darmstadt University of Applied Sciences More Lisp exercises You can find a list of 99 Lisp problems on http://picolisp.com/wiki/?99problems . Select problems you like most. Below you find a selection by me. For all problems: 1. Use recursion and the functions for list processing and mathematics presented in the lecture. You may also use the higher-order functions detect, select, collect, and reduce for solving the exercises. Do not use the Lisp loop macro! 2. Implement a test case and a suitable function and then test your implementation. 1 Working with lists P03 (*) Find the K'th element of a list. The first element in the list is number 1. Example: * (element-at '(a b c d e) 3) C P05 (*) Reverse a list. P06 (*) Find out whether a list is a palindrome. A palindrome can be read forward or backward; e.g. (x a m a x). P15 (**) Replicate the elements of a list a given number of times. Example: * (repli '(a b c) 3) (A A A B B B C C C) Page 1 Language-Oriented Programming P22 (*) Create a list containing all integers within a given range. If second argument is smaller than first, produce a list in descending order. Example: * (range 4 9) (4 5 6 7 8 9) 2 Arithmetic P31 (**) Determine whether a given integer number is prime. Example: * (is-prime 7) T P32 (**) Determine the greatest common divisor of two positive integer numbers. Use Euclid's algorithm. Example: * (gcd 36 63) 9 P35 (**) Determine the prime factors of a given positive integer.
    [Show full text]
  • Internet Engineering Task Force January 18-20, 1989 at University
    Proceedings of the Twelfth Internet Engineering Task Force January 18-20, 1989 at University of Texas- Austin Compiled and Edited by Karen Bowers Phill Gross March 1989 Acknowledgements I would like to extend a very special thanks to Bill Bard and Allison Thompson of the University of Texas-Austin for hosting the January 18-20, 1989 IETF meeting. We certainly appreciated the modern meeting rooms and support facilities made available to us at the new Balcones Research Center. Our meeting was especially enhanced by Allison’s warmth and hospitality, and her timely response to an assortment of short notice meeting requirements. I would also like to thank Sara Tietz and Susie Karlson of ACE for tackling all the meeting, travel and lodging logistics and adding that touch of class we all so much enjoyed. We are very happy to have you on our team! Finally, a big thank you goes to Monica Hart (NRI) for the tireless and positive contribution she made to the compilation of these Proceedings. Phill Gross TABLE OF CONTENTS 1. CHAIRMANZS MESSAGE 2. IETF ATTENDEES 3. FINAL AGENDA do WORKING GROUP REPORTS/SLIDES UNIVERSITY OF TEXAS-AUSTIN JANUARY 18-20, 1989 NETWORK STATUS BRIEFINGS AND TECHNICAL PRESENTATIONS O MERIT NSFNET REPORT (SUSAN HARES) O INTERNET REPORT (ZBIGNIEW 0PALKA) o DOEESNET REPORT (TONY HAIN) O CSNET REPORT (CRAIG PARTRIDGE) O DOMAIN SYSTEM STATISTICS (MARK LOTTOR) O SUPPORT FOR 0SI PROTOCOLS IN 4.4 BSD (ROB HAGENS) O TNTERNET WORM(MICHAEL KARELS) PAPERS DISTRIBUTED AT ZETF O CONFORMANCETESTING PROFILE FOR D0D MILITARY STANDARD DATA COMMUNICATIONS HIGH LEVEL PROTOCOL ~MPLEMENTATIONS (DCA CODE R640) O CENTER FOR HIGH PERFORMANCE COMPUTING (U OF TEXAS) Chairman’s Message Phill Gross NRI Chair’s Message In the last Proceedings, I mentioned that we were working to improve the services of the IETF.
    [Show full text]
  • P106-Kessler.Pdf
    Proceedings of the ACM SIGPLAN '84 Symposium on Compiler Construction, SIGPLAN Noticea Vol. 19, No. 8, June 198~ Peep - An Architectura! Description Driven Peephob Optimizer Robert R. Kessler 1 Portable AI Support Systems Project Department of Computer Science University of Utah Salt Lake City, Utah 84112 Abstract global flow analysis, because even though it uses the global information it still performs "local" peephole transformations, Peep is an architectural description driven peephole optimizer, e.g. it doesn't do code motion and loop invariant removal. that is being adapted for use in the Portable Standard Lisp Peep is currently being integrated into the Portable Standard compiler. Tables of optimizable instructions are generated prior Lisp (PSL) compiler [9]. The PSL environment is an ideal place to the creation of the compiler from the architectural description to utilize Peep, since its compiler needs a new optimizer for each of the target machine. Peep then performs global flow analysis target machine (Currently PSL is supported on DecSystem-20, on the target machine code and optimizes instructions as defined DEC Vax, Motorola 68000, Cray-1 and IBM-370.) The PSL in the table. This global flow analysis allows optimization across compiler generates code by translating the input language into a basic blocks of instructions, and the use of tables created at sequence of virtual machine instructions, which are then macro compiler-generation time minimizes the overhead of discovering expanded into the target machine "LAP" instructions. These optimizable instructions. instructions are then translated into binary code for subsequent direct loading into the running image, or into a FASL file for 1.
    [Show full text]