A Secure Electronic Voting Software Application Based on Image Steganography and Cryptography

Total Page:16

File Type:pdf, Size:1020Kb

A Secure Electronic Voting Software Application Based on Image Steganography and Cryptography A Secure Electronic Voting Software Application based on Image Steganography and Cryptography Lauretha Rura Supervised by: Dr. Biju Issac A thesis submitted in fulfillment of the requirements for the degree of Master of Science (by Research) at Swinburne University of Technology (Sarawak Campus) Faculty of Engineering, Computing and Science 2013 ABSTRACT Various electronic voting systems have been introduced as substitutes for traditional voting systems as electronic voting systems reduces the manual labor in collection, checking, transportation and counting of votes. However, with the growth of information technology, electronic voting systems are susceptible to malicious attacks (or threats) which undermine the integrity of the voting process. Simple encryption methods are not sufficient to protect the secrecy of election data. Encrypted data can cause suspicion, making it subject to malicious attacks. This research implements a novel approach by combining cryptography schemes with image steganography techniques. Besides improving security, steganography makes the data transmission over the network during the election become less suspicious too. After looking into the requirements of an electronic voting system, current electronic voting schemes available in published literature are examined. Next, the cryptographic and steganography techniques best suited for the requirements of our voting system are chosen and the software was implemented. They are namely Password Hashed-based Scheme, Visual Cryptography, F5 Image Steganography and Threshold Decryption Cryptosystem. Besides improving security, the research also aims to improve the quality of the voting process through user friendly interface design, reduction or elimination of additional hardware such as printers and scanners, improving the speed of the election process and end to end voter verifiability that includes a vote receipt. The last of these would increase the voter’s confidence in electronic voting. The electronic voting system developed is based on Web-based Java EE Technology and MySQL database using the Iterative Waterfall model as the Software Development Life Cycle approach. Java EE was chosen to develop the software because of its wide range of Application Programming Interface (API) that enhanced the software development by automating many of the business and security processes of implementation. A simple quantitative analysis has been also done for data analysis after software implementation by conducting usability testing. Here, the voter’s response and opinions of the system as a whole were observed. The studies, experiments and analysis done in this research resulted in an enhanced version of remote E2E system that provides a reliable and secure system with more flexibility and better performance compared to some reported E2E Voting Systems. Though implemented as a working prototype, the system can be implemented to support small to medium scale elections. i | P a g e ACKNOWLEDGEMENT This Master’s thesis is the result of an inspiring and challenging journey, to which many people have contributed and given their support. For that, I would like to take this opportunity to express my sincere gratitude to the following individuals: My coordinating supervisor Dr. Biju Issac for his expert, sincere and valuable guidance and encouragement throughout my Master’s Degree. Without his constant support, I would not have learnt so much in the past years. My associate supervisor Dr. Manas Kumar Haldar for his insightful and constructive suggestions, especially during my thesis writing. His guidance and help are very much appreciated. My family members, Herman Rura, Nita Hartana, Melissa Rura and Chalvin Putra Rura for their unceasing love, faith and prayers. Their support for me throughout my life is invaluable. They have taught me to believe in myself when I was in doubt and inspired me to strive harder when I was not motivated. Without all of you, I would not be who I am today. My closest friend, Winda Dorbilyanti Lie, Finie Kong, Stephan Lee and Lai Qian Jie for sincere friendship and for helping me throughout my ups and downs. Margaret Dahliani Lim and Hanni Stella Angelica for their help and for brightening up my days and Colin Tan Choon Lin for learning the true meaning of Matthew 6:33 (Bible) with me. Above all, I would like to extend my utmost appreciation and gratitude to Jesus Christ whose love is so evident in my life. It is only through His grace and mercy that I have been able to complete this Master’s thesis. ii | P a g e DECLARATIONS I hereby declare that the dissertation - “A Secure Electronic Voting Software Application based on Image Steganography and Cryptography” is my own work and that all the sources I have used or quoted have been acknowledged by means of complete references. It has not already been accepted for any degree, and is also not being concurrently submitted for any other degree. ____________ Lauretha Rura 2 December 2013 iii | P a g e TABLE OF CONTENTS ABSTRACT ..................................................................................................................................... i ACKNOWLEDGEMENT ................................................................................................................. ii DECLARATIONS ........................................................................................................................... iii TABLE OF CONTENTS ................................................................................................................. iv LIST OF FIGURES ....................................................................................................................... vii LIST OF TABLES ........................................................................................................................... x GLOSSARY .................................................................................................................................. vii CHAPTER 1 ................................................................................................................................ 