Interactions of Avian Frugivores and Invasive Trees in French Polynesia

Total Page:16

File Type:pdf, Size:1020Kb

Interactions of Avian Frugivores and Invasive Trees in French Polynesia Interactions of Avian Frugivores and Invasive Trees in French Polynesia By Erica Noelle Spotswood A dissertation submitted in partial satisfaction of the requirement for the degree of Doctor of Philosophy in Environmental Science, Policy and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor James W. Bartolome, Chair Professor John Battles Professor Brent Mishler Dr. Jean-Yves Meyer Fall 2011 ABSTRACT Interactions of Avian Frugivores and Invasive Trees in French Polynesia by Erica Noelle Spotswood Doctor of Philosophy in Environmental Science, Policy and Management University of California, Berkeley Professor James W. Bartolome, Chair Invasive species pose a threat to the persistence of the sensitive endemic biotic communities on oceanic islands. The direct ecological, social and economic effects of invasions have been well documented and can be significant on both islands and continents. The indirect effects on the interactions between species has received less attention despite being of critical importance to the long term stability of ecosystems facing multiple threats from anthropogenic impacts. In this dissertation, I examined how seed dispersal relationships are modified by the presence of multiple introduced species on the islands of Tahiti and Moorea in the Society archipelago of French Polynesia. Additionally, I evaluated the risks associated with one of my research methods; the use of mist nets to capture wild birds. I first evaluated how the local abundance of the invasive Miconia calvescens modifies seed dispersal relationships between birds and plants. The species is an invasive fruit-bearing tree that currently covers much of the island of Tahiti and is present at much lower densities on Moorea. I found that while the overall size of networks was similar across sites, networks on the highly invaded island of Tahiti were less diverse and less even because birds concentrated a greater proportion of their foraging on Miconia calvescens. There were fewer links between birds and native plants at highly invaded sites where birds switched their diets away from a broader range of fruit and insects. The endemic Grey-green Fruit Dove (Ptilinopus purpuratus) consumed native fruit in larger quantities and more total species than two introduced frugivores. This study demonstrates that the impacts of invasive fruit-bearing plants on seed dispersal networks depends in part on their abundance, and are likely to increase as a species becomes increasingly dominant in a community. Additionally, the dispersal of native plants continues to depend heavily on the single extant native fruit dove on these islands despite the presence of multiple introduced frugivores. The impact of invasive plants on seed dispersal networks is the result of the cumulative effects of foraging decisions by birds. The available evidence suggests that birds choose which fruit to consume based on the complementarity between fruit traits and their own preferences as well as the relative abundance of fruit in a community. I used fruit choice experiments with captive Red-vented Bulbuls (Pycnonotus cafer) to uncouple fruit preferences from the effects of abundance to determine which operates more strongly on foraging decisions in birds. Birds 1 showed both reliable and consistent preferences for some fruits over others and a strong response to abundance. However, when included simultaneously in the same experiment, the patterns of preference remained intact while the effect of abundance disappeared. Taken together, experimental and field data suggest that foraging decisions are highly context-dependent, and neutral models that consider only the relative abundance of fruit in the community are unlikely to provide reliable predictions about how seed dispersal networks will change in response to invasion. In the final study of my thesis, I evaluated the risks associated with one of my primary research methods; the use of mist nets to capture birds. Mist nets are used widely for monitoring avian populations. While the method is assumed to be safe, very few studies have addressed how frequently injuries and mortalities occur, and no large-scale comprehensive evaluation has been conducted to determine the associated risks. In collaboration with several banding organizations, I quantified the rates