Pearl Harbor in 1996 175 APPENDIX G

Total Page:16

File Type:pdf, Size:1020Kb

Pearl Harbor in 1996 175 APPENDIX G BIODIVERSITY OF MARINE COMMUNITIES IN PEARL HARBOR, OAHU, HAWAII WITH OBSERVATIONS ON INTRODUCED EXOTIC SPECIES August 1997 Department of Defense Legacy Project Number 106 COVER Fouling organisms growing at 3 m depth on a concrete piling at Station 6, Hospital Point Drydock. Projecting from the piling at center is a colony of Schizoporella errata, on which is growing a colony of Halocordyle disticha at upper right and numerous white tubes of the polychaete Salmacina dysteri at lower right. Visible among the dense fouling on the surface of the piling is the red sponge Mycale (Aegogropila) armata at upper left, many ascidians such as Phallusia nigra in the background at center left just above the Schizoporella stalk, and a colony of the bryozoan Amathia distans in the background at lower center. BIODIVERSITY OF MARINE COMMUNITIES IN PEARL HARBOR, OAHU, HAWAII WITH OBSERVATIONS ON INTRODUCED EXOTIC SPECIES Final Report prepared for the U. S. Navy S. L. Coles R.C. DeFelice L. G. Eldredge J. T. Carlton with the assistance of R. L. Pyle A. Suzumoto Bernice Pauahi Bishop Museum Hawai’i Biological Survey Bishop Museum Technical Report No. 10 Honolulu, Hawaii August 1997 Published by Bishop Museum Press 1525 Bernice Street Honolulu, Hawai’i Copyright © 1997 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 1997-014 to the Hawaii Biological Survey EXECUTIVE SUMMARY The marine and estuarine invertebrate and fish communities in Pearl Harbor, Oahu, Hawaii were surveyed between January and October, 1996. Samples were taken and observations were made at fifteen stations throughout the harbor, in a variety of environments ranging from near oceanic conditions at the harbor entrance channel to areas receiving land runoff with high sediment loads and turbidity. All organisms were identified to species or the highest practicable taxonomic level, and results were compared to previous published and unpublished marine biological surveys conducted in the harbor, published taxonomic descriptions of organisms collected from the harbor and Pearl Harbor specimens cataloged in the Bernice P. Bishop Museum collections. All data were entered on a relational database which enables tracking the appearance of individual species with time. Based on a number of criteria, nonindigenous and cryptogenic (i. e. origin unsure, but with good evidence of being introduced) species were designated and their introductions noted on a timeline beginning from the first organisms reported in Pearl Harbor in the last century. Although Pearl Harbor was heavily utilized by Hawaiians for fishing, food gathering and fish cultivation in dozens of fishponds prior to twentieth century, it was relatively isolated from the open ocean before completion of the Pearl Harbor entrance channel in 1911. This marked the beginning of access to the harbor of ocean going vessels with a draft of greater than 5 m and greatly increased the opportunity for species introductions. Other dramatic environmental changes such as the increased runoff of sediment-laden water from the Pearl Harbor watershed that began in the middle of the nineteenth century, filling of fishponds and conversion of shorelines to accommodate docking of U. S. Navy ships and disposal of wastes into the harbor greatly altered the conditions in which organisms lived. The habitat of Pearl Harbor has therefore been an environment of shifting characteristics since at least the beginning of European contact at the end of the eighteenth century. This study collected or observed a total of 434 species or higher taxa (36 algae, 1 spermatophyte, 338 invertebrate and 59 fish) from the 15 stations sampled, the highest number of taxa that have been collected for any Pearl Harbor study. Ninety six species, or about 22%, are considered to be introduced or cryptogenic. The areas of highest species richness were in the entrance channel and in Rainbow Bay at the northeast head of East Loch where number of taxa were around 150. Lowest species richness occurred in the areas of high sedimentation and turbidity at the head of West Loch where fewer than 50 taxa occurred. Dendrographs based on Sorensen Indices of Similarity of species composition among stations suggest three types of communities in the harbor, one associated with relatively oceanic conditions in channel areas, one with the highly i turbid West Loch sedimentary environment and one with conditions prevailing throughout the rest of the harbor. Historically, a total of 1141 taxa have been reported by all sources (including the present study) for the harbor, with 1061 of these reports dated. One hundred sixty six of the total 434 taxa found in the present study are new species reports for Pearl Harbor, and 33 of these are new reports for Hawaii. Analysis of the data for numbers of taxa reported for Pearl Harbor by decade suggests three periods when there were large increases in the numbers of species reported: in the 1920s to 1930s, the 1970s and the 