Introduction

 Definition  General characteristics  Brief history  Fabrication

1 Applications of chalcogenide materials

IT Optical memory PRAM Thin film switching device

Chemical sensor Solution- X-ray digital imaging Flexible sensor processed TFT

IR

Energy (chalcogenide)

TE generation Thin film battery FIC Solar cell

commercialized under development

2 Characteristics of chalcogenide materials

resistivity (Wcm ) (PbTe, Ge 2Sb2Te 5) Chalcogenide memory / switch

1018 1010 103 10-1 >10-1 10-8 insulator conductor mobility (cm 2/Vs)

(Ge 2Sb 2Te5, ZnSe , CdTe) Chalcogenide crystalline Si a-Si ZnO TFT 0.1~1 20~30 ~600 1400

bandgap (eV)

(Ge 2Sb 2Te5, CuInSe 2 , CuInGaSe 2, CdTe , CuGaSe 2) Chalcogenide

0.5 0.7 1.0 c-Si a-Si 1.8 solar cell absorption @500~600nm (CdTe, CuInGaSe 2) Chalcogenide

103 c-Si a-Si 105

ionic conduction of Li [S/cm] Polymer gel electrolyte thin film battery LiPON, LiBPO Chalcogenide Liquid electrolyte

10-6 10-5 10-4 10-3 10-2

TE coeff. (mV/K) (n-Bi Te , p-BiSbTe , Pb Ge Se ) Pb 2 3 3 15 37 58 Ca 3Co 4O9 Chalcogenide TE device 4.0 230 Si 440

Processing temp (C)

(SnS(Se ), n -Ge 2Sb2Te 5) flexible device Chalcogenide 500 450 400 350 300 250 200 150

PI_T g: 385 PA_Tg: 330 PES_T g: 228 PC_Tg: 150 3  “Chalcogenides are chameleon compounds: they can be crystalline or amorphous, metallic or semiconducting, and conductors of ions or electrons.”

 “Thus, a unified approach to the study of chalcogenides, assessing the roles of atoms, ions and electrons, may prove crucial for both device performance and reliability.” 4 Chalcogenide ?

 Glass consisting of the Group VI elements (S, Se, Te), as major constituents, and others (usually Group IV and/or V elements) 5 Covalent amorphous solids

 The chemical bond nature of inorganic  Ionic bond: fluoride and halide glasses  Covalent bond: chalcogenide glasses (S-, Se-, or Te-based)  Metallic bond: amorphous metals  Mixed (ionic + covalent) bond: oxide glasses

 Relatively strong covalent bonds in ChG  Semiconducting but can’t be doped: the empirical 8-N rule  Presence of the homopolar bonds  Similar electronegativity of constituent atoms  Relatively well-defined intermediate range order  Presence of (various kinds of) electronic defects

6 Some characteristics of chalcogenide glasses

 Good transmittance in the region (~20 mm)  IR optical devices  Low energy (~200 cm-1 for selenide glass)  Host for ion-doped and amplifier (3) 3  High c optical nonlinearity (~10 higher than a-SiO2)  Ultrafast all optical switching for optical communications  Semiconducting  Photocopying machines, digital x-ray imaging, PCM  Fast ion conducting  Thin film battery, ionics devices  Photo-induced phenomena  Photolithography, Optical waveguide

7 Classification  Amorphous covalent solid  Glassy  Lone-pair semiconductor

 Strong covalent glass  Obeying the 8-N rule  Ge, Si, As, Sb…  Electronic conductor

 Weak covalent glass  Violating the 8-N rule  Ga, In, Na, Ag…  Ionic conductor

 Bulk or film? * Figure taken from K. Tanaka, Optoelectronic Mater. Devices 1 (2004) 43.

8 Surface of fresh cut of glass vs freshly deposited thin film

14000 As S bulk 21000 2 3 As S bulk As3d core level 2 3 12000 18000 S 2p core level 10000 15000 8000 12000

Counts 6000 9000 Counts 4000 6000 2000 3000 0 0 46 45 44 43 42 41 165 164 163 162 161 160 Binding energy, eV Binding energy, eV

Bulk As2S3

7000 10000 6000 As 3d S2p 16 % within S-S 8000 84 % AsS 5000 3/2 AsS 4000 3/2 6000 3000

Counts As-As Counts 2000 4000 1000

2000 0 165 164 163 162 161 45 44 43 42 41 Binding energy (eV) Binding energy (eV)

* Slide provided by Dr A. Kovalskiy Freshly deposited As2S3 film 9 Chemical bonds

* K. Tanaka, Optoelectronic Mater. Devices 1 (2004) 43. 10 Brief history  The earliest experimental data on an -free glass have been published by Schulz-Sellack in 1870 [1].  Later on, Wood in 1902 [2], as well as Meier in 1910 [3] carried out the first researches on the optical properties of vitreous .  In 1950, Frerichs [4] published the paper: “New optical glasses transparent in infrared up to 12 mm”  Glaze and co-workers [5] developed in 1957 the first method for the preparation of the glass at the industrial scale.  Winter-Klein [6] published reports on numerous chalcogenides prepared in the vitreous state.  A research group lead by Kolomiets and Goriunova discovered the first

semiconducting glass, TlAsSe2 [7].  In 1968, Ovshinsky [8] discovered the memory and switching effects of some chalcogenide glasses.

1. C. Shultz-Sellack, Ann. Phys. 139, 182 (1870). 2. R. W. Wood, Phil. Mag. 3, 607 (1902). 3. W. Meier, Ann. Phys. 31, 1017 (1910). 4. R. Frerichs, Phys. Rev. 78, 643 (1950). 5. F. W. Glaze, D. H. Blackburn, J. S. Osmalov, D. Hubbard, M. H. Black, J. Res. Nat. Bur. Standards 59, 83 (1957). 6. A. Winter-Klein, Verres et Refractaires 9, 147 (1955). 7. N. A. Goriunova, B. T. Kolomiets, Zhurnal Tekhnicheskoi Fiziki (Russ.) 25, 2069 (1955). 8. S. R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968) 11 12  The material used: amorphous AsSiGeTe

13 Fabrication  Melt-quenching

* Photo provided by D. Zhao * Feltz book, p. 16.

14  Low-temp. wet process  Solution process

15  Low-temp. wet process  Sol-gel

* Feltz book, p. 19.

16  PVD (Evaporation)  Thermal and/or e-beam

* Feltz book, p. 22. 17  PVD (Sputtering)  DC or RF magnetron

* Feltz book, p. 25. 18  PVD (PLD)  Laser ablation

19  Mechanical milling

20