of mortality and injury at 22 banding organizations in the United States and Canada and used capture data from five organizations to determine what kinds of incidents occur most frequently. I compiled a dataset including nearly 350,000 records of capture over a 22 year period and evaluated what makes birds most at risk to incident. I found that the risks varied among species and factors such as body mass and the number of previous captures were related to the probability of an incident. Additionally, I found that birds that were released back into the wild after an injury were recaptured at similar rates compared to birds that were released without an injury, indicating that injured birds survived in similar numbers as those released uninjured. This study fills a gap by providing the first comprehensive evaluation of the risks associated with mist netting and concludes that while overall risks are low, species and traits can predict a bird’s susceptibility to incident. These results can be useful for organizations that use mist netting, and should be incorporated into protocols aimed at minimizing injury and mortality. Finally, I emphasize that projects using mist nets should monitor their performance and compare their results to those of other organizations. I conclude that the indirect effect of species invasions are variable and depend in part on the abundance of the invasive species. Thus, consequences for seed dispersal networks are likely to be most pronounced at the highest levels of invasion. Despite the effects of abundance, birds also showed strong preferences for certain kinds of fruits. Thus, the integration of novel fruit into native seed dispersal networks is likely to depend not only on the relative abundance of fruit but also on the preferences for each fruit relative to others that are available. The Grey-green Fruit Dove is the sole disperser for several native plants, and the maintenance of viable populations of these plants is likely to depend on conservation of this protected and sensitive endemic species. Similarly, it is likely that the Fruit Dove also depends on native plants despite the integration of many exotic fruit into its diet. There is an urgent need for more research evaluating the habitat requirements and population dynamics of this frugivore in order to ensure the long term persistence of the species. 2 This dissertation is dedicated to the endemic flora and fauna of French Polynesia I am willing to sacrifice elegance for reality, knowing just how muddy reality can be. ~ David Steadman (2006) i TABLE OF CONTENTS ACKNOWLEDGEMENTS…………………………………………………………………iii CHAPTER 1 General Introduction……………………………………………………………….…1 CHAPTER 2 Abundance of invasive trees alters the structure of seed dispersal networks in French Polynesia…………………………………………………………………..19 CHAPTER 3 Fruit choice in birds is influenced by abundance and fruit type but not invasion status in French Polynesia ……………………………………………………………46 CHAPTER 4 How safe is mist netting? Evaluating the risk of injury and mortality to birds……….70 CHAPTER 5 Conclusions & Directions for Future Research……………………………………….89 LITERATURE CITED………………………………………………………………………..97 APPENDICES………………………………………………………………………………..118 ii ACKNOWLEDGMENTS I am grateful to many people that helped me during the course of my dissertation research. First, I am grateful for the opportunity to work with my advisor, James Bartolome, whose support and advice was critical to the success of my project, and who was extraordinarily patient for the duration of the time that I have worked with him. This dissertation would also not have been possible without the assistance of Jean-Yves Meyer, who guided me towards the idea that became my dissertation, and provided an enormous amount of advice and expertise along the way. I thank John Battles, who was a member of my orals and dissertation committee and who gave excellent feedback and advice and challenged me to think deeply about my data and my project. I thank Brent Mishler, also a member of my orals and dissertation committee who encouraged me with positive energy and enthusiasm and pushed me to think about evolution and phylogenies even when I was resistant. A number of other Berkeley faculty were also tremendously supportive and generous with their time. The faculty that participate in the Moorea course Biology and Geomorphology of Tropical Islands were excellent sources of support and advice, including my advisor, Vince Resh, Brent Mishler, George Roderick, Jere