1990s. All of these correspond to periods of increased sampling activity in the harbor and are therefore primarily effort related. The 96 species collected in the present study that are considered to be introduced or cryptogenic include 55 previously reported in Hawaii and considered introduced, 19 previously reported and considered cryptogenic, 14 new reports for Hawaii considered cryptogenic and eight new reports considered introduced. The eight new introductions were comprised of four bivalve molluscs, one pycnogonid, one barnacle, one grapsid crab and one ascidian. Except for the barnacle, none of these recently introduced species have attained large population sizes or wide distributions, and none appear to represent a serious competition to other species already established in Pearl Harbor or elsewhere in Hawaii. By contrast, the barnacle Chthamalus proteus, which is widespread in the Pearl Harbor intertidal and appears to have been introduced to Hawaii since the early 1970’s, is now the most abundant intertidal organism in many areas in the harbor and abounds in other Hawaiian embayments on Oahu, Maui, Hawaii and Kauai. A total on 99 species that are considered to be nonindigenous and introduced have been collected from Pearl Harbor since sampling began at the beginning of this century. The 63 introduced species that occurred in the harbor in 1996 represent an average of 64% of total introductions, indicating a high level of persistence of introduced species after their introduction. Persistence rates by decade ranged from as high as 100% for the six species that were first collected in the harbor in 1911-1920, to 30% for the six introduced species first reported in the 1960s. Most of the introduced species (42%) occur in tropical or temperate oceans worldwide, prohibiting conclusions about their origin of introduction. For the reminder, the majority (27%) have previously known distributions or origins extending to the western Indo-Pacific and Red Sea, and the general Indo-Pacific region (12%). Introduced species from the eastern Pacific region accounted for only 3% of the total introductions, and species with Atlantic and Mediterranean distributions were only 15%, with over half of these coming from the western Atlantic region. ii Comparison of the present study’s results with comprehensive surveys that were conducted in Pearl Harbor in the early 1970s suggests that the environmental conditions in the harbor are higher in quality and can support more stenotopic marine organisms than was the case 20 years ago. Naval shipboard effluent release in the harbor ceased in 1975, sewage discharges were removed in the 1980s except at the Fort Kamehameha outfall in the ship channel, and non-point source runoff has probably decreased in East and Middle Lochs due to completion of development and better land management practices. Probably as a result, reef corals are beginning to colonize hard substrata in the harbor along the ship entrance channel, West Loch and Middle Loch channels, near the entrance to Southeast Loch, and even on the Hawaiian Electric Co.’s discharge sheet piling and along the shoreline at Rainbow Bay in East Loch. No corals were found in the extensive studies conducted in the 1970s, and this change may suggest a reversion to conditions that probably have not existed in the harbor since pre-European contact. In contrast to conditions that have been reported in many areas where recent introductions of nonindigenous aquatic species have eliminated native residents through rapid growth rates, competition for food resources and/or predation, we found little or no indication of monopolization of resources by a single species or population outbreaks of a recently introduced species. With the exception of the intertidal barnacle Chthamalus proteus, recently introduced species were few in number or single reports. Most previously reported introduced or cryptogenic species showed high abundances primarily in areas receiving specific environmental stress or enriched energy sources that favored the development of low diversity communities. Further studies should be conducted to determine whether other harbors and embayments in Hawaii have shown a similar levels of invasion by nonindigenous species or indications of recent introductions. iii TABLE OF CONTENTS Page EXECUTIVE SUMMARY i LIST OF TABLES v LIST OF FIGURES vi LIST OF PLATES viii I. INTRODUCTION 1 A. Marine Invasions as a Worldwide Problem 1 B. Status of Native and Introduced Species in Hawaii 4 C. Hawaii’s Remote Location vs. Crossroads of World Shipping 5 D. Pearl Harbor 7 1. Environmental Setting and Biological Communities 7 2. Historical Perspective 9 3. Previous Biological Studies 17 II. METHODS 21 A. Literature Search 21 B. Bernice P. Bishop Museum Collections 21 C. Field Surveys 21 D. Data Analysis 26 III. RESULTS 27 A. Station Locations and Descriptions 27 B. Benthic Macrofauna and Visual Fish Surveys 35 C. Fish Trap Catches 42 D. Sediment Fauna and Micromolluscs 42 E. Comparison with Previous Pearl Harbor Reports of Marine Organisms 45 F.