1 SIGNIFICANCE AND SCOPE OF THE THESIS ................................................................................ 1 1.0 Introduction ................................................................................................................. 1 1.1 Research Background ................................................................................................. 1 1.2 Proposed Solution ....................................................................................................... 2 1.3 Research Objectives .................................................................................................... 4 1.4 Thesis Outline ............................................................................................................. 5 CHAPTER 2 ................................................................................................................................ 6 LITERATURE REVIEW ................................................................................................................. 6 2.0 Introduction ................................................................................................................. 6 2.1 Categories of Voting Systems ..................................................................................... 6 2.1.1 Traditional Polling Station Voting Systems ................................................... 6 2.1.2 Electronic Voting Systems ............................................................................. 9 2.2 Information System Security for Remote Electronic Voting System ....................... 16 2.2.1 Cryptography ............................................................................................... 16 2.2.2 Steganoraphy ................................................................................................ 20 2.3 Voting Systems Threats ............................................................................................ 28 2.3.1 Threats in Traditional Polling Station Election ............................................ 29 2.3.2 Threats in Electronic Voting Systems .......................................................... 29 2.4 Summary and Conclusion ......................................................................................... 30 CHAPTER 3 .............................................................................................................................. 32 STUDIES OF RELATED E-VOTING SYSTEMS ............................................................................. 32 3.0 Introduction ............................................................................................................... 32 3.1 Helios ........................................................................................................................ 33 3.1.1 System Overview ......................................................................................... 33 3.1.2 Principal Components of the System ........................................................... 35 3.2 Scantegrity II ............................................................................................................. 38 3.2.1 History of Scantegrity Voting System ......................................................... 38 3.2.2 System Overview ......................................................................................... 39 3.2.3 Principal components of the system ............................................................
Recommended publications
  • GPU-Based Password Cracking on the Security of Password Hashing Schemes Regarding Advances in Graphics Processing Units
    Radboud University Nijmegen Faculty of Science Kerckhoffs Institute Master of Science Thesis GPU-based Password Cracking On the Security of Password Hashing Schemes regarding Advances in Graphics Processing Units by Martijn Sprengers [email protected] Supervisors: Dr. L. Batina (Radboud University Nijmegen) Ir. S. Hegt (KPMG IT Advisory) Ir. P. Ceelen (KPMG IT Advisory) Thesis number: 646 Final Version Abstract Since users rely on passwords to authenticate themselves to computer systems, ad- versaries attempt to recover those passwords. To prevent such a recovery, various password hashing schemes can be used to store passwords securely. However, recent advances in the graphics processing unit (GPU) hardware challenge the way we have to look at secure password storage. GPU's have proven to be suitable for crypto- graphic operations and provide a significant speedup in performance compared to traditional central processing units (CPU's). This research focuses on the security requirements and properties of prevalent pass- word hashing schemes. Moreover, we present a proof of concept that launches an exhaustive search attack on the MD5-crypt password hashing scheme using modern GPU's. We show that it is possible to achieve a performance of 880 000 hashes per second, using different optimization techniques. Therefore our implementation, executed on a typical GPU, is more than 30 times faster than equally priced CPU hardware. With this performance increase, `complex' passwords with a length of 8 characters are now becoming feasible to crack. In addition, we show that between 50% and 80% of the passwords in a leaked database could be recovered within 2 months of computation time on one Nvidia GeForce 295 GTX.