Lipps, and Carole Hickman. Steve Beissinger allowed me to attend his lab meetings, read my papers, watched my talks and generally acted as an additional advisor to me and deserves an enormous thank you for all of it. Perry DeValpine taught me almost everything I know about statistics, and gave advice on data analysis numerous times even though I was no longer his student. Maggi Kelly helped me understand landscape ecology, served on my orals committee, and taught me everything I know about GIS. George Roderick and Rosie Gillespie helped secure funding for me through the NSF GK-12 program in Moorea, and were present through the course of my dissertation providing advice and
Recommended publications
  • Crafter's Choice™ Jasmine Vanilla
    February 14, 2020 Page 1 of 1 7820 E. Pleasant Valley Road Independence, OH 44131 (800) 908-7028 www.crafters-choice.com Crafter’s Choice™ Jasmine Vanilla - Natural Fragrance Oil To Whom it May Concern, Please be advised that the above fragrance(s) are comprised 100% of aromatic natural raw materials as defined by ISO 9235:2013 as well as natural and/or derived natural non-aromatic ingredients as per ISO 16128: 2016, published by the International Organization for Standardization. This fragrance does not contain synthetic ingredients. This fragrance is comprised of 90.33% Essential Oils and Essential Oil fractions This fragrance contains the following Essential Oils and/or Essential Oil fractions: INCI Name CAS Country of Origin RICINUS COMMUNIS (CASTOR) SEED OIL 8001-79-4 India CANANGA ODORATA (YLANG YLANG) FLOWER OIL 8006-81-3 France This fragrance also contains the following ingredients: INCI Name CAS Country of Origin Proprietary Natural Fragrance Chemicals Please note that the Country of Origin is subject to change based upon availability. * indicates unofficial INCI name, due to specific raw material used. However, the most accurate name has been chosen based on industry knowledge and raw material supplier names. The information and data contained in this document are presented for informational purposes only and have been obtained from various third party sources. Although we have made a good faith effort to present accurate information as provided to us, our ability to independently verify information and data obtained from outside sources is limited. To the best of our knowledge, the information presented herein is accurate as of the date of publication, however, it is presented without any other representation or warranty as to its completeness or accuracy and we assume no responsibility for its completeness or accuracy.
    [Show full text]
  • A Review on Medicinal Properties of Psidium Guajava
    Journal of Medicinal Plants Studies 2018; 6(4): 44-47 ISSN (E): 2320-3862 ISSN (P): 2394-0530 A review on medicinal properties of Psidium NAAS Rating: 3.53 JMPS 2018; 6(4): 44-47 guajava © 2018 JMPS Received: 10-05-2018 Accepted: 11-06-2018 Arjun Kafle, Sushree Sangita Mohapatra, Indrapal Reddy and Manju Arjun Kafle Chapagain Veterinray Officer, Sri Anantha Padmanabha Swamy Pharma Pvt Ltd, Hyderabad, Telangana, Abstract India Nature has endowed Guava with many nutritional and medicinal properties. The fruits are 4-12 cm long with round or oval shape depending on the species (red, strawberry, and off-white). The tree, which Sushree Sangita Mohapatra belongs to the family, Myrtaceae is chiefly grown in countries with tropical and subtropical climate. The Teaching Assistant, Department pink variety of guava (when dissected) has the maximum medicinal values. Fruits as well as leaves has of Veterinary Pharmacology and many health benefits viz, antidiarrhoeal, antihypertensive, antilipedemic, anticancer etc. Toxicology, College of Veterinary Science, Proddatur, Andra Keywords: Medicinal properties of Psidium guajava Pradesh, India Indrapal Reddy 1. Introduction Phd, Jawaharlal Nehru Nature has blessed Guava or Psidium guajava with many essential nutrients. Historically, Technological University, Guava is said to be cultivated in South Africa for commercial purpose and has been brought to Hyderabad, Telangana, India country India by the Portuguese. As a fruit, Guava is very common in Asian countries but Manju Chapagain occupies a greater space in western countries mainly because of its medicinal properties. It is a Lecturer, Asian Institute of small tree belonging to family Myrtaceae [2]. The tree can be cultivated in any soil provided Nursing Education, Guwahati, the climate is tropical or subtropical.