Recommended publications
  • Field Guide to the Nonindigenous Marine Fishes of Florida
    Field Guide to the Nonindigenous Marine Fishes of Florida Schofield, P. J., J. A. Morris, Jr. and L. Akins Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States goverment. Pamela J. Schofield, Ph.D. U.S. Geological Survey Florida Integrated Science Center 7920 NW 71st Street Gainesville, FL 32653 [email protected] James A. Morris, Jr., Ph.D. National Oceanic and Atmospheric Administration National Ocean Service National Centers for Coastal Ocean Science Center for Coastal Fisheries and Habitat Research 101 Pivers Island Road Beaufort, NC 28516 [email protected] Lad Akins Reef Environmental Education Foundation (REEF) 98300 Overseas Highway Key Largo, FL 33037 [email protected] Suggested Citation: Schofield, P. J., J. A. Morris, Jr. and L. Akins. 2009. Field Guide to Nonindigenous Marine Fishes of Florida. NOAA Technical Memorandum NOS NCCOS 92. Field Guide to Nonindigenous Marine Fishes of Florida Pamela J. Schofield, Ph.D. James A. Morris, Jr., Ph.D. Lad Akins NOAA, National Ocean Service National Centers for Coastal Ocean Science NOAA Technical Memorandum NOS NCCOS 92. September 2009 United States Department of National Oceanic and National Ocean Service Commerce Atmospheric Administration Gary F. Locke Jane Lubchenco John H. Dunnigan Secretary Administrator Assistant Administrator Table of Contents Introduction ................................................................................................ i Methods .....................................................................................................ii
    [Show full text]
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Additions to and Revisions of the Amphipod (Crustacea: Amphipoda) Fauna of South Africa, with a List of Currently Known Species from the Region
    Additions to and revisions of the amphipod (Crustacea: Amphipoda) fauna of South Africa, with a list of currently known species from the region Rebecca Milne Department of Biological Sciences & Marine Research Institute, University of CapeTown, Rondebosch, 7700 South Africa & Charles L. Griffiths* Department of Biological Sciences & Marine Research Institute, University of CapeTown, Rondebosch, 7700 South Africa E-mail: [email protected] (with 13 figures) Received 25 June 2013. Accepted 23 August 2013 Three species of marine Amphipoda, Peramphithoe africana, Varohios serratus and Ceradocus isimangaliso, are described as new to science and an additional 13 species are recorded from South Africa for the first time. Twelve of these new records originate from collecting expeditions to Sodwana Bay in northern KwaZulu-Natal, while one is an introduced species newly recorded from Simon’s Town Harbour. In addition, we collate all additions and revisions to the regional amphipod fauna that have taken place since the last major monographs of each group and produce a comprehensive, updated faunal list for the region. A total of 483 amphipod species are currently recognized from continental South Africa and its Exclusive Economic Zone . Of these, 35 are restricted to freshwater habitats, seven are terrestrial forms, and the remainder either marine or estuarine. The fauna includes 117 members of the suborder Corophiidea, 260 of the suborder Gammaridea, 105 of the suborder Hyperiidea and a single described representative of the suborder Ingolfiellidea.