    [Show full text]
  • Security + Encryption Standards
    Security + Encryption Standards Author: Joseph Lee Email: joseph@ ripplesoftware.ca Mobile: 778-725-3206 General Concepts Forward secrecy / perfect forward secrecy • Using a key exchange to provide a new key for each session provides improved forward secrecy because if keys are found out by an attacker, past data cannot be compromised with the keys Confusion • Cipher-text is significantly different than the original plaintext data • The property of confusion hides the relationship between the cipher-text and the key Diffusion • Is the principle that small changes in message plaintext results in large changes in the cipher-text • The idea of diffusion is to hide the relationship between the cipher-text and the plaintext Secret-algorithm • A proprietary algorithm that is not publicly disclosed • This is discouraged because it cannot be reviewed Weak / depreciated algorithms • An algorithm that can be easily "cracked" or defeated by an attacker High-resiliency • Refers to the strength of the encryption key if an attacker discovers part of the key Data-in-transit • Data sent over a network Data-at-rest • Data stored on a medium Data-in-use • Data being used by an application / computer system Out-of-band KEX • Using a medium / channel for key-exchange other than the medium the data transfer is taking place (phone, email, snail mail) In-band KEX • Using the same medium / channel for key-exchange that the data transfer is taking place Integrity • Ability to determine the message has not been altered • Hashing algorithms manage Authenticity
    [Show full text]
  • Implementation and Performance Analysis of PBKDF2, Bcrypt, Scrypt Algorithms
    Implementation and Performance Analysis of PBKDF2, Bcrypt, Scrypt Algorithms Levent Ertaul, Manpreet Kaur, Venkata Arun Kumar R Gudise CSU East Bay, Hayward, CA, USA. [email protected], [email protected], [email protected] Abstract- With the increase in mobile wireless or data lookup. Whereas, Cryptographic hash functions are technologies, security breaches are also increasing. It has used for building blocks for HMACs which provides become critical to safeguard our sensitive information message authentication. They ensure integrity of the data from the wrongdoers. So, having strong password is that is transmitted. Collision free hash function is the one pivotal. As almost every website needs you to login and which can never have same hashes of different output. If a create a password, it’s tempting to use same password and b are inputs such that H (a) =H (b), and a ≠ b. for numerous websites like banks, shopping and social User chosen passwords shall not be used directly as networking websites. This way we are making our cryptographic keys as they have low entropy and information easily accessible to hackers. Hence, we need randomness properties [2].Password is the secret value from a strong application for password security and which the cryptographic key can be generated. Figure 1 management. In this paper, we are going to compare the shows the statics of increasing cybercrime every year. Hence performance of 3 key derivation algorithms, namely, there is a need for strong key generation algorithms which PBKDF2 (Password Based Key Derivation Function), can generate the keys which are nearly impossible for the Bcrypt and Scrypt.
    [Show full text]
  • A New Approach in Expanding the Hash Size of MD5
    374 International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018 A New Approach in Expanding the Hash Size of MD5 Esmael V. Maliberan, Ariel M. Sison, Ruji P. Medina Graduate Programs, Technological Institute of the Philippines, Quezon City, Philippines Abstract: The enhanced MD5 algorithm has been developed by variants and RIPEMD-160. These hash algorithms are used expanding its hash value up to 1280 bits from the original size of widely in cryptographic protocols and internet 128 bit using XOR and AND operators. Findings revealed that the communication in general. Among several hashing hash value of the modified algorithm was not cracked or hacked algorithms mentioned above, MD5 still surpasses the other during the experiment and testing using powerful bruteforce, since it is still widely used in the domain authentication dictionary, cracking tools and rainbow table such as security owing to its feature of irreversible [41]. This only CrackingStation, Hash Cracker, Cain and Abel and Rainbow Crack which are available online thus improved its security level means that the confirmation does not need to demand the compared to the original MD5. Furthermore, the proposed method original data but only need to have an effective digest to could output a hash value with 1280 bits with only 10.9 ms confirm the identity of the client. The MD5 message digest additional execution time from MD5. algorithm was developed by Ronald Rivest sometime in 1991 to change a previous hash function MD4, and it is commonly Keywords: MD5 algorithm, hashing, client-server used in securing data in various applications [27,23,22].