    [Show full text]
  • Status, Ecology, and Management of the Invasive Plant, Miconia Calvescens DC (Melastomataceae) in the Hawaiian Islands1
    Records of the Hawaii Biological Survey for 1996. Bishop 23 Museum Occasional Papers 48: 23-36. (1997) Status, Ecology, and Management of the Invasive Plant, Miconia calvescens DC (Melastomataceae) in the Hawaiian Islands1 A.C. MEDEIROS2, L.L. LOOPE3 (United States Geological Survey, Biological Resources Division, Haleakala National Park Field Station, P.O. Box 369, Makawao, HI 96768, USA), P. CONANT (Hawaii Department of Agriculture, 1428 South King St., P.O. Box 22159, Honolulu, HI 96823, USA), & S. MCELVANEY (Hawaii Natural Heritage Program/The Nature Conservancy of Hawaii, 1116 Smith St., Suite 201, Honolulu, HI 96817, USA) Abstract Miconia calvescens (Melastomataceae), native to montane forests of the neotropics, has now invaded wet forests of both the Society and Hawaiian Islands. This tree, which grows up to 15 m tall, is potentially the most invasive and damaging weed of rainforests of Pacific islands. In moist conditions, it grows rapidly, tolerates shade, and produces abundant seed that is effectively dispersed by birds and accumulates in a large, persistent soil seed-bank. Introduced to the Hawaiian Islands in 1961, M. calvescens appears to threaten much of the biological diversity in native forests receiving 1800–2000 mm or more annual precipitation. Currently, M. calvescens is found on 4 Hawaiian islands— Hawaii, Maui, Oahu, and Kauai. Widespread awareness of this invader began in the early 1990s. Although biological control is being pursued, conventional control techniques (mechanical and chemical) to contain and eradicate it locally are underway. Introduction The effects of biological invasions are increasingly being recognized for their role in degradation of biological diversity worldwide (Usher et al., 1988; D’Antonio & Vitousek, 1992).
    [Show full text]
  • Acoustic Monitoring of Night-Migrating Birds: a Progress Report
    Acoustic Monitoring of Night-Migrating Birds: A Progress Report William R. Evans Kenneth V. Rosenberg Abstract—This paper discusses an emerging methodology that to give regular vocalizations in night migration are the vireos uses electronic technology to monitor vocalizations of night-migrat- (Vireonidae), flycatchers (Tyrannidae), and orioles (Icterinae). ing birds. On a good migration night in eastern North America, If a monitoring protocol is consistently maintained, an array thousands of call notes may be recorded from a single ground-based, of microphone stations can provide information on how the audio-recording station, and an array of recording stations across a species composition and number of vocal migrants vary across region may serve as a “recording net” to monitor a broad front of time and space. Such data have application for monitoring migration. Data from pilot studies in Florida, Texas, New York, and avian populations and identifying their migration routes. In British Columbia illustrate the potential of this technique to gather addition, detection and classification of distinctive call-types information that cannot be gathered by more conventional methods, is possible with computers (Mills 1995; Taylor 1995), thus such as mist-netting or diurnal counts. For example, the Texas information on bird populations might be gained automati- station detected a major migration of grassland sparrows, and a cally. In this paper, we summarize the current state of station in British Columbia detected hundreds of Swainson’s knowledge for identifying night-flight calls to species; present Thrushes; both phenomena were not detected with ground monitor- selected results from four ongoing studies that are monitoring ing efforts.
    [Show full text]
  • Ctz78-02 (02) Lee Et Al.Indd 51 14 08 2009 13:12 52 Lee Et Al
    Contributions to Zoology, 78 (2) 51-64 (2009) Variation in the nocturnal foraging distribution of and resource use by endangered Ryukyu flying foxes(Pteropus dasymallus) on Iriomotejima Island, Japan Ya-Fu Lee1, 4, Tokushiro Takaso2, 5, Tzen-Yuh Chiang1, 6, Yen-Min Kuo1, 7, Nozomi Nakanishi2, 8, Hsy-Yu Tzeng3, 9, Keiko Yasuda2 1 Department of Life Sciences and Institute of Biodiversity, National Cheng Kung University, Tainan 701, Taiwan 2 The Iriomote Project, Research Institute for Humanity and Nature, 671 Iriomote, Takatomi-cho, Okinawa 907- 1542, Japan 3 Hengchun Research Center, Taiwan Forestry Research Institute, Pingtung 946, Taiwan 4 E-mail: [email protected] 5 E-mail: [email protected] 6 E-mail: [email protected] 7 E-mail: [email protected] 8 E-mail: [email protected] 9 E-mail: [email protected] Key words: abundance, bats, Chiroptera, diet, figs, frugivores, habitat Abstract Contents The nocturnal distribution and resource use by Ryukyu flying foxes Introduction ........................................................................................ 51 was studied along 28 transects, covering five types of habitats, on Material and methods ........................................................................ 53 Iriomote Island, Japan, from early June to late September, 2005. Study sites ..................................................................................... 53 Bats were mostly encountered solitarily (66.8%) or in pairs (16.8%), Bat and habitat census ................................................................