    [Show full text]
  • Arothron Hispidus (Linnaeus, 1758)
    Arothron hispidus (Linnaeus, 1758) English Name: Whitespotted pufferfish Family: TETRAODONTIDAE Local Name: Lahjehi koli Order: Tetraodontiformes Size: Max. 48 cm Specimen: MRS/P0482/97 Distinctive Characters: Dorsal fin with 10-Il rays. Anal fin with 10-11 rays. Pectoral fin with 17-19 rays. Small spinules on head and body except snout and posterior caudal peduncle. Nostril consisting of two fleshy flaps from a common base (characteristic of the genus). Caudal fin rounded. Colour: Greyish to greenish brown with small white spots on head, back and sides. I or 2 yellow rings and several yellow spots around pectoral fin. 2-5 bars across sides, always a short dark barbelow eye and another below pectoral fin. Habitatand Biology: Generally found in shallow protected areas to depths of 25 m. Juveniles seen in weedy areas. Diet highly varied; feeding on molluscs, tunicates, sponges, corals, anemones, crabs, tubeworms, sea urchins, brittle stars and starfishes (including crown-of-thorns), and hydroids. Distribution: Indo-Pacific and Eastern Pacific. Remarks: Arothron hispidus like other pufferfishes, is highly poisonous. The degree of toxicity of puffer fishes varies greatly with the species and apparently also with geographical area and season. 368 Arothron immaculatus (Bloch and Schneider, 1801 English Name: Blackedged pufferfish Family: TETRAODONTIDAE Local Name: Fukkoli Order: Tetraodontiformes Size: Max. 30 cm Specimen: MRS/0001/86 Distinctive Characters: Dorsal fin with 9-10 rays. Anal fin with 9-10 rays. Pectoral fin with 15-16 rays. Body round in cross-section. Nasal organsof two tentacles joined at the base. Thebody except posterior part of tail, base of anal and snout covered with slender spines.
    [Show full text]
  • Facts and Arguments for Darwin
    22102077550 Med K3642 #• Digitized by the Internet Archive in 2017 with funding from Wellcome Library https://archive.org/details/b29338426 FACTS AND ARGUMENTS FOR DARWIN. BY FRITZ MÜLLER. WITH ADDITIONS BY THE AUTHOR TRANSLATED FROM THE GERMAN By W. S. DALLAS, F.L.S., ASSISTANT SECRETARY TO THE GEOLOGICAL SOCIETY OF LONDON. WITH ILLUSTRATIONS. LONDON: JOHN MURRAY, ALBEMARLE STREET. 1869. EI'/fL.U TT Cblj T« til ! 1a^: MB. DARWIN’S WORKS. A NATURALIST’S VOYAGE ROUND THE WORLD ; being a Journal of Researches into the Natural History and Geology of Couktries Visited. Post 8vo. 9s. THE ORIGIN of SPECIES, by MEANS of NATURAL SELECTION"; or, The Preservation of Favoured Races in the Struggle for Life. Woodcuts. Post 8vo. 15s. THE VARIOUS CONTRIVANCES by wbicb BRITISH and FOREIGN ORCHIDS are FERTILIZED by INSECTS, and on the GOOD EFFECTS of INTERCROSSING. Woodcuts. Post 8vo. 9s. THE VARIATION OF ANIMALS AND PLANTS UNDER DOMESTICATION. Illustrations. 2 vols., 8vo. 28s. TRANSLATOR’S PREFACE. My principal reason for undertaking the translation of Dr. Fritz Muller’s admirable work on the Crustacea, entitled ‘Für Darwin,’ was that it was still, although published as long ago as 1864, and highly esteemed by the author’s scientific countrymen, absolutely unknown to a great number of English naturalists, including some who have occupied themselves more or less specially with the subjects of which it treats. It possesses a value quite independent of its reference to Darwinism, due to the number of highly interesting and important facts in the natural history and par¬ ticularly the developmental history of the Crustacea, which its distinguished author, himself an unwearied and original investigator of these matters, has brought together in it.
    [Show full text]
  • Biodiversidade E Morfologia Do Primeiro Estágio Larval (Zoea I) Dos Camarões Caridea Capturados Pela Pesca De Arrasto Na Região Sul Paulista
    UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” INSTITUTO DE BIOCIÊNCIAS DE BOTUCATU Biodiversidade e morfologia do primeiro estágio larval (zoea I) dos camarões Caridea capturados pela pesca de arrasto na região sul paulista JOÃO ALBERTO FARINELLI PANTALEÃO Tese apresentada ao Instituto de Biociências de Botucatu, UNESP, para obtenção do título de Doutor no Programa de Pós-Graduação em Ciências Biológicas, Área de Concentração: Zoologia. Orientador: Prof. Dr. Rogério Caetano da Costa Botucatu – SP 2017 Dedicatória À minha bela companheira Thais, que tornou minha caminhada muito mais agradável. Agradecimentos Agradeço, Ao professor Dr. Rogério C. da Costa, pela oportunidade, confiança, orientação responsável e exemplo de profissionalismo presentes em toda minha trajetória acadêmica, desde meu primeiro ano de graduação. À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pela bolsa de doutorado concedida. À Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), pelos recursos financeiros concedidos para o projeto Temático BIOTA (Proc. 2010/50188-8), ao qual esta tese encontra-se vinculada. Ao ministério do Meio Ambiente - IBAMA - (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais e Renováveis) por conceder a licença para coletar o material biológico na área estudada. À seção de Pós-Graduação em Ciências Biológicas do Instituto de Biociências de Botucatu (UNESP, Botucatu) pelo suporte técnico. Ao Departamento de Ciências Biológicas da Faculdade de Ciências (UNESP, Bauru), pela estrutura fornecida para a realização deste trabalho. Aos professores Dr. Fernando L. Mantelatto (USP, Ribeirão Preto) na qualidade de coordenador, Dr. Fernando J. Zara (UNESP, Jaboticabal) e Dr. Antônio L. Castilho (UNESP, Botucatu), que juntamente ao meu orientador Dr.