    [Show full text]
  • Computational Security and the Economics of Password Hacking
    COMPUTATIONAL SECURITY AND THE ECONOMICS OF PASSWORD HACKING Abstract Given the recent rise of cloud computing at cheap prices and the increase in cheap parallel computing options, brute force attacks against stolen password databases are a new option for attackers who may not have enough computing power on their own. We take a survey of the current availability and cost of cloud computing as it relates to the idea of computational security in the context of breaking password databases. Rather than look at just the increase in computing power available per computer, we look at how computing as a service is raising the barrier for password protections being computationally secure. We look at the set of key stretching functions meant to defeat brute force password attacks with the current cheapest cloud computing service in order to determine what amount of money and effort an attacker would need to compromise a password database. Michael Phox Zachary Sherin Adin Schmahmann Augusta Niles Context In password-based network security systems, there is a general architecture whereby the password is sent from the user device to a service server, which then hashes the password some number of times using a random oracle before storing the password in a database. Authentication is completed by following the same process and checking if the hashed password is correct. If the password is in the database, access permission is granted (See Figure 1). Figure 1 Password-based Security However, the security system above has been shown to have significant vulnerability depending on the method of password encryption. In contrast to informationally secure (intercepting a ciphertext does not yield any more information to change the probability of any plaintext message.
    [Show full text]
  • Authentication, Authorization and Transport Layer Security
    Universidade de Brasília Instituto de Ciências Exatas Departamento de Ciência da Computação Security of a NoSQL database: authentication, authorization and transport layer security Bruno Jorge S. Rodrigues Monograph presented as a partial requirement for the conclusion of the Course of Computer Engineering Supervisor Prof. Dr. Rodrigo Bonifácio de Almeida Brasília 2019 Universidade de Brasília Instituto de Ciências Exatas Departamento de Ciência da Computação Security of a NoSQL database: authentication, authorization and transport layer security Bruno Jorge S. Rodrigues Monograph presented as a partial requirement for the conclusion of the Course of Computer Engineering Prof. Dr. Rodrigo Bonifácio de Almeida (Supervisor) CIC/UnB Prof. Dr. Donald Knuth Dr. Leslie Lamport Stanford University Microsoft Research Prof. Dr. José Edil Coordinator of the Course of Computer Engineering Brasília, January 25, 2019 Dedication This work is dedicated to all the people who supported me until here. This is dedicated to God in the first place, for blessing me throughout this path that I have been crossing until here (1 Corinthians 10:31). This is dedicated to all my family, especially my father, Dimas, and my mother, Odilma, for loving me in first place, and for giving me strength, courage and the resources that I needed to get here without thinking twice. This is dedicated to Gabriella, for making me smile in my darkest moments, even when she was not in the best days as well. This is dedicated to all my friends, who made my days happier and also made this path easier to cross. I love you all, and you are very important to me! iii Acknowledgements First of all, I thank God for His mercies and blessings, for His care and for each door that was opened and also for every door that was closed.
    [Show full text]
  • Carback, R.T.: Security Innovations In
    APPROVAL SHEET Title of Thesis: Security Innovations in the Punchscan Voting System Name of Candidate: Richard T. Carback III Master of Science, 2008 Thesis and Abstract Approved: Alan T. Sherman Associate Professor Department of Computer Science and Electrical Engineering Date Approved: April 18th, 2008 Curriculum Vitae Name: Richard T. Carback III. Permanent Address: 2819 Manoff Rd, Halethorpe, MD 21227. Degree and date to be conferred: Master of Science, August 2007. Date of Birth: March 27, 1983. Place of Birth: Baltimore, Maryland. Secondary Education: Chesapeake High School, Pasadena, Maryland, 2001. Collegiate institutions attended: University of Maryland Baltimore County, Master of Science, Computer Science, 2008. Bachelor of Science, Computer Science, 2005. Major: Computer Science. Minor: None. Professional publications: • David Chaum, Richard Carback, Jeremy Clark, Aleksander Essex, Stefan Popoveniuc, Ronald L. Rivest, Peter Y.A. Ryan, Emily Shen, and Alan T. Sherman. Scantegrity II: End-to-End Verifiability for Optical Scan Election Systems using Invisible Ink Confirmation Codes. Submitted to USENIX EVT 2008. • Russell A. Fink, Alan T. Sherman, and Richard Carback. TPM Meets DRE: Reducing the Trust Base for Electronic Voting using Trusted Platform Modules. Submitted to USENIX EVT 2008. • David Chaum, Aleksander Essex, Richard Carback, Jeremy Clark, Stefan Popoveniuc, Alan T. Sherman, and Poorvi Vora. Scantegrity: End-to- end voter verifiable optical-scan voting. Accepted for publication in IEEE Security and Privacy, volume May/June, 2008. • Stefan Popoveniuc, Jeremy Clark, Richard Carback, and Aleksander Essex. Securing optical-scan voting. Presented at Dagstuhl. To be published in Towards Trustworthy Election Systems in the Lecture Notes in Computer Science series by Spinger-Verlag, date unknown.