    [Show full text]
  • Disaggregation of Bird Families Listed on Cms Appendix Ii
    Convention on the Conservation of Migratory Species of Wild Animals 2nd Meeting of the Sessional Committee of the CMS Scientific Council (ScC-SC2) Bonn, Germany, 10 – 14 July 2017 UNEP/CMS/ScC-SC2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II (Prepared by the Appointed Councillors for Birds) Summary: The first meeting of the Sessional Committee of the Scientific Council identified the adoption of a new standard reference for avian taxonomy as an opportunity to disaggregate the higher-level taxa listed on Appendix II and to identify those that are considered to be migratory species and that have an unfavourable conservation status. The current paper presents an initial analysis of the higher-level disaggregation using the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World Volumes 1 and 2 taxonomy, and identifies the challenges in completing the analysis to identify all of the migratory species and the corresponding Range States. The document has been prepared by the COP Appointed Scientific Councilors for Birds. This is a supplementary paper to COP document UNEP/CMS/COP12/Doc.25.3 on Taxonomy and Nomenclature UNEP/CMS/ScC-Sc2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II 1. Through Resolution 11.19, the Conference of Parties adopted as the standard reference for bird taxonomy and nomenclature for Non-Passerine species the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World, Volume 1: Non-Passerines, by Josep del Hoyo and Nigel J. Collar (2014); 2.
    [Show full text]
  • HEAR HNIS Report on Miconia Calvescens
    Saturday, March 29, 1997 HNIS Report for Miconia calvescens Page 1 A product of the Hawaiian Ecosystems at Risk Project Miconia calvescens DC. Miconia calvescens, in the melastome family (Melastomataceae), is a tree 4-15 m tall with large (to 80 cm in length), strongly trinerved leaves, dark-green above and purple below. Federal Noxious Weed? N Hawaii State Noxious Weed? Y Federal Seed Act? N Hawaii State Seed Act? N [illustration source: unknown] Native to where : The native range of Miconia calvescens extends from 20 degrees N in Mexico, Guatemala, and Belize to 20 degrees S in Brazil and Argentina (Meyer 1994). The upper elevational limit of the species in its native range is 1830 m in Ecuador (Wurdack 1980). Meyer (1994) determined that the form with very large leaves with purple leaf undersides occurs only in Mexico, Guatemala, Belize, and Costa Rica; specimens examined by Meyer were collected at elevations between 45 m and 1400 m. Native climate : The climate in which Miconia calvescens occurs is tropical montane. Based on its ecology in Tahiti and its occurrence to 1830 m in Ecuador, it appears to pose a threat to all habitats below the upper forest line which receive 1800-2000 mm (75-80 inches) or more of annual precipitation. Biology and ecology : Phenology: Flowering and fruiting of mature trees in Miconia calvescens populations in Hawaii appear to be somewhat synchronized and may be triggered by weather events (drought and/or rain). A single tree can flower/fruit 2-3 times in a year. A single flowering/fruiting event is prolonged, and all stages and mature and immature fruits are often seen on a single tree.