    [Show full text]
  • An Overview of the Dwarfgobies, the Second Most Speciose Coral-Reef Fish Genus (Teleostei: Gobiidae:Eviota )
    An overview of the dwarfgobies, the second most speciose coral-reef fish genus (Teleostei: Gobiidae:Eviota ) DAVID W. GREENFIELD Research Associate, Department of Ichthyology, California Academy of Sciences, 55 Music Concourse Dr., Golden Gate Park, San Francisco, California 94118-4503, USA Professor Emeritus, University of Hawai‘i Mailing address: 944 Egan Ave., Pacific Grove, CA 93950, USA E-mail: [email protected] Abstract An overview of the dwarfgobies in the genus Eviota is presented. Background information is provided on the taxonomic history, systematics, reproduction, ecology, geographic distribution, genetic studies, and speciation of dwarfgobies. Future research directions are discussed. A list of all valid species to date is included, as well as tables with species included in various cephalic sensory-canal pore groupings. Key words: review, taxonomy, systematics, ichthyology, ecology, behavior, reproduction, evolution, coloration, Indo-Pacific Ocean, gobies. Citation: Greenfield, D.W. (2017) An overview of the dwarfgobies, the second most speciose coral-reef fish genus (Teleostei: Gobiidae: Eviota). Journal of the Ocean Science Foundation, 29, 32–54. doi: http://dx.doi.org/10.5281/zenodo.1115683 Introduction The gobiid genus Eviota, known as dwarfgobies, is a very speciose genus of teleost fishes, with 113 valid described species occurring throughout the Indo-Pacific Ocean (Table 1), and many more awaiting description. It is the fifth most speciose saltwater teleost genus, and second only to the 129 species in the eel genusGymnothorax in the coral-reef ecosystem (Eschmeyer et al. 2017). Information on the systematics and biology of the species of the genus is scattered in the literature, often in obscure references, and, other than the taxonomic key to all the species in the genus (Greenfield & Winterbottom 2016), no recent overview of the genus exists.
    [Show full text]
  • Andhra Pradesh
    PROFILES OF SELECTED NATIONAL PARKS AND SANCTUARIES OF INDIA JULY 2002 EDITED BY SHEKHAR SINGH ARPAN SHARMA INDIAN INSTITUTE OF PUBLIC ADMINISTRATION NEW DELHI CONTENTS STATE NAME OF THE PA ANDAMAN AND NICOBAR CAMPBELL BAY NATIONAL PARK ISLANDS GALATHEA NATIONAL PARK MOUNT HARRIET NATIONAL PARK NORTH BUTTON ISLAND NATIONAL PARK MIDDLE BUTTON ISLAND NATIONAL PARK SOUTH BUTTON ISLAND NATIONAL PARK RANI JHANSI MARINE NATIONAL PARK WANDOOR MARINE NATIONAL PARK CUTHBERT BAY WILDLIFE SANCTUARY GALATHEA BAY WILDLIFE SANCTUARY INGLIS OR EAST ISLAND SANCTUARY INTERVIEW ISLAND SANCTUARY LOHABARRACK OR SALTWATER CROCODILE SANCTUARY ANDHRA PRADESH ETURUNAGARAM SANCTUARY KAWAL WILDLIFE SANCTUARY KINNERSANI SANCTUARY