    [Show full text]
  • Hybrid Password Authentication System
    IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 22, Issue 4, Ser. I (Jul. – Aug. 2020), PP 42-51 www.iosrjournals.org Hybrid Password Authentication System 1 2 3 Harish Manikandan Balaji , Abisek K.S , Dharmesh Gopinath 1,2,3(Computer Science and Engineering, Anna University, India) Abstract: The storage and handling of passwords is a vital part of security systems. We introduce a novel approach for password authentication to store and handle passwords securely, which could be seamlessly, merged with existing security systems. This approach protects the genuine plaintext password from being discovered by a malicious actor even if the database storing the passwords suffers a data breach. The data breach could be a result of an unpatched or zero-day vulnerability. A plaintext password is hashed using a hash function. The hash is then split into two parts. One part is used to create a series of patterns (or) Anti-passwords involving the use of an Anti-password algorithm, which are then stored securely in a database. The other part is encrypted using AES algorithm. The encryption and the patterns together create two layers of security making it harder to crack through and access the passwords. The analysis and complexity of the system shows that the encrypted passwords can resist lookup attacks and provide even stronger protection against dictionary attacks. It should also be mentioned that the system combines the cryptographic hash function, patterns, and encryption, without requiring anything more than just the password. Key Word: Advanced Encryption Standard (AES); Anti-password; Negative Database (NDB); Hybrid password authentication system (HPAS).
    [Show full text]
  • Cryptography Lecture 8 Digital Signatures, Hash Functions a Message Authentication Code Is What You Get from Symmetric Cryptography
    Cryptography Lecture 8 Digital signatures, hash functions A Message Authentication Code is what you get from symmetric cryptography A MAC is used to prevent Eve from creating a new message and inserting it instead of Alice’s message Key Key Alice Create MAC Verify MAC Bob Eve Signature vs MAC A MAC, Message Authentication Code, preserves data integrity, • i.e., it ensures that creation and any changes of the message have been made by authorised entities Only the authorised entities can check a MAC, and all who can • check can also change the data In most legally interesting cases, you want to be able to verify that • one single individual wrote something Also, in many situations it is good if everyone is able to check the • signature Digital signatures In asymmetric ciphers, one single individual holds the private key, • while everyone can get the public key So if you encrypt with the private key, and send both cryptogram • and message, anyone can check that “decryption” with the public key does indeed create the message Note that some public key systems do not allow “encryption” with • the private key Most systems can be modified to generate and verify signatures • A digital signature can be created using asymmetric cryptography Used to prevent Eve from creating messages and present them as written by of Alice Private Public signing verification key key Create Verify Alice Anyone signature signature Eve Digital signatures A digital signature should not only be tied to the signing user, but • also to the message The example of encrypting
    [Show full text]
  • An Implementation of Dual (Paper and Cryptographic) Voting System
    Tel Aviv University Raymond and Beverly Sackler Faculty of Exact Sciences The Blatavnik School of Computer Sciences An Implementation of Dual (Paper and Cryptograhic) Voting System Submitted as a partial fulfillment of the requirements towards the Master of Science degree by Niko Farhi The research work has been conducted under the supervision of Prof. Amnon Ta-Shma March 2013 Abstract This thesis reports on the design and implementation of a cryptographic voting system, named Wombat. The system is designed to retain the ”look and feel” of standard paper- based plurality voting, while enhancing security using methods from modern electronic voting literature. To achieve this, the system executes two voting processes in parallel: one is electronic and end-to-end verifiable, while the other is paper based and emulates more traditional processes (to which the voters are accustomed). Consistency between the two processes is enforced by means of a new specially-tailored paper ballot format. In addition, this work examines the practicality of the Wombat protocol through im- plementation and field testing in two student council elections with over 2000 voters and party premiership elections with almost 900 voters. During these field test the usabilty, performance and voter satisfaction was examined. Overall, voters trusted the system and found it comfortable to use. Parts of this work were presented in EVote2012. ii Acknowledgments I wish to thank my advisor, Prof. Amnon Ta-Shma for his patience with me. I also wish to thank Mr. Ben Riva for providing aid when it was needed. iii Contents Abstract ii Acknowledgments iii 1 Introduction 1 1.1 ThesisOutline................................