    [Show full text]
  • The All-Bird Bulletin
    Advancing Integrated Bird Conservation in North America Spring 2014 Inside this issue: The All-Bird Bulletin Protecting Habitat for 4 the Buff-breasted Sandpiper in Bolivia The Neotropical Migratory Bird Conservation Conserving the “Jewels 6 Act (NMBCA): Thirteen Years of Hemispheric in the Crown” for Neotropical Migrants Bird Conservation Guy Foulks, Program Coordinator, Division of Bird Habitat Conservation, U.S. Fish and Bird Conservation in 8 Wildlife Service (USFWS) Costa Rica’s Agricultural Matrix In 2000, responding to alarming declines in many Neotropical migratory bird popu- Uruguayan Rice Fields 10 lations due to habitat loss and degradation, Congress passed the Neotropical Migra- as Wintering Habitat for tory Bird Conservation Act (NMBCA). The legislation created a unique funding Neotropical Shorebirds source to foster the cooperative conservation needed to sustain these species through all stages of their life cycles, which occur throughout the Western Hemi- Conserving Antigua’s 12 sphere. Since its first year of appropriations in 2002, the NMBCA has become in- Most Critical Bird strumental to migratory bird conservation Habitat in the Americas. Neotropical Migratory 14 Bird Conservation in the The mission of the North American Bird Heart of South America Conservation Initiative is to ensure that populations and habitats of North Ameri- Aros/Yaqui River Habi- 16 ca's birds are protected, restored, and en- tat Conservation hanced through coordinated efforts at in- ternational, national, regional, and local Strategic Conservation 18 levels, guided by sound science and effec- in the Appalachians of tive management. The NMBCA’s mission Southern Quebec is to achieve just this for over 380 Neo- tropical migratory bird species by provid- ...and more! Cerulean Warbler, a Neotropical migrant, is a ing conservation support within and be- USFWS Bird of Conservation Concern and listed as yond North America—to Latin America Vulnerable on the International Union for Conser- Coordination and editorial vation of Nature (IUCN) Red List.
    [Show full text]
  • Foraging Behavior and Habitat Selection of Insectivorous Migratory Songbirds at Gulf Coast Stopover Sites in Spring
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1996 Foraging Behavior and Habitat Selection of Insectivorous Migratory Songbirds at Gulf Coast Stopover Sites in Spring. Chao-chieh Chen Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Chen, Chao-chieh, "Foraging Behavior and Habitat Selection of Insectivorous Migratory Songbirds at Gulf Coast Stopover Sites in Spring." (1996). LSU Historical Dissertations and Theses. 6323. https://digitalcommons.lsu.edu/gradschool_disstheses/6323 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]
  • Prevalence of Chlamydia Psittaci in Domesticated and Fancy Birds in Different Regions of District Faisalabad, Pakistan
    United Journal of Microbiology and Infectious Diseases Research Article Prevalence of Chlamydia Psittaci in Domesticated and Fancy Birds in Different Regions of District Faisalabad, Pakistan Siraj I1, Rahman SU1, Ahsan Naveed1* Anjum Fr1, Hassan S2, Zahid Ali Tahir3 1Institute of Microbiology, University of Agriculture, Faisalabad 2Institute of Animal Nutrition and Feed Technology, University of Agriculture Faisalabad, Pakistan 3DiagnosticLaboraoty, Kamalia, Toba Tek Singh, Pakistan Volume 1 Issue 1- 2018 1. Abstract Received Date: 15 July 2018 1.1. Introduction Accepted Date: 31 Aug 2018 The study was aimed to check the prevalence of this zoonotic bacterium which is a great risk Published Date: 06 Sep 2018 towards human population in district Faisalabad at Pakistan. 1.2. Methodology 2. Key words Chlamydia Psittaci; Psittacosis; In present study, a total number of 259 samples including fecal swabs (187) and blood samples Prevalence; Zoonosis (72) from different aviculture of 259 birds such as chickens, ducks, pigeons, parrots, Australian parrots, and peacock were collected from different regions of Faisalabad, Pakistan. After process- ing the samples were inoculated in the yolk sac of embryonated chicken eggs for the cultivation ofChlamydia psittaci(C. psittaci)and later identified through Modified Gimenez staining and later CFT was performed for the determination of antibodies titer against C. psittaci. 1.3. Results The results of egg inoculation and modified Gimenez staining showed 9.75%, 29.62%, 10%, 36%, 44.64% and 39.28% prevalence in the fecal samples of chickens, ducks, peacocks, parrots, pi- geons and Australian parrots respectively. Accordingly, the results of CFT showed 15.38%, 25%, 46.42%, 36.36% and 25% in chickens, ducks, pigeons, parrots and peacock respectively.