NAGARJUNASAGAR-SRISAILAM TIGER RESERVE PAKHAL SANCTUARY PAPIKONDA SANCTUARY PRANHITA WILDLIFE SANCTUARY ASSAM MANAS NATIONAL PARK GUJARAT BANSDA NATIONAL PARK PURNA WILDLIFE SANCTUARY HARYANA NAHAR SANCTUARY KALESAR SANCTUARY CHHICHHILA LAKE SANCTUARY ABUBSHEHAR SANCTUARY BIR BARA VAN JIND SANCTUARY BIR SHIKARGAH SANCTUARY HIMACHAL PRADESH PONG LAKE SANCTUARY RUPI BHABA SANCTUARY SANGLA SANCTUARY KERALA SILENT VALLEY NATIONAL PARK ARALAM SANCTUARY CHIMMONY SANCTUARY PARAMBIKULAM SANCTUARY PEECHI VAZHANI SANCTUARY THATTEKAD BIRD SANCTUARY WAYANAD WILDLIFE SANCTUARY MEGHALAYA BALPAKARAM NATIONAL PARK SIJU WILDLIFE SANCTUARY NOKREK NATIONAL PARK NONGKHYLLEM WILDLIFE SANCTUARY MIZORAM MURLEN NATIONAL PARK PHAWNGPUI (BLUE MOUNTAIN) NATIONAL 2 PARK DAMPA WILDLIFE SANCTUARY KHAWNGLUNG WILDLIFE SANCTUARY LENGTENG WILDLIFE SANCTUARY NGENGPUI WILDLIFE
    [Show full text]
  • New Zealand Fishes a Field Guide to Common Species Caught by Bottom, Midwater, and Surface Fishing Cover Photos: Top – Kingfish (Seriola Lalandi), Malcolm Francis
    New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing Cover photos: Top – Kingfish (Seriola lalandi), Malcolm Francis. Top left – Snapper (Chrysophrys auratus), Malcolm Francis. Centre – Catch of hoki (Macruronus novaezelandiae), Neil Bagley (NIWA). Bottom left – Jack mackerel (Trachurus sp.), Malcolm Francis. Bottom – Orange roughy (Hoplostethus atlanticus), NIWA. New Zealand fishes A field guide to common species caught by bottom, midwater, and surface fishing New Zealand Aquatic Environment and Biodiversity Report No: 208 Prepared for Fisheries New Zealand by P. J. McMillan M. P. Francis G. D. James L. J. Paul P. Marriott E. J. Mackay B. A. Wood D. W. Stevens L. H. Griggs S. J. Baird C. D. Roberts‡ A. L. Stewart‡ C. D. Struthers‡ J. E. Robbins NIWA, Private Bag 14901, Wellington 6241 ‡ Museum of New Zealand Te Papa Tongarewa, PO Box 467, Wellington, 6011Wellington ISSN 1176-9440 (print) ISSN 1179-6480 (online) ISBN 978-1-98-859425-5 (print) ISBN 978-1-98-859426-2 (online) 2019 Disclaimer While every effort was made to ensure the information in this publication is accurate, Fisheries New Zealand does not accept any responsibility or liability for error of fact, omission, interpretation or opinion that may be present, nor for the consequences of any decisions based on this information. Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries website at http://www.mpi.govt.nz/news-and-resources/publications/ A higher resolution (larger) PDF of this guide is also available by application to: [email protected] Citation: McMillan, P.J.; Francis, M.P.; James, G.D.; Paul, L.J.; Marriott, P.; Mackay, E.; Wood, B.A.; Stevens, D.W.; Griggs, L.H.; Baird, S.J.; Roberts, C.D.; Stewart, A.L.; Struthers, C.D.; Robbins, J.E.