    [Show full text]
  • The Scantegrity Voting System and Its Use in the Takoma Park Elections
    The Scantegrity Voting System and its Use in the Takoma Park Elections David Chaum Richard T. Carback Jeremy Clark Aleksander Essex Travis Mayberry Stefan Popoveniuc Ronald L. Rivest Emily Shen Alan T. Sherman Poorvi L. Vora John Wittrock Filip Zagórski 1 Introduction The Scantegrity project began with a simple question: is it possible to design a voting system offering the strong security properties of cryptographic end-to-end (E2E) election verification with the intuitive look and feel of a paper optical-scan ballot? This chapter recounts a decade-long research effort toward answering this question, from the design of Scantegrity’s precursor Punchscan, all the way to the first governmental election run by an E2E voting system. The main focus of this chapter is on the Scantegrity II voting system (hereafter referred to as simply Scantegrity) and its use in the municipal elections of Takoma Park, MD in 2009 and 2011. To our knowledge, the Takoma Park election of 2009 was the first use of an E2E-verifiable voting system in an in-person secret-ballot governmental election anywhere in the world, as well as being the first governmental election held in the United States to run on open-source software. We also describe the Punchscan voting system and its use in the 2007 election of the the University of Ottawa Graduate Students Association/Association Étudiant(e)s Diplômé(e)s (GSAÉD), which, to our knowledge, is the first time an E2E voting system was used in a binding election.1 Additionally, this chapter describes the remote voting system Remotegrity and accessible Scantegrity variant Audiotegrity, and their use in the 2011 Takoma Park election.
    [Show full text]
  • Demtech Research Security Analysis of Scantegrity System
    DemTech Research Security Analysis of Scantegrity System DemTech Technical Report Series TR-2012-1 May 2012 Copyright c 2012, DemTech Research Project IT University of Copenhagen All rights reserved. Reproduction of all or part of this work is permitted for educational or research use on condition that this copyright notice is included in any copy. Copies may be obtained by contacting: DemTech Project IT University of Copenhagen Rued Langgaards Vej 7 DK-2300 Copenhagen S Denmark Telephone: +45 72 18 50 00 Telefax: +45 72 18 50 01 Web www.demtech.dk This work is supported in part by DemTech grant 10-092309 awarded by the Danish Council for Strategic Research, Programme Commission on Strategic Growth Technologies. Security Analysis of Scantegrity System Amir Rached Submitted in partial fulfillment for the degree of Bachelor of Science. Committee: • Professor Carsten Schurmann¨ • Professor Joseph Kiniry 1 Contents 1 Introduction 3 2 Scantegrity 3 2.1 Basic Idea . 3 2.2 Scantegrity System . 4 2.3 Scantegrity Back-end . 5 2.4 Voting Experience . 7 2.5 Security . 8 2.5.1 Integrity . 8 2.5.2 Privacy . 9 3 Implementation 9 4 Deployment 10 4.1 Election Setting . 10 4.1.1 Meeting 1 . 10 4.1.2 Meeting 2 . 11 4.1.3 Meeting 3 . 11 4.1.4 Meeting 4 . 11 4.2 Back-end Architecture . 11 5 Evaluation 15 5.1 Douglas Wikstroem Attacks . 15 5.1.1 The Duplicates Thread . 15 5.1.2 The Duplicates Thread and The Inconsistency of Opened Commitments with a Permutation Thread . 16 5.1.3 The Inconsistency of Unrevealed Commitments with a Permutation Thread 16 5.1.4 Universal Verfiability When Checking Is Performed at the End of the Mixing 17 5.2 Initial Automated Language-based Security Analysis .
    [Show full text]