    [Show full text]
  • Alaska Legal Pet Guide Possession Import Take Comments
    ALASKA LEGAL PET GUIDE POSSESSION IMPORT TAKE COMMENTS This is only a guide of animals that MAY be legal in a state. Due to the extensive amount of laws involved that are constantly changing, UAPPEAL and contributors of these guides cannot guarantee the accuracy of the information. Users are responsible for checking all laws BEFORE getting an animal. Legal as Pets as Legal Permit Register Pets for Legal Permit Pets for Legal ARACHNID, CENTIPEDE, MILLIPEDE All Yes No No Yes No Yes No known ADFG laws BATS Myotis, Keen's No No No Native/Live Game - Banned as pets Myotis, Little Brown No No No Native/Live Game - Banned as pets Silver-haired No No No Native/Live Game - Banned as pets All No No NA Live game - banned as pets BEARS Black No No No Native/Live Game - Banned as pets Brown No No No Native/Live Game - Banned as pets Polar No No No Native/Live Game - Banned as pets All No No NA Live game - no pets BIRDS Albatross, Black-footed No No No Native/Live Game - Banned as pets Albatross, Short-tailed No No No State Endangered; Native species - banned as pets Ammoperdix (Genus) Yes Yes No Yes Yes NA Aviculture Permit needed to import or possess Canary Yes No No Yes NA Exempt Live Game - No ADFG permit needed; See Ag laws Capercaille Yes Yes No Yes Yes NA Aviculture Permit needed to import or possess Chickadee, Black-capped No No No Native/Live Game - Banned as pets Chickadee, Boreal No No No Native/Live Game - Banned as pets Chickadee, Chestnut-backed No No No Native/Live Game - Banned as pets Chickadee, Gray-headed No No No Native/Live Game
    [Show full text]
  • Traditional Uses, Phytochemistry, and Bioactivities of Cananga Odorata (Ylang-Ylang)
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2015, Article ID 896314, 30 pages http://dx.doi.org/10.1155/2015/896314 Review Article Traditional Uses, Phytochemistry, and Bioactivities of Cananga odorata (Ylang-Ylang) Loh Teng Hern Tan,1 Learn Han Lee,1 Wai Fong Yin,2 Chim Kei Chan,3 Habsah Abdul Kadir,3 Kok Gan Chan,2 and Bey Hing Goh1 1 JeffreyCheahSchoolofMedicineandHealthSciences,MonashUniversityMalaysia,46150BandarSunway, Selangor Darul Ehsan, Malaysia 2Division of Genetic and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia 3Biomolecular Research Group, Biochemistry Program, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence should be addressed to Bey Hing Goh; [email protected] Received 30 April 2015; Revised 4 June 2015; Accepted 9 June 2015 AcademicEditor:MarkMoss Copyright © 2015 Loh Teng Hern Tan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ylang-ylang (Cananga odorata Hook. F. & Thomson) is one of the plants that are exploited at a large scale for its essential oil which is an important raw material for the fragrance industry. The essential oils extracted via steam distillation from the plant have been used mainly in cosmetic industry but also in food industry. Traditionally, C. odorata is used to treat malaria, stomach ailments, asthma, gout, and rheumatism. The essential oils or ylang-ylang oil is used in aromatherapy and is believed to be effective in treating depression, high blood pressure, and anxiety.
    [Show full text]