    [Show full text]
  • A Dissertation Entitled Evolution, Systematics
    A Dissertation Entitled Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) By Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) ____________________________________ Adviser: Dr. Carol A. Stepien ____________________________________ Committee Member: Dr. Christine M. Mayer ____________________________________ Committee Member: Dr. Elliot J. Tramer ____________________________________ Committee Member: Dr. David J. Jude ____________________________________ Committee Member: Dr. Juan L. Bouzat ____________________________________ College of Graduate Studies The University of Toledo December 2009 Copyright © 2009 This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. _______________________________________________________________________ An Abstract of Evolution, systematics, and phylogeography of Ponto-Caspian gobies (Benthophilinae: Gobiidae: Teleostei) Matthew E. Neilson Submitted as partial fulfillment of the requirements for The Doctor of Philosophy Degree in Biology (Ecology) The University of Toledo December 2009 The study of biodiversity, at multiple hierarchical levels, provides insight into the evolutionary history of taxa and provides a framework for understanding patterns in ecology. This is especially poignant in invasion biology, where the prevalence of invasiveness in certain taxonomic groups could
    [Show full text]
  • Reproductive Biology of Acanthurus Coeruleus (Bloch & Schneider, 1801) (Perciformes: Acanthuridae) in the North Coast of the State of Pernambuco, Brazil
    Reproductive biology of Acanthurus coeruleus (Bloch & Schneider, 1801) (Perciformes: Acanthuridae) in the north coast of the State of Pernambuco, Brazil RAILMA MARIA VILANOVA QUEIROZ1, MARIANA GOMEZ DO RÊGO2, FABIO HISSA VIEIRA HAZIN1 & PAULO GUILHERME VASCONCELOS DE OLIVEIRA1 1 Universidade Federal Rural de Pernambuco, Departamento de Pesca e Aqüicultura, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900, Recife, Pernambuco, Brasil. 2 Universidade Federal Rural de Pernambuco, Departamento de Morfologia e Fisiologia Animal, Av. Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900, Recife, Pernambuco, Brasil. *Corresponding author: [email protected] Abstract. The objective of this work was to determine aspects of reproductive biology of Blue tang surgeonfish, Acanthurus coeruleus. 496 specimens were sampled, between January 2013 and December 2015, out of which, 235 were male and 261 were female. Sexual ratio did not significanlty differ among genders, and a ratio of 1.11 females per 1 male was found. Total length frequency distribution ranged from 14 to 41.7 cm with predominance of females in the 24-32 cm classes and of males in the 26- 32 cm classes. The estimated allometric coefficient (2.7695), suggests that the species presents negative allometric growth. According to the GSI and the gonads histological analysis, the reproductive period of the species occurs from June to January with periods of greater reproductive activity from August. The oocyte diameter-frequency distribution analysis revealed a multimodal distribution, confirming the evidence of multiple spawning and batch fecundity varied from 20000 to 55000 oocytes. Spawning frequency estimates, based on the hydrated oocytes (HO) method indicated that the species spawns once every 3.8 days, while the estimates based on the post-ovulatory follicle (POF) method indicated a spawning every 3.4 days, during a 6-month spawning season lasting from August to January.
    [Show full text]
  • Critical Review of Type Specimens Deposited in the Malacological Collection of the Biological Institute/Ufrj, Rio De Janeiro, Brazil
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/324805927 Critical review of type specimens deposited in the Malacological Collection of the Biological institute/ufrj, Rio de Janeiro, Brazil Article in Zootaxa · April 2018 DOI: 10.11646/zootaxa.4415.1.4 CITATIONS READS 0 35 4 authors, including: Cleo Oliveira Ricardo Silva Absalão Federal University of Rio de Janeiro Federal University of Rio de Janeiro 16 PUBLICATIONS 64 CITATIONS 92 PUBLICATIONS 486 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Morfoanatomia de Gastrópodes (Mollusca) Terrestres em Floresta Ombrófila Densa Montana do Parque Nacional da Serra dos Órgãos, Rio de Janeiro View project All content following this page was uploaded by Cleo Oliveira on 24 May 2018. The user has requested enhancement of the downloaded file. Zootaxa 4415 (1): 091–117 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4415.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:D2AC7BE4-87D2-462C-91CA-F5F877FF595A Critical review of type specimens deposited in the Malacological collection of the biological institute/Ufrj, Rio de Janeiro, Brazil CLÉO DILNEI DE CASTRO OLIVEIRA1,3, ALEXANDRE DIAS PIMENTA2, RAQUEL MEDEIROS ANDRADE FIGUEIRA1 & RICARDO SILVA ABSALÃO1 1Laboratório de Malacologia, Instituto de Biologia/UFRJ, Rio de Janeiro, Brazil. 2Departamento de Invertebrados, Museu Nacional/UFRJ, Rio de Janeiro, Brazil 3Corresponding author. E-mail: [email protected] Abstract The Malacological Collection of the Biological Institute of Federal University of Rio de Janeiro figures as an important repository of specimens, containing c.a.
    [Show full text]